1
|
Paul T, Saikia PP, Borah D, Mahanta N, Baruah A, Borah JM, Saikia BJ, Raidongia K, Gogoi RK, Gogoi R. Ni(OH)
2
nanoparticles as a recyclable catalyst in acceptorless dehydrogenation of alcohols to acids/acid salts under aerobic conditions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Tumpa Paul
- Department of Chemistry Darrang College 784001 Tezpur India
| | | | | | | | - Arabinda Baruah
- Department of Chemistry Gauhati University 781014 Guwahati India
| | | | | | | | | | - Raktim Gogoi
- Department of Chemistry IIT Guwahati 781039 Guwahati India
| |
Collapse
|
2
|
Xu M, Ou J, Luo K, Liang R, Liu J, Li N, Hu B, Liu K. External Catalyst- and Additive-Free Photo-Oxidation of Aromatic Alcohols to Carboxylic Acids or Ketones Using Air/O2. Molecules 2023; 28:molecules28073031. [PMID: 37049794 PMCID: PMC10096038 DOI: 10.3390/molecules28073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
We present an environment-friendly and highly efficient method for the oxidation of aromatic alcohols to carboxylic acids or ketones in air via light irradiation under external catalyst-, additive-, and base-free conditions. The photoreaction system exhibits a wide substrate scope and the potential for large-scale applications. Most of the desired products are easily obtained via recrystallization and separation from low-boiling reaction medium acetone in good yields, and the products can be subsequent directly transformed without further purification.
Collapse
Affiliation(s)
- Meng Xu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jinhua Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
- Correspondence: (J.O.); (K.L.)
| | - Kejun Luo
- Analytical Testing Center, Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| | - Rongtao Liang
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jian Liu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ni Li
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Bonian Hu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Kaijian Liu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
- Correspondence: (J.O.); (K.L.)
| |
Collapse
|
3
|
Ghiai R, Alavinia S, Ghorbani-Vaghei R, Gharakhani A. Ni(ii) immobilized on poly(guanidine-triazine-sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines. RSC Adv 2022; 12:34425-34437. [PMID: 36545623 PMCID: PMC9709786 DOI: 10.1039/d2ra06196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields. This study reports a novel approach for synthesizing a novel porous polymer stabilizer through condensation polymerization in which Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) are used as hard templates. Using this method allowed the facile and fast removal of the template and mesopores formation following the Fe3O4 MNPs. Different techniques were performed to characterize the structure of the polymer. Based on the obtained results, the obtained mesoporous polymeric network was multi-layered and consisted of repeating units of sulfonamide, triazine, and guanidine as a novel heterogeneous multifunctional support. Afterward, the new nickel organometallic complex was supported on its inner surface using the porous poly sulfonamide triazine guanidine (PGTSA/Ni). In this process, the obtained PGTSA/Ni nanocomposite was used as a heterogeneous catalyst in the synthesis of imines from amines. Since this reaction has an acceptorless dehydrogenation pathway, the hydrogen gas is released as its by-product. The synthesized nanocatalyst was structurally confirmed using different characterization modalities, including FT-IR, SEM, XRD, EDX, TEM, elemental mapping, ICP-AES, BET, and TGA. In addition, all products were obtained in high turnover frequency (TOF) and turnover number (TON). The corresponding results revealed the high selectivity and activity of the prepared catalyst through these coupling reactions. Overall, the synthesized nanocatalyst is useable for eight cycles with no considerable catalytic efficiency loss.
Collapse
Affiliation(s)
- Ramin Ghiai
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 3838 0647
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 3838 0647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 3838 0647
| | - Alireza Gharakhani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 3838 0647
| |
Collapse
|
4
|
Tabasi NS, Genç S, Gülcemal D. Tuning the selectivity in iridium-catalyzed acceptorless dehydrogenative coupling of primary alcohols. Org Biomol Chem 2022; 20:6582-6592. [PMID: 35913502 DOI: 10.1039/d2ob01142e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An acceptorless dehydrogenative coupling of primary alcohols to carboxylic acids/carboxylates, esters, and Guerbet alcohols (via both homo- and cross-β-alkylation of the alcohols) in the presence of an N-heterocyclic carbene iridium(I) catalyst was developed under aerobic conditions. The product selectivity can be easily tuned among the products with a single catalyst through simple modification of the reaction conditions, such as the catalyst and base amounts, the choice of base, and the reaction temperature.
Collapse
Affiliation(s)
- Nihal S Tabasi
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey.
| | - Sertaç Genç
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey.
| | - Derya Gülcemal
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
5
|
Bordoloi K, Kalita GD, Das P. Acceptorless dehydrogenation of alcohols to carboxylic acids by palladium nanoparticles supported on NiO: delving into metal-support cooperation in catalysis. Dalton Trans 2022; 51:9922-9934. [PMID: 35723167 DOI: 10.1039/d2dt01311h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this work, we have developed a simple NiO-supported Pd nanocatalyst (Pd@NiO) for oxidant-free dehydrogenative oxidation of primary alcohols to carboxylic acids along with hydrogen gas as a byproduct. The catalyst has been characterized by techniques like XRD, HRTEM, SEM-EDX, XPS and ICP-AES. The nanostructured Pd@NiO material showed excellent dehydrogenative oxidation activity and outperformed the activity of free NiO or Pd nanoparticles supported on silica/carbon as a catalyst, which could be attributed to synergistic effect of Pd and NiO. A diverse range of aromatic and aliphatic primary alcohols could be efficiently converted to their corresponding carboxylates in high yields with a catalyst loading as low as 0.08 mol%. Notably, highly challenging biomass derived heterocyclic alcohols such as furfuryl alcohol and piperonyl alcohol can also be efficiently converted to their corresponding acids. Moreover, our catalyst can convert benzyl alcohol to benzoic acid on a gram scale with 89% yield. Interestingly, the H2 gas liberated in the reaction can also be used as a substrate for the hydrogenation of 3a to 4a in 65% yield. The nanostructured catalyst is highly reusable and no significant decrease in activity was observed after six reaction cycles. A kinetic study revealed that the reaction followed first-order kinetics with a rate constant of k = 1.47 × 10-4 s-1, under optimized conditions. The extent of reactivity of different functionalities towards dehydrogenation was also investigated using a Hammett plot showing good linearity.
Collapse
Affiliation(s)
- Krisangi Bordoloi
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India.
| | | | - Pankaj Das
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India.
| |
Collapse
|
6
|
Wang X, Gao Y, Chen Y, Sun H, Li C, Pang C, Gao Y, Zhang X, Cheng R, Xu H, Wang J. Transition Metal‐Free Aerobic Oxidation of Aryl Secondary and Primary Alcohols to Carbonyl Compounds in Open Air. ChemistrySelect 2022. [DOI: 10.1002/slct.202103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuerong Wang
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Yu Gao
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Ying Chen
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Huilin Sun
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Caicui Li
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Chaohai Pang
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables Analysis and Test Center Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources Hainan University Haikou 570228 China
| | - Xiaolin Zhang
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Ruijing Cheng
- School of Science Qiongtai Normal University Haikou 571127 China
| | - Huanjun Xu
- School of Science Qiongtai Normal University Haikou 571127 China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources Hainan University Haikou 570228 China
| | - Jinhui Wang
- School of Science Qiongtai Normal University Haikou 571127 China
- Department of Medicinal Chemistry and Natural Medicine Chemistry College of Pharmacy Harbin Medical University Harbin 150081 China
| |
Collapse
|
7
|
Li B, Fang J, Xu D, Zhao H, Zhu H, Zhang F, Dong Z. Atomically Dispersed Co Clusters Anchored on N-doped Carbon Nanotubes for Efficient Dehydrogenation of Alcohols and Subsequent Conversion to Carboxylic Acids. CHEMSUSCHEM 2021; 14:4536-4545. [PMID: 34370902 DOI: 10.1002/cssc.202101330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The catalytic dehydrogenation of readily available alcohols to high value-added carbonyl compounds is a research hotspot with scientific significance. Most of the current research about this reaction is performed with noble metal-based homogeneous catalysts of high price and poor reusability. Herein, highly dispersed Co-cluster-decorated N-doped carbon nanotubes (Co/N-CNTs) were fabricated via a facile strategy and used for the dehydrogenation of alcohols with high efficiency. Various characterization techniques confirmed the presence of metallic Co clusters with almost atomic dispersion, and the N-doped carbon supports also enhanced the catalytic activity of Co clusters in the dehydrogenation reaction. Aldehydes as dehydrogenation products were further transformed in situ to carboxylic acids through a Cannizzaro-type pathway under alkaline conditions. The reaction pathway of the dehydrogenation of alcohols was clearly confirmed by theoretical calculations. This work should provide an effective and simple approach for the accurate design and synthesis of small Co-clusters catalysts for the efficient dehydrogenation-based transformation of alcohols to carboxylic acids under mild reaction conditions.
Collapse
Affiliation(s)
- Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jian Fang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Dan Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hanghang Zhu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fengwei Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, P. R. China
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
8
|
Takallou A, Mesgarsaravi N, Beigbaghlou SS, Sakhaee N, Halimehjani AZ. Recent Developments in Dehydrogenative Organic Transformations Catalyzed by Homogeneous Phosphine‐Free Earth‐Abundant Metal Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad Takallou
- Faculty of Chemistry Kharazmi University 49 Mofateh St. Tehran 15719-14911 Iran
| | | | | | - Nader Sakhaee
- Roger Adams Lab, School of Chemical Sciences University of Illinois Urbana Champaign Illinois 61801 USA
| | | |
Collapse
|
9
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
10
|
Toyooka G, Fujita KI. Synthesis of Dicarboxylic Acids from Aqueous Solutions of Diols with Hydrogen Evolution Catalyzed by an Iridium Complex. CHEMSUSCHEM 2020; 13:3820-3824. [PMID: 32449604 DOI: 10.1002/cssc.202001052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
A catalytic system for the synthesis of dicarboxylic acids from aqueous solutions of diols accompanied by the evolution of hydrogen was developed. An iridium complex bearing a functional bipyridonate ligand with N,N-dimethylamino substituents exhibited a high catalytic performance for this type of dehydrogenative reaction. For example, adipic acid was synthesized from an aqueous solution of 1,6-hexanediol in 97 % yield accompanied by the evolution of four equivalents of hydrogen by the present catalytic system. It should be noted that the simultaneous production of industrially important dicarboxylic acids and hydrogen, which is useful as an energy carrier, was achieved. In addition, the selective dehydrogenative oxidation of vicinal diols to give α-hydroxycarboxylic acids was also accomplished.
Collapse
Affiliation(s)
- Genki Toyooka
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Fujita
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
11
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
12
|
Takallou A, Habibi A, Halimehjan AZ, Balalaie S. NHC‐assisted Ni(II)‐catalyzed acceptorless dehydrogenation of amines and secondary alcohols. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmad Takallou
- Faculty of ChemistryKharazmi University No. 43. Mofatteh Street, Enghelab Ave 15719‐14911 Tehran Iran
| | - Azizollah Habibi
- Faculty of ChemistryKharazmi University No. 43. Mofatteh Street, Enghelab Ave 15719‐14911 Tehran Iran
| | - Azim Ziyaei Halimehjan
- Faculty of ChemistryKharazmi University No. 43. Mofatteh Street, Enghelab Ave 15719‐14911 Tehran Iran
| | - Saeed Balalaie
- Department of ChemistryK.N.Toosi University of Technology P.O.Box 15875 – 4416 Tehran Iran
| |
Collapse
|
13
|
Pradhan DR, Pattanaik S, Kishore J, Gunanathan C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Alcohols to Carboxylate Salts and Hydrogen. Org Lett 2020; 22:1852-1857. [DOI: 10.1021/acs.orglett.0c00193] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Deepak Ranjan Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Sandip Pattanaik
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Jugal Kishore
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
14
|
Budweg S, Junge K, Beller M. Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (non)-noble metal pincer complexes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00699h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review highlights the latest developments in the field of transition metal-catalysed oxidations, in particular C–C–, C–O– and C–N-bond dehydrogenations.
Collapse
Affiliation(s)
- Svenja Budweg
- Leibniz-Institut für Katalyse e.V
- Rostock 18059
- Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V
- Rostock 18059
- Germany
| | | |
Collapse
|
15
|
Casas F, Trincado M, Rodriguez‐Lugo R, Baneerje D, Grützmacher H. A Diaminopropane Diolefin Ru(0) Complex Catalyzes Hydrogenation and Dehydrogenation Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201901739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fernando Casas
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Monica Trincado
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Rafael Rodriguez‐Lugo
- Laboratorio de BioinorgánicaCentro de Química Instituto Venezolano de Investigaciones Científicas (IVIC) Caracas 1020 A Venezuela
| | - Dipshikha Baneerje
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
16
|
Bis-pyrazolyl-s-triazine Ni(II) pincer complexes as selective gram positive antibacterial agents; synthesis, structural and antimicrobial studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Liu HM, Jian L, Li C, Zhang CC, Fu HY, Zheng XL, Chen H, Li RX. Dehydrogenation of Alcohols to Carboxylic Acid Catalyzed by in Situ-Generated Facial Ruthenium-CPP Complex. J Org Chem 2019; 84:9151-9160. [DOI: 10.1021/acs.joc.9b01100] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hui-Min Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Jian
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chun-Chun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Hai-Yan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xue-Li Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rui-Xiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
18
|
Wang Q, Guo CH, Zhang X, Zhu M, Jiao H, Wu HS. Mechanisms and Activity of 1-Phenylethanol Dehydrogenation Catalyzed by Bifunctional NHC-Ir III
Complex. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiong Wang
- Key Laboratory of Magnetic Molecules; Magnetic Information Materials Ministry of Education; The School of Chemical and Material Science; Shanxi Normal University; 041004 Linfen China
| | - Cai-Hong Guo
- Key Laboratory of Magnetic Molecules; Magnetic Information Materials Ministry of Education; The School of Chemical and Material Science; Shanxi Normal University; 041004 Linfen China
| | - Xiang Zhang
- Key Laboratory of Magnetic Molecules; Magnetic Information Materials Ministry of Education; The School of Chemical and Material Science; Shanxi Normal University; 041004 Linfen China
| | - Mi Zhu
- Key Laboratory of Magnetic Molecules; Magnetic Information Materials Ministry of Education; The School of Chemical and Material Science; Shanxi Normal University; 041004 Linfen China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Hai-Shun Wu
- Key Laboratory of Magnetic Molecules; Magnetic Information Materials Ministry of Education; The School of Chemical and Material Science; Shanxi Normal University; 041004 Linfen China
| |
Collapse
|
19
|
Gong D, Hu B, Chen D. Bidentate Ru(ii)-NC complexes as catalysts for the dehydrogenative reaction from primary alcohols to carboxylic acids. Dalton Trans 2019; 48:8826-8834. [DOI: 10.1039/c9dt01414d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complex 1 is active for alcohol dehydrogenative reactions, and two critical intermediates were isolated and characterized.
Collapse
Affiliation(s)
- Dawei Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| |
Collapse
|
20
|
Ryabchuk P, Agapova A, Kreyenschulte C, Lund H, Junge H, Junge K, Beller M. Heterogeneous nickel-catalysed reversible, acceptorless dehydrogenation of N-heterocycles for hydrogen storage. Chem Commun (Camb) 2019; 55:4969-4972. [DOI: 10.1039/c9cc00918c] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel catalyst for hydrogen storage in N-heterocycles: a heterogeneous nickel catalyst promotes both hydrogenation and subsequent dehydrogenation of quinoline derivatives.
Collapse
Affiliation(s)
- Pavel Ryabchuk
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Anastasiya Agapova
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | | | - Henrik Lund
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
21
|
Monda F, Madsen R. Zinc Oxide-Catalyzed Dehydrogenation of Primary Alcohols into Carboxylic Acids. Chemistry 2018; 24:17832-17837. [PMID: 30273451 DOI: 10.1002/chem.201804402] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 01/21/2023]
Abstract
Zinc oxide has been developed as a catalyst for the dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The reaction is performed in mesitylene solution in the presence of potassium hydroxide, followed by workup with hydrochloric acid. The transformation can be applied to both benzylic and aliphatic primary alcohols and the catalytically active species was shown to be a homogeneous compound by a hot filtration test. Dialkylzinc and strongly basic zinc salts also catalyze the dehydrogenation with similar results. The mechanism is believed to involve the formation of a zinc alkoxide which degrades into the aldehyde and a zinc hydride. The latter reacts with the alcohol to form hydrogen gas and regenerate the zinc alkoxide. The degradation of a zinc alkoxide into the aldehyde upon heating was confirmed experimentally. The aldehyde can then undergo a Cannizzaro reaction or a Tishchenko reaction, which in the presence of hydroxide leads to the carboxylic acid.
Collapse
Affiliation(s)
- Fabrizio Monda
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Robert Madsen
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Lu Z, Cherepakhin V, Demianets I, Lauridsen PJ, Williams TJ. Iridium-based hydride transfer catalysts: from hydrogen storage to fine chemicals. Chem Commun (Camb) 2018; 54:7711-7724. [PMID: 29888372 PMCID: PMC6039230 DOI: 10.1039/c8cc03412e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selective hydrogen transfer remains a central research focus in catalysis: hydrogenation and dehydrogenation have central roles, both historical and contemporary, in all aspects of fuel, agricultural, pharmaceutical, and fine chemical synthesis. Our lab has been involved in this area by designing homogeneous catalysts for dehydrogenation and hydrogen transfer that fill needs ranging from on-demand hydrogen storage to fine chemical synthesis. A keen eye toward mechanism has enabled us to develop systems with excellent selectivity and longevity and demonstrate these in a diversity of high-value applications. Here we describe recent work from our lab in these areas that are linked by a central mechanistic trichotomy of catalyst initiation pathways that lead highly analogous precursors to a diversity of useful applications.
Collapse
Affiliation(s)
- Zhiyao Lu
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661, USA.
| | | | | | | | | |
Collapse
|
23
|
Azizi K, Madsen R. Molybdenum-Catalyzed Dehydrogenative Synthesis of Imines from Alcohols and Amines. ChemCatChem 2018. [DOI: 10.1002/cctc.201800677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kobra Azizi
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Robert Madsen
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| |
Collapse
|
24
|
Kuwahara M, Nishioka M, Yoshida M, Fujita KI. A Sustainable Method for the Synthesis of Acetic Acid Based on Dehydrogenation of an Ethanol-Water Solution Catalyzed by an Iridium Complex Bearing a Functional Bipyridonate Ligand. ChemCatChem 2018. [DOI: 10.1002/cctc.201800680] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Masato Kuwahara
- Graduate School of Human and Environmental Studies; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Masaaki Nishioka
- Graduate School of Human and Environmental Studies; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Masato Yoshida
- Graduate School of Human and Environmental Studies; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Ken-ichi Fujita
- Graduate School of Human and Environmental Studies; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
25
|
Li L, Luo Q, Cui H, Li R, Zhang J, Peng T. Air-stable Ruthenium(II)-NNN Pincer Complexes for the Efficient Coupling of Aromatic Diamines and Alcohols to 1H
-benzo[d
]imidazoles with the Liberation of H2. ChemCatChem 2018. [DOI: 10.1002/cctc.201800017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lin Li
- College of Chemistry&Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| | - Qi Luo
- College of Chemistry&Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| | - Huahua Cui
- College of Chemistry&Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| | - Renjie Li
- College of Chemistry&Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| | - Jing Zhang
- College of Chemistry&Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| | - Tianyou Peng
- College of Chemistry&Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| |
Collapse
|
26
|
Buil ML, Esteruelas MA, Gay MP, Gómez-Gallego M, Nicasio AI, Oñate E, Santiago A, Sierra MA. Osmium Catalysts for Acceptorless and Base-Free Dehydrogenation of Alcohols and Amines: Unusual Coordination Modes of a BPI Anion. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00906] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- María L. Buil
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Pilar Gay
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Mar Gómez-Gallego
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio I. Nicasio
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Alicia Santiago
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel A. Sierra
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
27
|
Rana J, Babu R, Subaramanian M, Balaraman E. Ni-Catalyzed dehydrogenative coupling of primary and secondary alcohols with methyl-N-heteroaromatics. Org Chem Front 2018. [DOI: 10.1039/c8qo00764k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report the first base-metal catalyzed dehydrogenative coupling of primary (aromatic, heteroaromatic, and aliphatic) and secondary alcohols with methyl-N-heteroaromatics to form various C(sp3)-alkylated N-heteroaromatics.
Collapse
Affiliation(s)
- Jagannath Rana
- Organic Chemistry Division
- Dr. Homi Bhabha Road
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune - 411008
- India
| | - Reshma Babu
- Organic Chemistry Division
- Dr. Homi Bhabha Road
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune - 411008
- India
| | - Murugan Subaramanian
- Organic Chemistry Division
- Dr. Homi Bhabha Road
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune - 411008
- India
| | - Ekambaram Balaraman
- Organic Chemistry Division
- Dr. Homi Bhabha Road
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune - 411008
- India
| |
Collapse
|
28
|
Hu P, Milstein D. Conversion of Alcohols to Carboxylates Using Water and Base with H2 Liberation. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Shao Z, Wang Y, Liu Y, Wang Q, Fu X, Liu Q. A general and efficient Mn-catalyzed acceptorless dehydrogenative coupling of alcohols with hydroxides into carboxylates. Org Chem Front 2018. [DOI: 10.1039/c8qo00023a] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A general and efficient Mn-catalyzed acceptorless dehydrogenative coupling of alcohols with hydroxides into carboxylates has been developed.
Collapse
Affiliation(s)
- Zhihui Shao
- Center of Basic Molecular Science (CBMS)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yaqian Liu
- Center of Basic Molecular Science (CBMS)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Qian Wang
- Center of Basic Molecular Science (CBMS)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Xiaoling Fu
- College of International Exchange
- HanKou University
- Wuhan 430212
- China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|