1
|
Kuilya H, Das P, Basak S, Sarma D, Mazumdar P, Choudhury D, Kalita A. Effect of ligand substituents on the reactivity pathways of copper(II) complexes towards electrocatalytic water oxidation. Dalton Trans 2024; 53:17547-17553. [PMID: 39390912 DOI: 10.1039/d4dt01852d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The electrocatalytic water oxidation activity of three copper(II) complexes [Cu(L1H)(L1)](ClO4) (1), [Cu(L2H)(L2)(H2O)](ClO4) (2) and [Cu(L3H)(L2)](ClO4) (3) with aryl oxime ligands L1H, L2H and L3H [L1H = 1-(pyridin-2-yl)methanone oxime, L2H = 1-(pyridin-2-yl)ethanone oxime and L3H = 1-(pyridin-2-yl)propanone oxime] was investigated. All the three ligands have in common a pyridyl group attached to the carbon centre of the oxime moiety and differ in the second substituent attached to the carbon centre. Electrochemical investigation of the catalytic activity of complexes 1, 2 and 3 shows that the nature of the substituent attached to the carbon centre has an influence on the catalytic pathway and overall catalytic activity of these complexes.
Collapse
Affiliation(s)
- Hemrupa Kuilya
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Pranjal Das
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Swati Basak
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Debajit Sarma
- Department of Chemistry, IIT Patna, Patna 801103, Bihar, India
| | - Pradyumna Mazumdar
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Diganta Choudhury
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| | - Apurba Kalita
- Department of Chemistry, B. Borooah College, Guwahati 781007, Assam, India.
| |
Collapse
|
2
|
Wang J, Ping Y, Chen Y, Liu S, Dong J, Ruan Z, Liang X, Lin J. Improvement of electrocatalytic water oxidation activity of novel copper complex by modulating the axial coordination of phosphate on metal center. Dalton Trans 2024; 53:5222-5229. [PMID: 38391031 DOI: 10.1039/d3dt03409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The structure of organic ligand scaffolds of copper complexes critically affects their electrocatalytic properties toward water oxidation, which is widely regarded as the bottleneck of overall water splitting. Herein, two novel mononuclear Cu complexes, [Cu(dmabpy)](ClO4)2 (1, dmabpy = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine) and [Cu(mabpy)](ClO4)2 (2, mabpy = 6,6'-bis(methylaminomethyl)-2,2'-bipyridine), with four-coordinated distorted planar quadrilateral geometry were synthesized and explored as efficient catalysts for electrochemical oxygen evolution in phosphate buffer solution. Interestingly, complex 1 with a tertiary amine group catalyzes water oxidation with lower onset overpotential and better catalytic performance, while complex 2 containing a secondary amine fragment displays much lower catalytic activity under identical conditions. The water oxidation catalytic mechanism of the two complexes is proposed based on the electrochemical test results. Experimental methods indicate that phosphate coordinated on the Cu center of the two complexes inhibits their reaction with substrate water molecules, resulting in lower activity toward water oxidation. Electrochemical tests reveal that the structure of the coordinated nitrogen atom improves the catalytic performance of the Cu complexes by modulating the coordination of phosphate on the Cu center, indicating that a minor alteration of the coordinating nitrogen atom of the ligand has a detrimental effect on the catalytic performance of electrochemical WOCs based on transition metal complexes.
Collapse
Affiliation(s)
- Jieying Wang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Yezi Ping
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Yanmei Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Jinfeng Dong
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xiangming Liang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
3
|
Liu DC, Luo ZM, Aramburu-Trošelj BM, Ma F, Wang JW. Cobalt-based tripodal complexes as molecular catalysts for photocatalytic CO 2 reduction. Chem Commun (Camb) 2023. [PMID: 37962468 DOI: 10.1039/d3cc04759h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Construction of artificial photosynthetic systems including CO2 reduction is a promising pathway to produce carbon-neutral fuels and mitigate the greenhouse effect concurrently. However, the exploitation of earth-abundant catalysts for photocatalytic CO2 reduction remains a fundamental challenge, which can be assisted by a systematic summary focusing on a specific catalyst family. Cobalt-based complexes featuring tripodal ligands should merit more insightful discussion and summarization, as they are one of the most examined catalyst families for CO2 photoreduction. In this feature article, the key developments of cobalt-based tripodal complexes as molecular catalysts for light-driven CO2 reduction are discussed to offer an upcoming perspective, analyzing the present progress in electronic/steric tuning through ligand modification and dinuclear design to achieve a synergistic effect, as well as the bottlenecks for further development.
Collapse
Affiliation(s)
- Dong-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No. 15, Guilin 541004, China.
| | - Zhi-Mei Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Bruno M Aramburu-Trošelj
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
4
|
Chen X, Liao X, Dai C, Zhu L, Hong L, Yang X, Ruan Z, Liang X, Lin J. Modulating the electrocatalytic activity of mononuclear nickel complexes toward water oxidation by tertiary amine group. Dalton Trans 2022; 51:18678-18684. [PMID: 36448634 DOI: 10.1039/d2dt03381j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water oxidation is the bottleneck of water splitting, which is a promising strategy for hydrogen production. Therefore, it is significant to develop efficient water oxidation catalysts. Herein, electrochemical water oxidation catalyzed by three nickel complexes, namely [Ni(bptn)(H2O)](ClO4)2 (1), [Ni(mbptn)(CH3CN)](ClO4)2 (2), and [Ni(tmbptn)(H2O)](ClO4)2 (3) (bptn = 1,9-bis(2-pyridyl)-2,5,8-triazanonane, mbptn = 5-methyl-1,9-bis(2-pyridyl)-2,5,8-triazanonane, and tmbptn = 1,9-bis(2-pyridyl)-2,5,8-triazanonane), is studied under near-neutral condition (pH 9.0). Meanwhile, the homogeneous catalytic behaviors of the three mononuclear nickel complexes were investigated and confirmed by scanning electron microscopy, energy dispersive spectrometry, X-ray photoelectron spectroscopy and electrochemical method. Complex 1 stabilized by a pentadentate ligand with three N-H fragments homogeneously catalyzes water oxidation to oxygen with the lowest onset overpotential. Complex 2 stabilized by a similar ligand with two N-H groups and one N-CH3 group exhibits relatively higher onset overpotential but higher catalytic current and turnover frequency. However, complex 3 with three N-CH3 coordination environment shows the highest onset overpotential and the highest catalytic current at higher potential. Comparison of catalytic behaviors and ligand structure of the three complexes reveals that the methyl group on the polypyridine amine ligand affects the water oxidation activity of the complexes obviously. The electronic effect of N-CH3 coordination environment leads to higher redox potential of the metal center and potential demand for water oxidation, while it leads to higher reaction activity of high-valent intermediates, which account for higher catalytic current and efficiency of water oxidation. This work reveals that electrocatalytic water oxidation performance of nickel complexes can be finely modulated by constructing suitable N-CH3 coordination.
Collapse
Affiliation(s)
- Xiaoli Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xuehong Liao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Chang Dai
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Lihong Zhu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Li Hong
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xueli Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xiangming Liang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
5
|
Wang L, Wang L. Ligands modification strategies for mononuclear water splitting catalysts. Front Chem 2022; 10:996383. [PMID: 36238101 PMCID: PMC9551221 DOI: 10.3389/fchem.2022.996383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Artificial photosynthesis (AP) has been proved to be a promising way of alleviating global climate change and energy crisis. Among various materials for AP, molecular complexes play an important role due to their favorable efficiency, stability, and activity. As a result of its importance, the topic has been extensively reviewed, however, most of them paid attention to the designs and preparations of complexes and their water splitting mechanisms. In fact, ligands design and preparation also play an important role in metal complexes’ properties and catalysis performance. In this review, we focus on the ligands that are suitable for designing mononuclear catalysts for water splitting, providing a coherent discussion at the strategic level because of the availability of various activity studies for the selected complexes. Two main designing strategies for ligands in molecular catalysts, substituents modification and backbone construction, are discussed in detail in terms of their potentials for water splitting catalysts.
Collapse
|
6
|
Kumar Pal S, Singh B, Yadav JK, Yadav CL, Drew MGB, Singh N, Indra A, Kumar K. Homoleptic Ni(II) dithiocarbamate complexes as pre-catalysts for the electrocatalytic oxygen evolution reaction. Dalton Trans 2022; 51:13003-13014. [PMID: 35968800 DOI: 10.1039/d2dt01971j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new functionalized Ni(II) dithiocarbamate complexes of the formula [Ni(Lx)2] (1-4) (L1 = N-methylthiophene-N-3-pyridylmethyl dithiocarbamate, L2 = N-methylthiophene-N-4-pyridylmethyl dithiocarbamate, L3 = N-benzyl-N-3-pyridylmethyl dithiocarbamate, and L4 = N-benzyl-N-4-pyridylmethyl dithiocarbamate) have been synthesized and characterized by IR, UV-vis, and 1H and 13C{1H} NMR spectroscopic techniques. The solid-state structure of complex 1 has also been determined by single crystal X-ray crystallography. Single crystal X-ray analysis revealed a monomeric centrosymmetric structure for complex 1 in which two dithiocarbamate ligands are bonded to the Ni(II) metal ion in a S^S chelating mode resulting in a square planar geometry around the nickel center. These complexes are immobilized on activated carbon cloth (CC) and their electrocatalytic performances for the oxygen evolution reaction (OER) have been investigated in aqueous alkaline solution. All the complexes act as pre-catalysts for the OER and undergo electrochemical anodic activation to form Ni(O)OH active catalysts. Spectroscopic and electrochemical characterization revealed the existence of the interface of molecular complex/Ni(O)OH, which acts as the real catalyst for the OER. The active catalyst obtained from complex 2 showed the best OER activity achieving 10 mA cm-2 current density at an overpotential of 330 mV in 1.0 M aqueous KOH solution.
Collapse
Affiliation(s)
- Sarvesh Kumar Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Baghendra Singh
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India.
| | - Jitendra Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Chote Lal Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Michael G B Drew
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Nanhai Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India.
| | - Kamlesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
7
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
8
|
Hsu WC, Wang YH. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. CHEMSUSCHEM 2022; 15:e202102378. [PMID: 34881515 DOI: 10.1002/cssc.202102378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Indexed: 06/13/2023]
Abstract
The utilization of earth-abundant low-toxicity metal ions in the construction of highly active and efficient molecular catalysts promoting the water oxidation reaction is important for developing a sustainable artificial energy cycle. However, the kinetic and thermodynamic properties of the currently available molecular water oxidation catalysts (MWOCs) have not been comprehensively investigated. This Review summarizes the current status of MWOCs based on first-row transition metals in terms of their turnover frequency (TOF, a kinetic property) and overpotential (η, a thermodynamic property) and uses the relationship between log(TOF) and η to assess catalytic performance. Furthermore, the effects of the same ligand classes on these MWOCs are discussed in terms of TOF and η, and vice versa. The collective analysis of these relationships provides a metric for the direct comparison of catalyst systems and identifying factors crucial for catalyst design.
Collapse
Affiliation(s)
- Wan-Chi Hsu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
9
|
Li S, Liu C, Chen Q, Jiang F, Yuan D, Sun QF, Hong M. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chem Sci 2022; 13:9016-9022. [PMID: 36091216 PMCID: PMC9365242 DOI: 10.1039/d2sc03093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation. A series of coordination hosts were prepared and their applications in CO2 fixation were studied.![]()
Collapse
Affiliation(s)
- Shaochuan Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qing-Fu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
10
|
Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic tetranuclear manganese-calcium-oxo cluster in the photosynthetic reaction center, photosystem II, provides an excellent blueprint for light-driven water oxidation in nature. The water oxidation reaction has attracted intense interest due to its potential as a renewable, clean, and environmentally benign source of energy production. Inspired by the oxygen-evolving complex of photosystem II, a large of number of highly innovative synthetic bio-inspired molecular catalysts are being developed that incorporate relatively cheap and abundant metals such as Mn, Fe, Co, Ni, and Cu, as well as Ru and Ir, in their design. In this review, we briefly discuss the historic milestones that have been achieved in the development of transition metal catalysts and focus on a detailed description of recent progress in the field.
Collapse
|
11
|
Two Novel Catalysts Based on Nickel-Substituted POMs Hybrids for Photocatalytic H2 Evolution from Water Splitting. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02112-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Wang J, Meng X, Xie W, Zhang X, Fan Y, Wang M. Two biologically inspired tetranuclear nickel(II) catalysts: effect of the geometry of Ni 4 core on electrocatalytic water oxidation. J Biol Inorg Chem 2021; 26:205-216. [PMID: 33544224 DOI: 10.1007/s00775-020-01846-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Two biologically inspired tetranuclear nickel complexes [Ni4(L-H)4(CH3COO)3]·Cl (1) and [Ni4(L-H)4(CH3COO)4]·2CH3OH (2) (L = di(pyridin-2-yl)methanediol) have been synthesized and investigated by a combination of X-ray crystallography, PXRD, electrochemistry, in-situ UV-Vis spectroelectrochemistry and DLS. Both of the two complexes feature a core composed of four Ni(II) ions with the same peripheral ligation provided by the anionic di(pyridin-2-yl)methanediol and MeCOO- ligands. Whereas, complex 1 possesses one distorted cubane-like [Ni4(µ3-O)4] core, while 2 has one extended butterfly-like [Ni4(µ3-O)2] core. The homogeneous electrocatalytic reactivity of the two water-soluble complexes for water oxidation have been thoroughly studied, which demonstrates that both of them can efficiently electrocatalyze water oxidation with high stability under alkaline conditions, at relatively low over-potentials (η) of 420-790 mV for 1 and 390-780 mV for 2, both in the pH range of 7.67-12.32, with the high TOF of about 139 s-1 (1) and 69 s-1 (2) at pH = 12.32, respectively. By a series of comparative experiments for complexes 1 and 2, we proposed that their crystal geometries play an important role in their electrocatalytic reactivity for water oxidation. We verified that biomimetic cubane geometry could promote OER catalysis with two very similar compounds for the first time. Compared with 2, the biomimetic cubane topology of 1 could promote OER catalysis by facilitating efficient charge delocalization and electron-transfer.
Collapse
Affiliation(s)
- Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China
| | - Xiangmin Meng
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Wangjing Xie
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China.
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China.
| |
Collapse
|
13
|
Abstract
Progress in non-covalent/self-assembled immobilization methods on (photo)electrode materials for molecular catalysts could broaden the scope of attainable systems. While covalent linkage (though considered more stable) necessitates functional groups introduced by means of often cumbersome synthetic procedures, non-covalent assemblies require sufficient propensity of the molecular unit for surface adsorption, thus set less rigorous pre-requisites. Herein, we report efficient electrodeposition (ED) of two Fe(III) complexes prepared with closely related NN’N pincer ligands yielding stable and active ad-layers for the electrocatalysis of the oxygen-evolving reaction (OER). The ED method is based on the utilization of a chloride precursor complex [FeIIICl2(NN’N)], which is dissolved in an organic electrolyte undergoes chloride/aqua ligand exchange upon addition of water. ED provides patchy distribution of a chloride-depleted catalyst layer on indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) surfaces, which can be applied for long periods as OER electrocatalysts. Compared to drop-casting or layering of [FeIIICl2(NN’N)] with Nafion (a commonly used support for molecular electrocatalysts), the surface modification by ED is a material saving and efficient method to immobilize catalysts.
Collapse
|
14
|
Guo X, Li C, Wang W, Hou Y, Zhang B, Wang X, Zhou Q. Polypyridyl Co complex-based water reduction catalysts: why replace a pyridine group with isoquinoline rather than quinoline? Dalton Trans 2021; 50:2042-2049. [PMID: 33475631 DOI: 10.1039/c9dt04767k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic effect of the substituent has been fully leveraged to improve the activity of molecular water reduction catalysts (WRCs). However, the steric effect of the substituents has received less attention. In this work, a steric hindrance effect was observed in a quinoline-involved polypyridyl Co complex-based water reduction catalyst (WRC), which impedes the formation of Co(iii)-H from Co(i), two pivotal intermediates for H2 evolution, leading to significantly impaired electrocatalytic and photocatalytic activity with respect to its parent complex, [Co(TPA)Cl]Cl (TPA = tris(2-pyridinylmethyl)-amine). In sharp contrast, two isoquinoline-involved polypyridyl Co complexes exhibited significantly improved H2 evolution efficiencies compared to [Co(TPA)Cl]Cl, benefitting mainly from the more basic and conjugated features of isoquinoline over pyridine. The dramatically different influences caused by the replacement of a pyridine group in the TPA ligand by quinoline and isoquinoline fully demonstrates the important roles of both the electronic and steric effects of a substituent. Our results may provide novel insights for designing more efficient WRCs.
Collapse
Affiliation(s)
- Xusheng Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhang L, Mathew S, Hessels J, Reek JNH, Yu F. Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:234-250. [PMID: 32991076 PMCID: PMC7820963 DOI: 10.1002/cssc.202001876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Indexed: 05/06/2023]
Abstract
Strategies that enable the renewable production of storable fuels (i. e. hydrogen or hydrocarbons) through electrocatalysis continue to generate interest in the scientific community. Of central importance to this pursuit is obtaining the requisite chemical (H+ ) and electronic (e- ) inputs for fuel-forming reduction reactions, which can be met sustainably by water oxidation catalysis. Further possibility exists to couple these redox transformations to renewable energy sources (i. e. solar), thus creating a carbon neutral solution for long-term energy storage. Nature uses a Mn-Ca cluster for water oxidation catalysis via multiple proton-coupled electron-transfers (PCETs) with a photogenerated bias to perform this process with TOF 100∼300 s-1 . Synthetic molecular catalysts that efficiently perform this conversion commonly utilize rare metals (e. g., Ru, Ir), whose low abundance are associated to higher costs and scalability limitations. Inspired by nature's use of 1st row transition metal (TM) complexes for water oxidation catalysts (WOCs), attempts to use these abundant metals have been intensively explored but met with limited success. The smaller atomic size of 1st row TM ions lowers its ability to accommodate the oxidative equivalents required in the 4e- /4H+ water oxidation catalysis process, unlike noble metal catalysts that perform single-site electrocatalysis at lower overpotentials (η). Overcoming the limitations of 1st row TMs requires developing molecular catalysts that exploit biomimetic phenomena - multiple-metal redox-cooperativity, PCET and second-sphere interactions - to lower the overpotential, preorganize substrates and maintain stability. Thus, the ultimate goal of developing efficient, robust and scalable WOCs remains a challenge. This Review provides a summary of previous research works highlighting 1st row TM-based homogeneous WOCs, catalytic mechanisms, followed by strategies for catalytic activity improvements, before closing with a future outlook for this field.
Collapse
Affiliation(s)
- Lu‐Hua Zhang
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Simon Mathew
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joeri Hessels
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Fengshou Yu
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| |
Collapse
|
16
|
Huang HH, Dai M, Liu L, Liu J, Zhao C, Vignesh A, Ke Z. Dual roles of the electronic effect on selectivity: pincer nickel-electrocatalyzed CO 2 reduction. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01832e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unconventional dual roles of the electronic effect on the selectivity are unfolded, i.e., (1) the electronic effect on redox originating from σ-donation and (2) the electronic effect on π-back-donation.
Collapse
Affiliation(s)
- Hai-Hua Huang
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Miao Dai
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Lianglin Liu
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Jiahao Liu
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Cunyuan Zhao
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Arumugam Vignesh
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Zhuofeng Ke
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
17
|
Hessels J, Masferrer‐Rius E, Yu F, Detz RJ, Klein Gebbink RJM, Reek JNH. Nickel is a Different Pickle: Trends in Water Oxidation Catalysis for Molecular Nickel Complexes. CHEMSUSCHEM 2020; 13:6629-6634. [PMID: 33090703 PMCID: PMC7756549 DOI: 10.1002/cssc.202002164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The development of novel water oxidation catalysts is important in the context of renewable fuels production. Ligand design is one of the key tools to improve the activity and stability of molecular catalysts. The establishment of ligand design rules can facilitate the development of improved molecular catalysts. In this paper it is shown that chemical oxidants can be used to probe oxygen evolution activity for nickel-based systems, and trends are reported that can improve future ligand design. Interestingly, different ligand effects were observed in comparison to other first-row transition metal complexes. For example, nickel complexes with secondary amine donors were more active than with tertiary amine donors, which is the opposite for iron complexes. The incorporation of imine donor groups in a cyclam ligand resulted in the fastest and most durable nickel catalyst of our series, achieving oxygen evolution turnover numbers up to 380 and turnover frequencies up to 68 min-1 in a pH 5.0 acetate buffer using Oxone as oxidant. Initial kinetic experiments with this catalyst revealed a first order in chemical oxidant and a half order in catalyst. This implies a rate-determining oxidation step from a dimeric species that needs to break up to generate the active catalyst. These findings lay the foundation for the rational design of molecular nickel catalysts for water oxidation and highlight that catalyst design rules are not generally applicable for different metals.
Collapse
Affiliation(s)
- Joeri Hessels
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Eduard Masferrer‐Rius
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Fengshou Yu
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Remko J. Detz
- Current address: TNO Energy Transition, Energy Transition StudiesRadarweg 601043 NTAmsterdamThe Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
18
|
Hessels J, Yu F, Detz RJ, Reek JNH. Potential- and Buffer-Dependent Catalyst Decomposition during Nickel-Based Water Oxidation Catalysis. CHEMSUSCHEM 2020; 13:5625-5631. [PMID: 32959962 PMCID: PMC7702101 DOI: 10.1002/cssc.202001428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The production of hydrogen by water electrolysis benefits from the development of water oxidation catalysts. This development process can be aided by the postulation of design rules for catalytic systems. The analysis of the reactivity of molecular complexes can be complicated by their decomposition under catalytic conditions into nanoparticles that may also be active. Such a misinterpretation can lead to incorrect design rules. In this study, the nickel-based water oxidation catalyst [NiII (meso-L)](ClO4 )2 , which was previously thought to operate as a molecular catalyst, is found to decompose to form a NiOx layer in a pH 7.0 phosphate buffer under prolonged catalytic conditions, as indicated by controlled potential electrolysis, electrochemical quartz crystal microbalance, and X-ray photoelectron spectroscopy measurements. Interestingly, the formed NiOx layer desorbs from the surface of the electrode under less anodic potentials. Therefore, no nickel species can be detected on the electrode after electrolysis. Catalyst decomposition is strongly dependent on the pH and buffer, as there is no indication of NiOx layer formation at pH 6.5 in phosphate buffer nor in a pH 7.0 acetate buffer. Under these conditions, the activity stems from a molecular species, but currents are much lower. This study demonstrates the importance of in situ characterization methods for catalyst decomposition and metal oxide layer formation, and previously proposed design elements for nickel-based catalysts need to be revised.
Collapse
Affiliation(s)
- Joeri Hessels
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Fengshou Yu
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Remko J. Detz
- TNO Energy Transition, Energy Transition StudiesRadarweg 601043 NTAmsterdam (TheNetherlands
| | - Joost N. H. Reek
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|
19
|
|
20
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 424] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
21
|
Garrido-Barros P, Grau S, Drouet S, Benet-Buchholz J, Gimbert-Suriñach C, Llobet A. Can Ni Complexes Behave as Molecular Water Oxidation Catalysts? ACS Catal 2019. [DOI: 10.1021/acscatal.8b03953] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo Garrido-Barros
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Campus
Sescelades, C/Marcel·lí Domingo, s/n, 43007 Tarragona, Spain
| | - Sergi Grau
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Samuel Drouet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Wang JW, Liu WJ, Zhong DC, Lu TB. Nickel complexes as molecular catalysts for water splitting and CO2 reduction. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.12.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Shahadat HM, Younus HA, Ahmad N, Rahaman MA, Khattak ZAK, Zhuiykov S, Verpoort F. Homogenous electrochemical water oxidation by a nickel(ii) complex based on a macrocyclic N-heterocyclic carbene/pyridine hybrid ligand. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01485c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrochemical water oxidation catalyzed by a homogeneous Ni–NHC/pyridine complex demonstrated electrolyte-dependent catalytic performances. The catalyst displayed a stable catalytic current of oxygen evolution in long-term bulk electrolysis.
Collapse
Affiliation(s)
- Hossain M. Shahadat
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| | - Hussein A. Younus
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
- Chemistry Department
| | - Nazir Ahmad
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
- Department of Chemistry
| | - Md. Abdur Rahaman
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| | - Zafar A. K. Khattak
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| | | | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| |
Collapse
|
24
|
Zhang LH, Yu F, Shi Y, Li F, Li H. Base-enhanced electrochemical water oxidation by a nickel complex in neutral aqueous solution. Chem Commun (Camb) 2019; 55:6122-6125. [DOI: 10.1039/c9cc01865d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electrochemical water oxidation catalyzed by a homogeneous Ni complex at low overpotential in neutral media.
Collapse
Affiliation(s)
- Lu-Hua Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education; Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province
- College of Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Fengshou Yu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology (DUT)
- 116024 Dalian
- China
| | - Yumeng Shi
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science & Technology of Ministry of Education; Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province
- College of Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Fei Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology (DUT)
- 116024 Dalian
- China
| | - Henan Li
- College of Electronic Science and Technology
- Shenzhen University
- Shenzhen 518060
- China
| |
Collapse
|
25
|
Joya KS, Ul Ain Babar N, Gilani SR, Yasmeen F, Sarfaraz M, Ikram S, Colak SG, Ocakoglu K, Ince M. Heterogeneous Electrocatalysts for Efficient Water Oxidation Derived from Metal Phthalocyanine. ChemistrySelect 2018. [DOI: 10.1002/slct.201802089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Khurram Saleem Joya
- Department of Energy Conversion and Storage Technical University of Denmark; Frederiksborgvej 399 4000 Roskilde Denmark
- Department of Chemistry University of Engineering and Technology; GT Road 54890 Lahore Pakistan
| | - Noor Ul Ain Babar
- Department of Chemistry University of Engineering and Technology; GT Road 54890 Lahore Pakistan
| | - Syeda Robina Gilani
- Department of Chemistry University of Engineering and Technology; GT Road 54890 Lahore Pakistan
| | - Farhat Yasmeen
- Department of Chemistry University of Engineering and Technology; GT Road 54890 Lahore Pakistan
| | | | - Sehrish Ikram
- Department of Chemistry University of Engineering and Technology; GT Road 54890 Lahore Pakistan
| | - Süleyman Gökhan Colak
- Advanced Technology Research & Application Center; Mersin University; Ciftlikkoy Campus; TR-33343 Yenisehir Mersin Turkey
| | - Kasim Ocakoglu
- Advanced Technology Research & Application Center; Mersin University; Ciftlikkoy Campus; TR-33343 Yenisehir Mersin Turkey
- Department of Energy Systems Engineering, Faculty of Technology Mersin University; TR-33480 Tarsus Mersin Turkey
| | - Mine Ince
- Department of Energy Systems Engineering, Faculty of Technology Mersin University; TR-33480 Tarsus Mersin Turkey
| |
Collapse
|
26
|
Singh C, Mukhopadhyay S, Das SK. Polyoxometalate-Supported Bis(2,2′-bipyridine)mono(aqua)nickel(II) Coordination Complex: an Efficient Electrocatalyst for Water Oxidation. Inorg Chem 2018; 57:6479-6490. [DOI: 10.1021/acs.inorgchem.8b00541] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chandani Singh
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | | | - Samar K. Das
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| |
Collapse
|
27
|
Wang JW, Huang HH, Sun JK, Ouyang T, Zhong DC, Lu TB. Electrocatalytic and Photocatalytic Reduction of CO 2 to CO by Cobalt(II) Tripodal Complexes: Low Overpotentials, High Efficiency and Selectivity. CHEMSUSCHEM 2018; 11:1025-1031. [PMID: 29385321 DOI: 10.1002/cssc.201702280] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/30/2018] [Indexed: 06/07/2023]
Abstract
The reduction of carbon dioxide (CO2 ) has been considered as an approach to mitigate global warming and to provide renewable carbon-based fuels. Rational design of efficient, selective, and inexpensive catalysts with low overpotentials is urgently desired. In this study, four cobalt(II) tripodal complexes are tested as catalysts for CO2 reduction to CO in a MeCN/H2 O (4:1 v/v) solution. The replacement of pyridyl groups in the ligands with less basic quinolinyl groups greatly reduces the required overpotential for CO2 -to-CO conversion down to 200-380 mV. Benefitting from the low overpotentials, a photocatalyst system for CO2 -to-CO conversion is successfully constructed, with an maximum turnover number (TON) of 10 650±750, a turnover frequency (TOF) of 1150±80 h-1 , and almost 100 % selectivity to CO. These outstanding catalytic performances are further elucidated by DFT calculations.
Collapse
Affiliation(s)
- Jia-Wei Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- Institute of New Energy Materials and Low Carbon Technology, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hai-Hua Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jia-Kai Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Di-Chang Zhong
- Institute of New Energy Materials and Low Carbon Technology, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- Institute of New Energy Materials and Low Carbon Technology, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
28
|
Wang L, Xu N, Pan X, He Y, Wang X, Su W. Cobalt lactate complex as a hole cocatalyst for significantly enhanced photocatalytic H2 production activity over CdS nanorods. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00067k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt lactate complex has been prepared in situ, which works as a molecular cocatalyst accelerating hole transfer for the enhanced photocatalytic H2 evolution activity of CdS.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Nan Xu
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Xiaoyang Pan
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Yishan He
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Wenyue Su
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| |
Collapse
|
29
|
Shen J, Wang M, He T, Jiang J, Hu M. Influence of the backbone of N5-pentadentate ligands on the catalytic performance of Ni(ii) complexes for electrochemical water oxidation in neutral aqueous solutions. Chem Commun (Camb) 2018; 54:9019-9022. [DOI: 10.1039/c8cc04302g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A positive influence of the rigid backbone of N5-chelating ligands was demonstrated on the activity of nickel catalysts for electrochemical water oxidation.
Collapse
Affiliation(s)
- Junyu Shen
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Tianhao He
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Jian Jiang
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Maowei Hu
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
30
|
Najafpour MM, Feizi H. Water oxidation by Ni(1,4,8,11-tetraazacyclotetradecane)2+ in the presence of carbonate: new findings and an alternative mechanism. Dalton Trans 2018; 47:6519-6527. [DOI: 10.1039/c8dt00068a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of nanosized particles or Ni ions on the surface of the electrode under water-oxidation conditions in the presence of Ni(1,4,8,11-tetraazacyclotetradecane)2+ was investigated.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Hadi Feizi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|