1
|
Secli V, Michetti E, Pacello F, Iacovelli F, Falconi M, Astolfi ML, Visaggio D, Visca P, Ammendola S, Battistoni A. Investigation of Zur-regulated metal transport systems reveals an unexpected role of pyochelin in zinc homeostasis. mBio 2024; 15:e0239524. [PMID: 39315802 PMCID: PMC11481552 DOI: 10.1128/mbio.02395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Limiting the availability of transition metals at infection sites serves as a critical defense mechanism employed by the innate immune system to combat microbial infections. Pseudomonas aeruginosa exhibits a remarkable ability to thrive in zinc-deficient environments, facilitated by intricate cellular responses governed by numerous genes regulated by the zinc-responsive transcription factor Zur. Many of these genes have unknown functions, including those within the predicted PA2911-PA2914 and PA4063-PA4066 operons. A structural bioinformatics investigation revealed that PA2911-PA2914 comprises a TonB-dependent outer membrane receptor and inner membrane ABC-permeases responsible for importing metal-chelating molecules, whereas PA4063-PA4066 contains genes encoding a MacB transporter, likely involved in the export of large molecules. Molecular genetics and biochemical experiments, feeding assays, and intracellular metal content measurements support the hypothesis that PA2911-PA2914 and PA4063-PA4066 are engaged in the import and export of the pyochelin-cobalt complex, respectively. Notably, cobalt can reduce zinc demand and promote the growth of P. aeruginosa strains unable to import zinc, highlighting pyochelin-mediated cobalt import as a novel bacterial strategy to counteract zinc deficiency. These results unveil an unexpected role for pyochelin in zinc homeostasis and challenge the traditional view of this metallophore exclusively as an iron transporter. IMPORTANCE The mechanisms underlying the remarkable ability of Pseudomonas aeruginosa to resist the zinc sequestration mechanisms implemented by the vertebrate innate immune system to control bacterial infections are still far from being fully understood. This study reveals that the Zur-regulated gene clusters PA2911-2914 and PA4063-PA4066 encode systems for the import and export of cobalt-bound pyochelin, respectively. This proves to be a useful strategy to counteract conditions of severe zinc deficiency since cobalt can replace zinc in many proteins. The discovery that pyochelin may contribute to cellular responses to zinc deficiency leads to a reevaluation of the paradigm that pyochelin is a siderophore involved exclusively in iron acquisition and suggests that this molecule has a broader role in modulating the homeostasis of multiple metals.
Collapse
Affiliation(s)
- Valerio Secli
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Emma Michetti
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Mattia Falconi
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Serena Ammendola
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | |
Collapse
|
2
|
Liu C, Cui C, Tan X, Miao J, Wang W, Ren H, Wu H, Zheng C, Ren H, Kang W. pH-mediated potentiation of gallium nitrate against Pseudomonas aeruginosa. Front Microbiol 2024; 15:1464719. [PMID: 39380683 PMCID: PMC11458400 DOI: 10.3389/fmicb.2024.1464719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa isolates is a growing concern for public health, necessitating new therapeutic strategies. Gallium nitrate [Ga(NO3)3], a medication for cancer-related hypercalcemia, has attracted great attention due to its ability to inhibit P. aeruginosa growth and biofilm formation by disrupting iron metabolism. However, the antibacterial efficacy of Ga(NO3)3 is not always satisfactory. It is imperative to investigate the factors that affect the bactericidal effects of Ga(NO3)3 and to identify new ways to enhance its efficacy. This study focused on the impact of pH on P. aeruginosa resistance to Ga(NO3)3, along with the underlying mechanism. The results indicate that acidic conditions could increase the effectiveness of Ga(NO3)3 against P. aeruginosa by promoting the production of pyochelin and gallium uptake. Subsequently, using glutamic acid, a clinically compatible acidic amino acid, the pH was significantly lowered and enhanced the bactericidal and inhibitory efficacy of Ga(NO3)3 against biofilm formation by P. aeruginosa, including a reference strain PA14 and several multidrug-resistant clinical isolates. Furthermore, we used an abscess mouse model to evaluate this combination in vivo; the results show that the combination of glutamic acid and Ga(NO3)3 significantly improved P. aeruginosa clearance. Overall, the present study demonstrates that acidic conditions can increase the sensitivity of P. aeruginosa to Ga(NO3)3. Combining glutamic acid and Ga(NO3)3 is a potential strategy for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chang Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Chenxuan Cui
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Shijiazhuang Qiaoxi Distinct Center for Disease Control and Prevention, Shijiazhuang, China
| | - Xiaoxin Tan
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Junjie Miao
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wei Wang
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Han Ren
- Clinical Laboratory, Xinle Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Hua Wu
- Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuiying Zheng
- Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan Ren
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
3
|
Kircheva N, Dobrev S, Nikolova V, Yocheva L, Angelova S, Dudev T. Implementation of Three Gallium-Based Complexes in the "Trojan Horse" Antibacterial Strategy against A. baumannii: A DFT Approach. Inorg Chem 2024; 63:15409-15420. [PMID: 39116415 DOI: 10.1021/acs.inorgchem.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Microorganisms of the ESKAPE group pose an enormous threat to human well-being, thus requiring a multidisciplinary approach for discovering novel drugs that are not only effective but utilize an innovative mechanism of action in order to decrease fast developing resistance. A promising but still hardly explored implementation in the "Trojan horse" antibacterial strategy has been recognized in gallium, an iron mimicry species with no known function but exerting a bacteriostatic/bactericidal effect against some representatives of the group. The study herewith focuses on the bacterium A. baumannii and its siderophore acinetobactin in its two isomeric forms depending on the acidity of the medium. By applying the powerful tools of the DFT approach, we aim to delineate those physicochemical characteristics that are of great importance for potentiating gallium's ability to compete with the native ferric cation for binding acinetobactin such as pH, solvent exposure (dielectric constant of the environment), different metal/siderophore ratios, and complex composition. Hence, the provided results not only furnish some explanation of the positive effect of three Ga3+-based anti-infectives in terms of metal cation competition but also shed light on reported in vitro and in vivo observations at a molecular level in regard to gallium's antibacterial effect against A. baumannii.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Lyubima Yocheva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
4
|
Kircheva N, Dobrev S, Petkova V, Yocheva L, Angelova S, Dudev T. In Silico Analysis of the Ga 3+/Fe 3+ Competition for Binding the Iron-Scavenging Siderophores of P. aeruginosa-Implementation of Three Gallium-Based Complexes in the "Trojan Horse" Antibacterial Strategy. Biomolecules 2024; 14:487. [PMID: 38672503 PMCID: PMC11048449 DOI: 10.3390/biom14040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Lyubima Yocheva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
- University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
5
|
Galarreta-Rodriguez I, Marcano L, Castellanos-Rubio I, Gil de Muro I, García I, Olivi L, Fernández-Gubieda ML, Castellanos-Rubio A, Lezama L, de Larramendi IR, Insausti M. Towards the design of contrast-enhanced agents: systematic Ga 3+ doping on magnetite nanoparticles. Dalton Trans 2022; 51:2517-2530. [PMID: 35060578 DOI: 10.1039/d1dt03029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main objective of the preparation of the Fe3-xGaxO4 (0.14 ≤ x ≤ 1.35) system was to further the knowledge of the magnetic response of Ga3+-doped magnetite for application as MRI contrast agents. With this purpose, monodisperse nanoparticles between 7 and 10 nm with different amounts of gallium were prepared from an optimized protocol based on thermal decomposition of metallo-organic precursors. Thorough characterization of the sample was conducted in order to understand the influence of gallium doping on the structural, morphological and magnetic properties of the Fe3-xGaxO4 system. X-ray diffraction and X-ray absorption near-edge structure measurements have proved the progressive incorporation of Ga in the spinel structure, with different occupations in both tetrahedral and octahedral sites. Magnetization measurements as a function of field temperature have shown a clear dependence of magnetic saturation on the gallium content, reaching an Ms value of 110 Am2 kg-1 at 5 K for x = 0.14 (significantly higher than bulk magnetite) and considerably decreasing for amounts above x = 0.57 of gallium. For this reason, nanoparticles with moderate Ga quantities were water-transferred by coating them with the amphiphilic polymer PMAO to further analyse their biomedical potential. Cytotoxicity assays have demonstrated that Fe3-xGaxO4@PMAO formulations with x ≤ 0.57, which are the ones with better magnetic response, are not toxic for cells. Finally, the effect of gallium doping on relaxivities has been analysed by measuring longitudinal (T1-1) and transverse (T1-1) proton relaxation rates at 1.4 T revealing that nanoparticles with x = 0.14 Ga3+ content present remarkable T2 contrast and the nanoparticles with x = 0.26 have great potential to act as dual T1-T2 contrast agents.
Collapse
Affiliation(s)
- Itziar Galarreta-Rodriguez
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Lourdes Marcano
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Idoia Castellanos-Rubio
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Izaskun Gil de Muro
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Isabel García
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Biomateriales, Bioingeniería y Nanomedicina (CIBER-BBN), Spain
| | - Luca Olivi
- Elettra Synchrotron Trieste, 34149 Basovizza, Italy
| | - M L Fernández-Gubieda
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Castellanos-Rubio
- Dpto. Genética, Antropología Física y Fisiología Animal, Facultad de Medicina, UPV/EHU, Leioa, Spain
| | - Luis Lezama
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Idoia Ruiz de Larramendi
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Maite Insausti
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
6
|
Zhang D, Lin Z, Zheng W, Huang F. Pt/ZnGa 2O 4/p-Si Back-to-Back Heterojunction for Deep UV Sensitive Photovoltaic Photodetection with Ultralow Dark Current and High Spectral Selectivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5653-5660. [PMID: 35072470 DOI: 10.1021/acsami.1c23453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a strategy of constructing a back-to-back heterojunction is proposed to fabricate Si-based photovoltaic photodetectors with high deep ultraviolet (DUV) spectral selectivity. By combining Pt with a thickness of 4 nm with a ZnGa2O4/Si heterojunction, a back-to-back heterojunction is successfully constructed. Based on that, a Pt/ZnGa2O4/p-Si DUV photovoltaic detector with a low dark current density (∼9.6 × 10-5 μA/cm2), a large photo-to-dark current ratio (PDCR, >105), and a fast response speed (decay time <50 ms) is fabricated. At 0 V bias, this device displays a photoresponsivity of about 1.36 mA/W and a high deep ultraviolet-visible (DUV-vis) rejection ratio (R258 nm/R420 nm) of ∼1.1 × 105, which are 1-2 orders of magnitude higher than those of most photovoltaic DUV detectors reported currently. Even at a working temperature of 470 K, the detectivity of this device can still reach ∼1.23 × 1010 Jones. In addition, compared with Au/ZnGa2O4/Si devices, the dark current and PDCR of this Pt/ZnGa2O4/Si device decrease by 2 orders of magnitude and increase by 1 order of magnitude, respectively. The enhanced performance of this ZnGa2O4/Si device can be attributed to the higher Schottky barrier established between Pt with a higher work function and ZnGa2O4. This strategy of adopting a back-to-back heterojunction device structure to hinder the visible light photoresponse of Si-based photodetectors and thus to reduce the dark current of a device can provide a reference for preparing photovoltaic DUV detectors with excellent performance.
Collapse
Affiliation(s)
- Dan Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhuogeng Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Feng Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
7
|
Visaggio D, Pirolo M, Frangipani E, Lucidi M, Sorrentino R, Mitidieri E, Ungaro F, Luraghi A, Peri F, Visca P. A Highly Sensitive Luminescent Biosensor for the Microvolumetric Detection of the Pseudomonas aeruginosa Siderophore Pyochelin. ACS Sens 2021; 6:3273-3283. [PMID: 34476940 PMCID: PMC8477383 DOI: 10.1021/acssensors.1c01023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyochelin (PCH) siderophore produced by the pathogenic bacterium Pseudomonas aeruginosa is an important virulence factor, acting as a growth promoter during infection. While strong evidence exists for PCH production in vivo, PCH quantification in biological samples is problematic due to analytical complexity, requiring extraction from large volumes and time-consuming purification steps. Here, the construction of a bioluminescent whole cell-based biosensor, which allows rapid, sensitive, and single-step PCH quantification in biological samples, is reported. The biosensor was engineered by fusing the promoter of the PCH biosynthetic gene pchE to the luxCDABE operon, and the resulting construct was inserted into the chromosome of the ΔpvdAΔpchDΔfpvA siderophore-null P. aeruginosa mutant. A bioassay was setup in a 96-well microplate format, enabling the contemporary screening of several samples in a few hours. A linear response was observed for up to 40 nM PCH, with a lower detection limit of 1.64 ± 0.26 nM PCH. Different parameters were considered to calibrate the biosensor, and a detailed step-by-step operation protocol, including troubleshooting specific problems that can arise during sample preparation, was established to achieve rapid, sensitive, and specific PCH quantification in both P. aeruginosa culture supernatants and biological samples. The biosensor was implemented as a screening tool to detect PCH-producing P. aeruginosa strains on a solid medium.
Collapse
Affiliation(s)
- Daniela Visaggio
- Department of Science, Roma Tre University, Rome 00146, Italy
- Santa Lucia Fundation IRCCS, Rome 00179, Italy
| | - Mattia Pirolo
- Department of Science, Roma Tre University, Rome 00146, Italy
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029, Italy
| | | | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80138, Italy
| | - Emma Mitidieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80138, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Andrea Luraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome 00146, Italy
- Santa Lucia Fundation IRCCS, Rome 00179, Italy
| |
Collapse
|
8
|
Kircheva N, Dudev T. Competition between abiogenic and biogenic metal cations in biological systems: Mechanisms of gallium's anticancer and antibacterial effect. J Inorg Biochem 2020; 214:111309. [PMID: 33212396 DOI: 10.1016/j.jinorgbio.2020.111309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/29/2022]
Abstract
Metal cations are key players in a plethora of essential biological processes. Over the course of evolution specific biological functions have been bestowed upon two dozen of (biogenic) metal species, some of the most frequently found being sodium, potassium, magnesium, calcium, zinc, manganese, iron, and copper. On the other hand, there is a group of less studied abiogenic metals like lithium, strontium and gallium that possess not known functions in living organisms, but, by mimicking the native ions and/or competing with them for binding to key metalloenzymes, may exert beneficial effect on humans in particular medical conditions. This review summarizes and critically examines the mechanisms of gallium's therapeutic action in anticancer and antibacterial therapies by exploiting the tools of molecular modeling and experimental biochemistry. These approaches allow for identifying key factors for Ga3+ beneficial effect such as the electrostatic interactions with the protein ligands, substrates or bacterial siderophores, intramolecular hydrogen bond formation, and pH and dielectric properties of the medium. Several intriguing questions concerning the gallium competition with the native ferric ion have found their answers.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria.
| |
Collapse
|
9
|
Kircheva N, Dudev T. Gallium as an Antibacterial Agent: A DFT/SMD Study of the Ga3+/Fe3+ Competition for Binding Bacterial Siderophores. Inorg Chem 2020; 59:6242-6254. [DOI: 10.1021/acs.inorgchem.0c00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| |
Collapse
|
10
|
Nicolafrancesco C, Porcaro F, Pis I, Nappini S, Simonelli L, Marini C, Frangipani E, Visaggio D, Visca P, Mobilio S, Meneghini C, Fratoddi I, Iucci G, Battocchio C. Gallium- and Iron-Pyoverdine Coordination Compounds Investigated by X-ray Photoelectron Spectroscopy and X-ray Absorption Spectroscopy. Inorg Chem 2019; 58:4935-4944. [DOI: 10.1021/acs.inorgchem.8b03574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chiara Nicolafrancesco
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Francesco Porcaro
- University of Bordeaux, CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Igor Pis
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14, km 163,5 Basovizza, I-34149 Trieste, Italy
| | - Silvia Nappini
- IOM-CNR Laboratorio TASC, SS 14, Km 163,5 Basovizza, I-34149 Trieste, Italy
| | - Laura Simonelli
- CELLS—ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Carlo Marini
- CELLS—ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Emanuela Frangipani
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, 61029 Province of Pesaro and Urbino, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Settimio Mobilio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Carlo Meneghini
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | | | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| |
Collapse
|