1
|
Wang T, Yu N, Liu X, Lu Z, Yang G, Wang J. Thiolate-mediated photoreduction and aerobic oxidation cycles in a bismuth-bismuth oxide nanosystem towards thiol-to-disulfide photocatalytic transformation. Dalton Trans 2024; 53:16470-16474. [PMID: 39356491 DOI: 10.1039/d4dt02312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Bismuth(III) alkanethiolates [Bi(SR)3] formed by reacting Bi2O3 with alkanethiols (RSH) undergo a UV-blue light driven ligand-to-metal charge transfer photoreduction to disulfides and Bi colloids, which are then oxidised to Bi2O3 by dissolved oxygen and reconverted to Bi(SR)3 by RSH to prepare for the next Bi-Bi2O3 photoredox cycle, forming a basis for Bi(III)-catalysed thiol-to-disulfide conversion.
Collapse
Affiliation(s)
- Tingting Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Nan Yu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xianglong Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhiwei Lu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Guowei Yang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Junli Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
2
|
Mato M, Cornella J. Bismuth in Radical Chemistry and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315046. [PMID: 37988225 DOI: 10.1002/anie.202315046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Whereas indications of radical reactivity in bismuth compounds can be traced back to the 19th century, the preparation and characterization of both transient and persistent bismuth-radical species has only been established in recent decades. These advancements led to the emergence of the field of bismuth radical chemistry, mirroring the progress seen for other main-group elements. The seminal and fundamental studies in this area have ultimately paved the way for the development of catalytic methodologies involving bismuth-radical intermediates, a promising approach that remains largely untapped in the broad landscape of synthetic organic chemistry. In this review, we delve into the milestones that eventually led to the present state-of-the-art in the field of radical bismuth chemistry. Our focus aims at outlining the intrinsic discoveries in fundamental inorganic/organometallic chemistry and contextualizing their practical applications in organic synthesis and catalysis.
Collapse
Affiliation(s)
- Mauro Mato
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Wang M, He Z, Chen M, Wang Y. Aryl sulfonate anion stabilized aromatic triangular cation [Pd 3] +: syntheses, structures and properties. RSC Adv 2023; 13:29689-29694. [PMID: 37822652 PMCID: PMC10563175 DOI: 10.1039/d3ra04460b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
A series of sulfonate anions paired aromatic triangular palladium clusters 3-7, abbreviated as [Pd3]+[ArSO3]-, were synthesized using a simple "one pot" method, and gave excellent isolated yields (90-95%). Their structures and properties have been fully characterized and further investigated by fluorescence, single crystal X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). In varying organic solvents, they presented apparently stronger absorption and emission in MeOH, driven by the combined interactions of hydrogen bonds and polarity. The crystallographic data demonstrated that the methyl orange ion stabilized complex 7 possessed a D3h symmetric metallic core which was still coplanar and almost equilateral, jointly influenced by the giant hindrance and milder donating effect from the sulfonate. The binding energies for Pdn+ 3d5/2 and Pdn+ 3d3/2 measured by XPS presented at 336.55 and 342.00 eV, respectively. These data were much lower than that of a usual Pd2+ 3d and significantly higher than that of a Pd0 species, further proving the unified palladium valence state (+4/3) in the tri-palladium core and its aromaticity featured by the cyclic electron delocalization.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Zhixin He
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Meng Chen
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| |
Collapse
|
4
|
Hyvl J. Hypervalent organobismuth complexes: pathways toward improved reactivity, catalysis, and applications. Dalton Trans 2023; 52:12597-12603. [PMID: 37670510 DOI: 10.1039/d3dt02313c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Hypervalent (three-center, four-electron) bonding in organobismuth complexes has been extensively studied due to its ability to affect molecular geometry, dynamic behavior, or to stabilize the ligand scaffold. This work addresses the effects of this bonding on reactivity, catalytic activity, redox processes, and its potential applications in biosciences, materials science, and small molecule activation.
Collapse
Affiliation(s)
- Jakub Hyvl
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
5
|
Shimada S, Yin SF, Choe YK. Synthesis, structure and properties of trivalent and pentavalent tricarbabismatranes. Chem Commun (Camb) 2022; 58:6614-6617. [PMID: 35583950 DOI: 10.1039/d2cc00751g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first trivalent and pentavalent tricarbabismatranes were synthesized by the reaction of N(CH2{2-LiC6H4})3 with BiCl3 and subsequent reaction with XeF2, respectively. The trivalent bismatrane was easily oxidized by air, while the pentavalent bismatrane difluoride was relatively stable to air. A similar pentavalent bismatrance dichloride was prone to C-Cl bond reductive elimination even at room temperature.
Collapse
Affiliation(s)
- Shigeru Shimada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Shuang-Feng Yin
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Yoong-Kee Choe
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
6
|
Nazarova AL, Zayat B, Fokin VV, Narayan SR. Electrochemical Studies of the Cycloaddition Activity of Bismuth(III) Acetylides Towards Organic Azides Under Copper(I)-Catalyzed Conditions. Front Chem 2022; 10:830237. [PMID: 36204144 PMCID: PMC9531323 DOI: 10.3389/fchem.2022.830237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
Time-dependent monitoring of the reactive intermediates provides valuable information about the mechanism of a synthetic transformation. However, the process frequently involves intermediates with short lifetimes that significantly challenge the accessibility of the desired kinetic data. We report in situ cyclic voltammetry (CV) and nuclear magnetic resonance (NMR) spectroscopy studies of the cycloaddition reaction of organobismuth(III) compounds with organic azides under the copper(I)-catalyzed conditions. A series of bismuth(III) acetylides carrying diphenyl sulfone scaffolds have been synthesized to study the underlying electronic and steric effects of the tethered moieties capable of transannular oxygen O···Bi interactions and para-functionality of the parent phenylacetylene backbones. While belonging to the family of copper-catalyzed azide-alkyne cycloaddition reactions, the reaction yielding 5-bismuth(III)-triazolide is the sole example of a complex catalytic transformation that features activity of bismuth(III) acetylides towards organic azides under copper(I)-catalyzed conditions. Stepwise continuous monitoring of the copper(I)/copper(0) redox activity of the copper(I) catalyst by cyclic voltammetry provided novel insights into the complex catalytic cycle of the bismuth(III)-triazolide formation. From CV-derived kinetic data, reaction rate parameters of the bismuth(III) acetylides coordination to the copper(I) catalyst (KA) and equilibrium concentration of the copper species [cat]eq. are compared with the overall 5-bismuth(III)-triazolide formation rate constant kobs obtained by 1H-NMR kinetic analysis.
Collapse
Affiliation(s)
- Antonina L. Nazarova
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Billal Zayat
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
| | - Valery V. Fokin
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Valery V. Fokin, ; Sri R. Narayan,
| | - Sri R. Narayan
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Valery V. Fokin, ; Sri R. Narayan,
| |
Collapse
|
7
|
Sharutin VV, Poddel’sky AI, Sharutina OK. Organic Compounds of Bismuth: Synthesis, Structure, and Applications. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Shimada S, Yin SF, Bao M. A new C-anionic tripodal ligand 2-{bis(benzothiazolyl)(methoxy)methyl}phenyl and its bismuth complexes. Dalton Trans 2021; 50:7949-7954. [PMID: 34096567 DOI: 10.1039/d1dt01071a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new tripodal C-anionic ligand, 2-{bis(benzothiazolyl)(methoxy)methyl}phenyl (L), was stably generated by the reaction of the ligand precursor (L'), the corresponding bromide (2-BrC6H4)(MeO)C(C7H4NS)2 (C7H4NS = 2-benzothiazolyl), with nBuLi at -104 °C in the presence of TMEDA (N,N,N',N'-tetramethylethylenediamine). The ligand lithium salt reacted with BiCl3 to give a 2 : 1 complex L2BiCl. A 1 : 1 complex LBiCl2 was obtained in good yield by the redistribution reaction between L2BiCl and BiCl3. X-ray diffraction analysis revealed that the ligand L coordinated in an expected κ3-C,N,N' coordination mode in LBiCl2, while it coordinated in κ3-C,N,O and κ2-C,O coordination modes in L2BiCl. The ligand precursor reacted with BiX3 (X = Cl, Br) to give 1 : 1 complexes L'BiX3 and was found to act as a neutral tripodal C(π),N,N-ligand.
Collapse
Affiliation(s)
- Shigeru Shimada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
9
|
Ramler J, Lichtenberg C. Bismuth species in the coordination sphere of transition metals: synthesis, bonding, coordination chemistry, and reactivity of molecular complexes. Dalton Trans 2021; 50:7120-7138. [PMID: 34008669 DOI: 10.1039/d1dt01300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This contribution is focused on bismuth species in the coordination sphere of transition metals. In molecular transition metal complexes, three types of Bi-M bonding are considered, namely dative Bi→M interactions (with Bi acting as a donor), dative Bi←M interactions (with Bi acting as an acceptor) and covalent Bi-M interactions (M = transition metal). Synthetic routes to all three classes of compounds are outlined, the Bi-M bonding situation is discussed, trends in the geometric parameters and in the coordination chemistry of the compounds are addressed, and common spectroscopic properties are summarized. As an important part of this contribution, the reactivity of bismuth species in the coordination sphere of transition metal complexes in stoichiometric and catalytic reactions is highlighted.
Collapse
Affiliation(s)
- Jacqueline Ramler
- Department of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Crispin Lichtenberg
- Department of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
10
|
Lichtenberg C. Molecular bismuth(iii) monocations: structure, bonding, reactivity, and catalysis. Chem Commun (Camb) 2021; 57:4483-4495. [DOI: 10.1039/d1cc01284c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Structurally defined, molecular bismuth(iii) cations show remarkable properties in coordination chemistry, Lewis acidity, and redox chemistry, allowing for unique applications in synthetic chemistry.
Collapse
Affiliation(s)
- Crispin Lichtenberg
- Julius-Maximilians-University Würzburg
- Institute of Inorganic Chemistry Am Hubland
- 97074 Würzburg
- Germany
| |
Collapse
|
11
|
Shimada S, Wang XB, Tanaka M. Oxidative addition of Bi-C bonds to Pt(0): reaction of Pt(PEt 3) 3 with cyclic organobismuth compounds. Chem Commun (Camb) 2020; 56:15216-15219. [PMID: 33227104 DOI: 10.1039/d0cc07408j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The reaction of cyclic organobismuth compounds, 12-phenyl- and 12-chloro-5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocines, with Pt(PEt3)3 was examined. Oxidative addition of the exocyclic Bi-C bond to Pt(0) selectively took place in the reaction of the 12-phenyl derivative. Oxidative addition of the exocyclic Bi-Cl bond reversibly took place and was kinetically preferred, while endocyclic Bi-C bond oxidative addition products were thermodynamically favored and became the final products in the reaction of 12-chloro derivatives. These results demonstrate the oxidative addition of a Bi-C bond to a transition metal complex for the first time.
Collapse
Affiliation(s)
- Shigeru Shimada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | |
Collapse
|
12
|
Dostál L, Jambor R, Aman M, Hejda M. (N),C,N-Coordinated Heavier Group 13-15 Compounds: Synthesis, Structure and Applications. Chempluschem 2020; 85:2320-2340. [PMID: 33073931 DOI: 10.1002/cplu.202000620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Indexed: 01/07/2023]
Abstract
The aim of this review is to summarize recent achievements in the field of (N),C,N-coordinated group 13-15 compounds not only regarding their synthesis and structure, but mainly focusing on their potential applications. Relevant compounds contain various types of N-coordinating ligands built up on an ortho-(di)substituted phenyl platform. Thus, group 13 and 14 derivatives were used as single-source precursors for the deposition of semiconducting thin films, as building blocks for the preparation of high-molecular polymers with remarkable optical and chemical properties or as compounds with interesting reactivity in hydrometallation processes. Group 15 derivatives function as catalysts in the Mannich reaction, in the allylation of aldehydes or activation of CO2 . They were used as transmetallation reagents in transition metal catalysed coupling reactions. The univalent species serve as ligands for transition metals, activate alkynes or alkenes and are utilized as catalysts in the transfer hydrogenation of azo-compounds.
Collapse
Affiliation(s)
- Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Michal Aman
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Martin Hejda
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| |
Collapse
|
13
|
Visible-light photocatalytic selective aerobic oxidation of thiols to disulfides on anatase TiO2. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63640-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Hypercoordinated diorganopnicogen(III) compounds based on a butterfly-like skeleton of type [CH3OCH2CH2N(CH2C6H4)2]M (M = Sb, Bi). J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ling OC, Khaligh NG, Ching JJ. Recent Catalytic Advances in the Synthesis of Organic Symmetric Disulfides. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200221111120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organic symmetric disulfides have been broadly studied in various fields such
as synthetic intermediates for various organic transformations, agro-chemicals, biochemistry,
pharmacological chemistry, industrial polymers, peptidomimetics, self-assembled
monolayers (SAMs), etc. Owing to versatile applications, the search and development of
efficient, environmentally friendly, mild and inexpensive methods for the preparation of
organic disulfides play an important role in the organic functional group transformations.
Various aspects of the S–S bond formation are available in some books on organic functional
group transformations, as well as two review articles that have been published in the
years 2008 and 2014 highlighting the developments of disulfide bond formation using a
variety of reagents. However, investigations on new catalytic methods are being regularly
reported and new types of disulfides are synthesized. The present review has attempted to systematically summarize
recent catalytic advances in the process of S–S bond formation with a major focus since 2014 on highlighting
mechanistic considerations, scope, advantages, and limitations. This review does not include patent
literature.
Collapse
Affiliation(s)
- Ong Chiu Ling
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nader Ghaffari Khaligh
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Juan Joon Ching
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
García-Romero Á, Plajer AJ, Miguel D, Wright DS, Bond AD, Álvarez CM, García-Rodríguez R. Tris(2-pyridyl) Bismuthines: Coordination Chemistry, Reactivity, and Anion-Triggered Pyridyl Coupling. Inorg Chem 2020; 59:7103-7116. [DOI: 10.1021/acs.inorgchem.0c00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Álvaro García-Romero
- GIR MIOMeT-IU, Cinquima, Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Alex J. Plajer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Daniel Miguel
- GIR MIOMeT-IU, Cinquima, Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Dominic S. Wright
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Andrew D. Bond
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Celedonio M. Álvarez
- GIR MIOMeT-IU, Cinquima, Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Raúl García-Rodríguez
- GIR MIOMeT-IU, Cinquima, Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| |
Collapse
|
17
|
Tan N, Wu S, Huiqiong Y, Lan D, Au CT, Yi B. Crystal structure of 6-cyclohexyl-6,7-dihydrodibenzo[ c, f][1,5]azabismocin-12(5 H)-yl nitrate, C 20H 23O 3N 2Bi. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2018-0507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C20H23O3N2Bi, monoclinic, P21/n (no. 14), a = 10.6897(5) Å, b = 10.5590(5) Å, c = 17.4099(9) Å, β = 105.491(2)°, V = 1893.71(16) Å3, Z = 4, R
gt(F) = 0.0253, wR(F
2) = 0.0576, T = 296(2) K.
Collapse
Affiliation(s)
- Nianyuan Tan
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Shuisheng Wu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Yang Huiqiong
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Donghui Lan
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Chak-Tong Au
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| | - Bing Yi
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Regeneration, Hunan Institute of Engineering , Xiangtan 411104 , China
| |
Collapse
|
18
|
Enzymatic regeneration of DDQ in aerobic oxidation of sulfides and oxidative coupling of thiols: New bioinspired cooperative catalytic system. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Khaledian D, Rostami A, Zarei SA. Laccase-catalyzed in situ generation and regeneration of N-phenyltriazolinedione for the aerobic oxidative homo-coupling of thiols to disulfides. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Raţ CI, Soran A, Varga RA, Silvestru C. C–H Bond Activation Mediated by Inorganic and Organometallic Compounds of Main Group Metals. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|