1
|
Ortega-Nieto C, Losada-Garcia N, Domingo-Calap P, Pawlyta M, Palomo JM. Low Silver/Copper Exchange in a Copper-Phosphate Enzyme Nanoflower Hybrid Extremely Enhanced Antimicrobial Efficacy against Multidrug Resistant Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:6740-6748. [PMID: 39255070 PMCID: PMC11497203 DOI: 10.1021/acsabm.4c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Infections caused by bacteria that are resistant to many drugs are a major threat to public health in many countries around the world. Here we demonstrate the creation of heterogeneous catalytic nanomaterials with outstanding antimicrobial properties against several superbugs. We have shown that replacing a small amount of copper in a generated copper-phosphate-enzyme nanoflower hybrid with silver drastically increases the antimicrobial capacity of the nanomaterial. In this sense, it has been confirmed that the exchange generated silver phosphate nanoparticles on the Cu nanoflowers, with control of the nanoparticle diameter size. The Fenton catalytic activity of the Ag-containing nanobiohybrids was affected, showing better performance with lower amounts of silver in the final hybrid. This effect was confirmed by their antimicrobial efficacy against Escherichia coli, where the Ag4Cu32@CALB hybrid displayed a log reduction of 3.9, an efficiency more than 5000 times higher than that obtained with copper nanoflowers (Cu36@CALB). The hybrid also showed excellent efficacy against other bacteria such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Mycobacterium smegmatis with log reductions of 7.6, 4.3, and 1.8, respectively.
Collapse
Affiliation(s)
- Clara Ortega-Nieto
- Instituto
de Catálisis y Petroleoquímica (ICP), CSIC, 28049 Madrid, Spain
| | | | - Pilar Domingo-Calap
- Institute
for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Miroslawa Pawlyta
- Materials
Research Laboratory, Faculty of Mechanical
Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Jose M. Palomo
- Instituto
de Catálisis y Petroleoquímica (ICP), CSIC, 28049 Madrid, Spain
| |
Collapse
|
2
|
Almutairi ST. Fabrication and catalytic activity of TiO 2/Fe 3O 4 and Fe 3O 4/β-cyclodextrin nanocatalysts for safe treatment of industrial wastewater. Heliyon 2024; 10:e35400. [PMID: 39170368 PMCID: PMC11336569 DOI: 10.1016/j.heliyon.2024.e35400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The rapid industrial growth has led to increased production of wastewater containing pollutants like heavy metals and organic compounds. These pollutants pose risks to human health and the environment if not properly treated. Engineered nanocatalyst materials (ENMs) are a burgeoning technology that show promise for treating industrial wastewater. Metal oxide ENMs, such as Fe3O4@β-cyclodextrin and Fe3O4@TiO2, have demonstrated efficient removal of heavy metals and methylene blue from wastewater. Fe3O4@TiO2 was found to be more effective than Fe3O4@β-cyclodextrin in removing these pollutants. The highest removal efficiencies were observed at a concentration of 40 mg/g and pH 8. Copper showed the highest removal efficiency (160.5 mg/g), followed by nickel (77.09 mg/g), lead (56.0 mg/g), and cadmium (46.05 mg/g). For methylene blue, the highest removal efficiency was also observed at a concentration of 40 mg/g and pH 8 (91.16 %). Lead (90.5 %), copper (90.48 %), nickel (83.34 %), and cadmium (77.58 %) were also efficiently removed. These findings highlight the potential of Fe3O4@TiO2 as a promising material for industrial wastewater treatment, offering cleaner and safer water for human health and the environment. ENMs have the potential to revolutionize wastewater treatment processes.
Collapse
Affiliation(s)
- Safer Tale Almutairi
- Department of Chemistry, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
3
|
Ortega-Nieto C, Losada-Garcia N, Prodan D, Furtos G, Palomo JM. Recent Advances on the Design and Applications of Antimicrobial Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2406. [PMID: 37686914 PMCID: PMC10490178 DOI: 10.3390/nano13172406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Present worldwide difficulties in healthcare and the environment have motivated the investigation and research of novel materials in an effort to find novel techniques to address the current challenges and requirements. In particular, the use of nanomaterials has demonstrated a significant promise in the fight against bacterial infections and the problem of antibiotic resistance. Metal nanoparticles and carbon-based nanomaterials in particular have been highlighted for their exceptional abilities to inhibit many types of bacteria and pathogens. In order for these materials to be as effective as possible, synthetic techniques are crucial. Therefore, in this review article, we highlight some recent developments in the design and synthesis of various nanomaterials, including metal nanoparticles (e.g., Ag, Zn, or Cu), metal hybrid nanomaterials, and the synthesis of multi-metallic hybrid nanostructured materials. Following that, examples of these materials' applications in antimicrobial performance targeted at eradicating multi-drug resistant bacteria, material protection such as microbiologically influenced corrosion (MIC), or additives in construction materials have been described.
Collapse
Affiliation(s)
- Clara Ortega-Nieto
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| | - Noelia Losada-Garcia
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| | - Doina Prodan
- Department of Dental Composite Materials, Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele St., 400294 Cluj-Napoca, Romania;
| | - Gabriel Furtos
- Department of Dental Composite Materials, Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele St., 400294 Cluj-Napoca, Romania;
| | - Jose M. Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| |
Collapse
|
4
|
Ortega-Nieto C, Losada-Garcia N, Pessela BC, Domingo-Calap P, Palomo JM. Design and Synthesis of Copper Nanobiomaterials with Antimicrobial Properties. ACS BIO & MED CHEM AU 2023; 3:349-358. [PMID: 37599792 PMCID: PMC10436259 DOI: 10.1021/acsbiomedchemau.2c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023]
Abstract
In this work, nanostructured copper materials have been designed, synthetized, and evaluated in order to produce a more efficient and sustainable copper bionanohybrid with catalytical and antimicrobial properties. Thus, conditions are sought where the most critical steps are reduced or minimized, such as the use of reducing agents or the cryogenization step. In addition, the new materials have been characterized through different techniques, and their oxidative and reductive capacities, as well as their antimicrobial activity, have been evaluated. The addition of different quantities of a reducing agent in the synthesis method generated copper bionanohybrids with different metallic species, nanoparticles sizes, and structures. The antimicrobial properties of the bionanohybrids were studied against different strains of Gram-positive and Gram-negative bacteria through two different methods: by counting the CFU and via the disk diffusion test, respectively. The bionanohybrids have demonstrated that different efficiencies depending on the bacterial strain were confronted with. The Cu-PHOS-100% R hybrids with the highest percentage of reduction showed the best antimicrobial efficiency against Escherichia coli and Klebsiella pneumoniae bacteria (>96 or >77% in 4 h, respectively) compared to 31% bacteria reduction using Cu-PHOS-0% R. Also, the antimicrobial activity against Bacillus subtilis materials was obtained with Cu-PHOS-100% R (31 mm inhibition zone and 125 μg/mL minimum inhibitory concentration value). Interestingly, the better antimicrobial activity of the nanobiohybrids against Gram-positive bacteria Mycobacterium smegmatis was obtained with some with a lower reduction step in the synthesis, Cu-PHOS-10% R or Cu-PHOS-20% R (>94% bacterial reduction in 4 h).
Collapse
Affiliation(s)
- Clara Ortega-Nieto
- Instituto
de Catalisis y Petroleoquimica (ICP), CSIC, Marie Curie 2, 28049 Madrid, Spain
| | - Noelia Losada-Garcia
- Instituto
de Catalisis y Petroleoquimica (ICP), CSIC, Marie Curie 2, 28049 Madrid, Spain
| | - Benevides C. Pessela
- Institute
of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, Cantoblanco, 28049 Madrid, Spain
| | - Pilar Domingo-Calap
- Institute
for Integrative Systems Biology (ISysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Jose M. Palomo
- Instituto
de Catalisis y Petroleoquimica (ICP), CSIC, Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
5
|
Ahmed N, Vione D, Rivoira L, Castiglioni M, Beldean-Galea MS, Bruzzoniti MC. Feasibility of a Heterogeneous Nanoscale Zero-Valent Iron Fenton-like Process for the Removal of Glyphosate from Water. Molecules 2023; 28:molecules28052214. [PMID: 36903460 PMCID: PMC10005206 DOI: 10.3390/molecules28052214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Glyphosate is a widely used herbicide, and it is an important environmental pollutant that can have adverse effects on human health. Therefore, remediation and reclamation of contaminated streams and aqueous environments polluted by glyphosate is currently a worldwide priority. Here, we show that the heterogeneous nZVI-Fenton process (nZVI + H2O2; nZVI: nanoscale zero-valent iron) can achieve the effective removal of glyphosate under different operational conditions. Removal of glyphosate can also take place in the presence of excess nZVI, without H2O2, but the high amount of nZVI needed to remove glyphosate from water matrices on its own would make the process very costly. Glyphosate removal via nZVI--Fenton was investigated in the pH range of 3-6, with different H2O2 concentrations and nZVI loadings. We observed significant removal of glyphosate at pH values of 3 and 4; however, due to a loss in efficiency of Fenton systems with increasing pH values, glyphosate removal was no longer effective at pH values of 5 or 6. Glyphosate removal also occurred at pH values of 3 and 4 in tap water, despite the occurrence of several potentially interfering inorganic ions. Relatively low reagent costs, a limited increase in water conductivity (mostly due to pH adjustments before and after treatment), and low iron leaching make nZVI-Fenton treatment at pH 4 a promising technique for eliminating glyphosate from environmental aqueous matrices.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
- Correspondence: (D.V.); (M.C.B.)
| | - Luca Rivoira
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Michele Castiglioni
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Mihail S. Beldean-Galea
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 400347 Cluj-Napoca, Romania
| | - Maria Concetta Bruzzoniti
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
- Correspondence: (D.V.); (M.C.B.)
| |
Collapse
|
6
|
Pyykkönen A, Vaara J. Computational NMR of the iron pyrazolylborate complexes [Tp 2Fe] + and Tp 2Fe including solvation and spin-crossover effects. Phys Chem Chem Phys 2023; 25:3121-3135. [PMID: 36621831 DOI: 10.1039/d2cp03721a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal complexes have important roles in many biological processes as well as applications in fields such as pharmacy, chemistry and materials science. Paramagnetic nuclear magnetic resonance (pNMR) is a valuable tool in understanding such molecules, and theoretical computations are often advantageous or even necessary in the assignment of experimental pNMR signals. We have employed density functional theory (DFT) and the domain-based local pair natural orbital coupled-cluster method with single and double excitations (DLPNO-CCSD), as well as a number of model improvements, to determine the critical hyperfine part of the chemical shifts of the iron pyrazolylborate complexes [Tp2Fe]+ and Tp2Fe using a modern version of the Kurland-McGarvey theory, which is based on parameterising the hyperfine, electronic Zeeman and zero-field splitting interactions via the parameters of the electron paramagnetic resonance Hamiltonian. In the doublet [Tp2Fe]+ system, the calculations suggest a re-assignment of the 13C signal shifts. Consideration of solvent via the conductor-like polarisable continuum model (C-PCM) versus explicit solvent molecules reveals C-PCM alone to be insufficient in capturing the most important solvation effects. Tp2Fe exhibits a spin-crossover effect between a high-spin quintet (S = 2) and a low-spin singlet (S = 0) state, and its recorded temperature dependence can only be reproduced theoretically by accounting for the thermal Boltzmann distribution of the open-shell excited state and the closed-shell ground-state occupations. In these two cases, DLPNO-CCSD is found, in calculating the hyperfine couplings, to be a viable alternative to DFT, the demonstrated shortcomings of which have been a significant issue in the development of computational pNMR.
Collapse
Affiliation(s)
- Ari Pyykkönen
- NMR Research Unit, University of Oulu, P.O. Box 3000, Oulu FIN-90014, Finland.
| | - Juha Vaara
- NMR Research Unit, University of Oulu, P.O. Box 3000, Oulu FIN-90014, Finland.
| |
Collapse
|
7
|
Kalhor S, Yarie M, Torabi M, Zolfigol MA, Rezaeivala M, Gu Y. Synthesis of 2-Amino-6-(1 H-Indol-3-yl)-4-Phenylnicotinonitriles and Bis(Indolyl) Pyridines Using a Novel Acidic Nanomagnetic Catalyst via a Cooperative Vinylogous Anomeric-Based Oxidation Mechanism. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1887296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Mohmmad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Majid Rezaeivala
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Buono F, Nguyen T, Qu B, Wu H, Haddad N. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
9
|
Lin CC, Kuo HW. Mass-production of iron nanopowders by liquid-phase reductive precipitation in a rotating packed bed with blade packings. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Lin CC, Cheng YJ. Effectiveness of using nanoscale zero-valent iron and hydrogen peroxide in degrading sulfamethazine in water. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Jin Q, Ma L, Zhou W, Himmelhaver C, Chintalapalle R, Shen Y, Li X. Strong interaction between Au nanoparticles and porous polyurethane sponge enables efficient environmental catalysis with high reusability. Catal Today 2020; 358:246-253. [PMID: 33716402 PMCID: PMC7944585 DOI: 10.1016/j.cattod.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and recoverable platform of polyurethane (PU) sponge-supported Au nanoparticle catalyst was obtained by a water-based in-situ preparation process. The structure, chemical, and morphology properties of this platform were characterized by XRD, TGA, SEM, FT-IR, and XPS. The Au/PU sponge platform exhibited excellent catalytic performances in catalytic reductions of p-nitrophenol and o-nitroaniline at room temperature, and both catalytic reactions could be completed within 4.5 and 1.5 min, respectively. Furthermore, the strong interaction between Au nanoparticles and the PU sponge enabled the catalyst system to maintain a high catalytic efficiency after 5 recycling times, since the PU sponge reduced the trend of leaching and aggregation of Au nanoparticles. The unique nature of Au nanoparticles and the porous PU sponge along with their strong interaction resulted in a highly efficient, recoverable, and cost-effective multifunctional catalyst. The AuNP/Sponge nanocatalyst platform has great potential for wide environmental and other catalytic applications.
Collapse
Affiliation(s)
- Qijie Jin
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Cindy Himmelhaver
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Ramana Chintalapalle
- Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yuesong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
- Environmental Science and Engineering, Biomedical Engineering, Border Biomedical Research Center University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
12
|
Akiyama T, Wada Y, Yamada M, Shio Y, Honma T, Shimoda S, Tsuruta K, Tamenori Y, Haneoka H, Suzuki T, Harada K, Tsurugi H, Mashima K, Hasegawa JY, Sato Y, Arisawa M. Self-Assembled Multilayer Iron(0) Nanoparticle Catalyst for Ligand-Free Carbon-Carbon/Carbon-Nitrogen Bond-Forming Reactions. Org Lett 2020; 22:7244-7249. [PMID: 32903001 DOI: 10.1021/acs.orglett.0c02574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembled multilayer iron(0) nanoparticles (NPs, 6-10 nm), namely, sulfur-modified Au-supported Fe(0) [SAFe(0)], were developed for ligand-free one-pot carbon-carbon/carbon-nitrogen bond-forming reactions. SAFe(0) was successfully prepared using a well-established metal-nanoparticle catalyst preparative protocol by simultaneous in situ metal NP and nanospace organization (PSSO) with 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (Si-DHP) as a strong reducing agent. SAFe(0) was easy to handle in air and could be recycled with a low iron-leaching rate in reaction cycles.
Collapse
Affiliation(s)
- Toshiki Akiyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Yuki Wada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Makito Yamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Yasunori Shio
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shuhei Shimoda
- Institute for Catalysis, Hokkaido University, Kita-21, Nishi-10, Kita-ku, Sapporo 001-0021, Japan
| | - Kazuki Tsuruta
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yusuke Tamenori
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hitoshi Haneoka
- The Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Hayato Tsurugi
- Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita-21, Nishi-10, Kita-ku, Sapporo 001-0021, Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Facile Synthesis of Iron-Titanate Nanocomposite as a Sustainable Material for Selective Amination of Substitued Nitro-Arenes. Catalysts 2020. [DOI: 10.3390/catal10080871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The fabrication of durable and low-cost nanostructured materials remains important in chemical, biologic and medicinal applications. Particularly, iron-based nanomaterials are of central importance due to the ‘noble’ features of iron such as its high abundance, low cost and non-toxicity. Herein we report a simple sol–gel method for the synthesis of novel iron–titanium nanocomposite-based material (Fe9TiO15@TiO2). In order to prepare this material, we made a polymeric gel using ferrocene, titanium isopropoxide and THF precursors. The calcination of this gel in air at 500 °C produced Fe-Ti bimetallic nanoparticles-based composite and nano-TiO2 as support. Noteworthy, our methodology provides an excellent control over composition, size and shape of the resulting nanoparticles. The resulted Fe-based material provides a sustainable catalyst for selective synthesis of anilines, which are key intermediates for the synthesis of several chemicals, dyes and materials, via reduction of structurally diverse and functionalized nitroarenes.
Collapse
|
14
|
Benavente R, Lopez-Tejedor D, Del Puerto Morales M, Perez-Rizquez C, Palomo JM. The enzyme-induced formation of iron hybrid nanostructures with different morphologies. NANOSCALE 2020; 12:12917-12927. [PMID: 32525190 DOI: 10.1039/d0nr03142a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new synthesis method for tailor-made iron-hybrid nanoparticles has been carried out for the first time using enzymes, which directly induce the formation of inorganic iron species. The role of the protein was critical for the formation and morphology of the iron nanostructures and, depending on the enzyme, by simple mixing with ammonium iron(ii) sulfate at room temperature and under air, it was possible to obtain, for the first time, well stabilized superparamagnetic iron and iron oxide nanorods, nanosheets and nanorings or even completely amorphous non-magnetic iron structures in the protein network. These iron nanostructure-enzyme hybrids showed excellent results as heterogeneous catalysts in organic chemistry (chemoselective hydrogenation and C-C bonding formation) and environmental remediation processes.
Collapse
Affiliation(s)
- Rocio Benavente
- Department of Biocatalysis, Institute of Catalysis (ICP-CSIC), Marie Curie 2, 28049 Madrid, Spain.
| | - David Lopez-Tejedor
- Department of Biocatalysis, Institute of Catalysis (ICP-CSIC), Marie Curie 2, 28049 Madrid, Spain.
| | - Maria Del Puerto Morales
- Department of Energy, Environment and Health, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain
| | - Carlos Perez-Rizquez
- Department of Biocatalysis, Institute of Catalysis (ICP-CSIC), Marie Curie 2, 28049 Madrid, Spain.
| | - Jose M Palomo
- Department of Biocatalysis, Institute of Catalysis (ICP-CSIC), Marie Curie 2, 28049 Madrid, Spain.
| |
Collapse
|
15
|
Li X, Li J, Shi W, Bao J, Yang X. A Fenton-Like Nanocatalyst Based on Easily Separated Magnetic Nanorings for Oxidation and Degradation of Dye Pollutant. MATERIALS 2020; 13:ma13020332. [PMID: 31940745 PMCID: PMC7014477 DOI: 10.3390/ma13020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/25/2023]
Abstract
In this study, uniform Fe3O4 magnetic nanorings (Fe3O4-MNRs) were prepared through a simple hydrothermal method. The morphology, magnetic properties, and structure of the product were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. The Fe3O4-MNRs were used as Fenton-like catalysts in the presence of hydrogen peroxide (H2O2) and showed excellent Fenton-catalytic activity for degradation of organic dyes such as Methylene blue (MB), Rhodamine B (RhB), and Bromophenol blue (BPB). Furthermore, the obtained Fe3O4-MNRs could be recycled after used for several times and still remained in a relative high activity and could rapidly be separated from the reaction medium using a magnet without considerable loss. All results reveal that Fe3O4-MNRs have potential for the treatment of dyes pollutants.
Collapse
|
16
|
A detailed investigation on interactions between magnetite nanoparticles functionalized with aminated chitosan and a cell model membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110616. [PMID: 32228924 DOI: 10.1016/j.msec.2019.110616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/28/2019] [Indexed: 01/10/2023]
Abstract
Magnetite nanoparticles are promising materials for application in magnetic resonance imaging, targeted drug delivery, enzyme immobilization and cancer therapies based on hyperthermia thanks to their biocompatibility, wide chemical affinity and superparamagnetic properties. However, there is still the lack of the knowledge of interactions between magnetite nanoparticles covered with the bioactive polymers and biological cells. In order to fulfil this gap, we have investigated interactions of newly synthetized magnetite nanoparticles functionalized with aminated chitosan (Fe3O4-aminated chitosan) and a model biological membrane made of dipalmitoylphosphatidylcholine (DPPC) using a Langmuir technique. Surface pressure-mean area per DPPC molecule isotherms and Brewster angle microscope images (BAM) recorded during compression of the two-component Fe3O4-aminated chitosan:DPPC films revealed the strong influence of the Fe3O4-aminated chitosan nanoparticles on the stability, phase state and structure of the phospholipid membrane. The studies on the adsorption/incorporation process of the Fe3O4-aminated chitosan nanoparticles showed that they can adsorb/incorporate into the DPPC model membrane at the surface pressure corresponding to this present in the cellular membrane under the biological conditions (35 mN·m-1). The number of the adsorbed/incorporated Fe3O4-aminated chitosan nanoparticles can be regulated by the nanoparticles concentration in the neighbourhood of the DPPC model membrane even at high surface pressure of 35 mN·m-1.
Collapse
|
17
|
Rincón Joya M, Barba Ortega J, Malafatti JO, Paris EC. Evaluation of Photocatalytic Activity in Water Pollutants and Cytotoxic Response of α-Fe 2O 3 Nanoparticles. ACS OMEGA 2019; 4:17477-17486. [PMID: 31656919 PMCID: PMC6812111 DOI: 10.1021/acsomega.9b02251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/27/2019] [Indexed: 05/21/2023]
Abstract
α-Fe2O3 samples were manufactured by means of the polymeric precursor method. The powders were sintered and calcined at temperatures of 300-700 °C for 2 h, respectively. In the X-ray diffraction results, the formation of the rhombohedral phase without secondary phases was exhibited. The size of the particle increased after calcination at 700 °C, exhibiting a slightly more irregular morphology for the samples calcined with the addition of NH4OH in the synthesis process. From the field-emission scanning electron microscopy measurements, the particle size was determined, showing a smaller size for the samples without NH4OH in the synthesis process. The samples calcined at 600 °C had a size of 100 nm, with the sizes for lower temperatures being smaller. The size of the nanoparticle agglomerates was largest for the samples with NH4OH; however, the zeta potential was slightly lower over time for these samples. The phase study of the α-Fe2O3 nanoparticles was confirmed by means of Raman spectroscopy, without additional bands of another crystal structure. In addition, the synthesized nanoparticles exhibited good photocatalytic activity in the degradation of rhodamine B (RhB) and atrazine (ATZ) within 40 min, with a maximum degradation of 59% for ATZ and 40% for rhodamine. The best responses in the degradation were for the samples without the addition of NH4OH in the synthesis process and in proportions lower than 0.1 g. The cytotoxic effects of the nanoparticles obtained at 600 °C were evaluated in apical cells of onion roots. The results are promising for future applications because no changes were observed in the mitosis of the cells.
Collapse
Affiliation(s)
- Miryam Rincón Joya
- Departamento de
Física, Facultad de Ciencias, Universidad
Nacional de Colombia, Bogotá, Carrera 30 Calle 45-03, Bogotá C.P. 111321, Colombia
- E-mail: . Phone: +57 (1)3165000
| | - José Barba Ortega
- Departamento de
Física, Facultad de Ciencias, Universidad
Nacional de Colombia, Bogotá, Carrera 30 Calle 45-03, Bogotá C.P. 111321, Colombia
| | - João Otávio
Donizette Malafatti
- Departamento de Química, Universidade
Federal de São Carlos, São Carlos 13565-905, São Paulo, Brazil
- National
Laboratory for Nanotechnology in Agribusiness (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil
| | - Elaine Cristina Paris
- National
Laboratory for Nanotechnology in Agribusiness (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil
| |
Collapse
|
18
|
Jeyavani V, Pawar S, Dadwal A, Joy PA, Mukherjee SP. Size‐controlled Cobalt Ferrite Nanocrystals: Magnetically separable Reusable Nanocatalysts for Selective Oxidation of Styrene. ChemistrySelect 2019. [DOI: 10.1002/slct.201900714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Vijayakrishnan Jeyavani
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Sayali Pawar
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Arun Dadwal
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Pattayil Alias Joy
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Shatabdi Porel Mukherjee
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
19
|
Gong J, Chen A, Wang Y. Insight into Different Mechanisms for Oxidation of Liquid and Gaseous Pollutants by Bi−NaBiO
3
with or without Visible Light Illumination. ChemCatChem 2019. [DOI: 10.1002/cctc.201900158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jianyu Gong
- School of Environmental Science and EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Ayan Chen
- School of Environmental Science and EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Yunyang Wang
- School of Environmental Science and EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
20
|
Benavente R, Lopez-Tejedor D, Perez-Rizquez C, Palomo JM. Ultra-Fast Degradation of p-Aminophenol by a Nanostructured Iron Catalyst. Molecules 2018; 23:molecules23092166. [PMID: 30154340 PMCID: PMC6245462 DOI: 10.3390/molecules23092166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Full degradation of p-aminophenol in aqueous solution at room temperature by using a heterogeneous nanostructured iron hybrid catalyst in the presence of hydrogen peroxide is described. A nanostructured iron catalyst was prepared by in situ formation of iron carbonate nanorods on the protein network using an aqueous solution of an enzyme, lipase B from Candida antarctica (CAL-B). A second kind of iron nanostructured catalyst was obtained by the sunsequent treatment of the hybrid with an aqueous liquid extract of Mentha x piperita. Remarkable differences were observed using TEM imaging. When M. piperita extract was used, nanoparticles appeared instead of nanorods. Catalytic activity of these iron nanocatalysts was studied in the degradation of the environmental pollutant p-aminophenol (pAP) under different operating parameters, such as pH, presence of buffer or hydrogen peroxide concentration. Optimal conditions were pH 4 in acetate buffer 10 mM containing 1% (v/v) H2O2 for FeCO3NRs@CALB, while for FeCO3NRs@CALB-Mentha, water containing 1% (v/v) H2O2, resulted the best. A complete degradation of 100 ppm of pAP was achieved in 2 and 3 min respectively using 1 g Fe/L. This novel nanocatalyst was recycled five times maintaining full catalytic performance.
Collapse
Affiliation(s)
- Rocio Benavente
- Department of Biocatalysis, Institute of Catalysis (CSIC), Cantoblanco Campus UAM, Marie Curie 2, 28049 Madrid, Spain.
| | - David Lopez-Tejedor
- Department of Biocatalysis, Institute of Catalysis (CSIC), Cantoblanco Campus UAM, Marie Curie 2, 28049 Madrid, Spain.
| | - Carlos Perez-Rizquez
- Department of Biocatalysis, Institute of Catalysis (CSIC), Cantoblanco Campus UAM, Marie Curie 2, 28049 Madrid, Spain.
| | - Jose M Palomo
- Department of Biocatalysis, Institute of Catalysis (CSIC), Cantoblanco Campus UAM, Marie Curie 2, 28049 Madrid, Spain.
| |
Collapse
|