1
|
Xu L, Nan J, Han S, Yu Z, Wu S, Fang Y, Dong S. High-Valence Mn MOF Inspired by Laccase Mediators Enables Versatile Nature-Mimicking Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405293. [PMID: 39363691 DOI: 10.1002/smll.202405293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Indexed: 10/05/2024]
Abstract
In nature, active Mn3+ -ligand complexes produced by laccase catalyzed oxidation can act as the low-molecular mass, diffusible redox mediators to oxidize the phenolic substrates overcoming the limitations of natural enzymes. Learning from the metal-ligand coordination of natural functional units, high-valence Mn metal-organic framework (Mn MOF) is constructed to simulate the catalysis in natural mediator system. Benefiting from the characteristics of nanoscale size, rich metal coordination unsaturated sites, and mixed valence state dominated by Mn(III), Nano Mn(III)-TP exhibits superior laccase-mimicking activity, whose Vmax (maximal reaction rate) is much higher than that of natural laccase. Referring to natural systems, relevant free radical experiments prove that the material induces the production of active oxygen species with the assistance of carboxylic acid, and active oxygen species further oxidize phenolic substrates. Based on its robust performances, the primary oxidative degradation of an emerging pollutant triclosan (TCS) is creatively applied, an important antiasthmatic medicine terbutaline sulfate (TBT) detection, and the synthesis of non-toxic and black near-natural dyes for dyeing. By simulating the essential mediators of natural enzymatic catalysis, an Mn MOF-based material that demonstrates multiple novel applications is successfully developed, which introduces a new reliable strategy for achieving versatile nature-mimicking catalysis.
Collapse
Affiliation(s)
- Lili Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jianli Nan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songxue Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shuangli Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Xie Y, Li Z, Xu X, Jiang H, Chen K, Ou J, Liu K, Zhou Y, Luo K. Bis(2-butoxyethyl) Ether-Promoted O 2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions. Molecules 2024; 29:4909. [PMID: 39459277 PMCID: PMC11510689 DOI: 10.3390/molecules29204909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional oxidation processes for alkyl aromatics to ketones employ oxidants that tend to generate harmful byproducts and cause severe equipment corrosion, ultimately creating critical environmental problems. Thus, in this study, a practical, efficient, and green method was developed for the synthesis of aromatic ketones by applying a bis(2-butoxyethyl) ether/O2 system under external catalyst-, additive-, and base-free conditions. This O2-mediated oxidation system can tolerate various functional groups and is suitable for large-scale synthesis. Diverse target ketones were prepared under clean conditions in moderate-to-high yields. The late-stage functionalization of drug derivatives with the corresponding ketones and one-pot sequential chemical conversions to ketone downstream products further broaden the application prospects of this approach.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Zeping Li
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Xudong Xu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Han Jiang
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Keyi Chen
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Jinhua Ou
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Kaijian Liu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Yihui Zhou
- Collaborative Innovation Center, Hunan Automotive Engineering Vocational College, Zhuzhou 412001, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Kejun Luo
- Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| |
Collapse
|
3
|
A new MnxOy/carbon nanorods derived from bimetallic Zn/Mn metal–organic framework as an efficient oxygen reduction reaction electrocatalyst for alkaline Zn-Air batteries. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Hayashi E, Tamura T, Aihara T, Kamata K, Hara M. Base-Assisted Aerobic C-H Oxidation of Alkylarenes with a Murdochite-Type Oxide Mg 6MnO 8 Nanoparticle Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6528-6537. [PMID: 35080862 DOI: 10.1021/acsami.1c20080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterogeneously catalyzed aerobic oxidative C-H functionalization under mild conditions is a chemical process to obtain desired oxygenated products directly. Nanosized murdochite-type oxide Mg6MnO8 (Mg6MnO8-MA) was successfully synthesized by the sol-gel method using malic acid. The specific surface area reached up to 104 m2 g-1, which is about 7 times higher than those (2-15 m2 g-1) of Mg6MnO8 synthesized by previously reported methods. Mg6MnO8-MA exhibited superior catalytic performance to those of other Mn- and Mg-based oxides, including manganese oxides with Mn-O-Mn active sites for the oxidation of fluorene with molecular oxygen (O2) as the sole oxidant under mild conditions (40 °C). The present catalytic system was applicable to the aerobic oxidation of various substrates. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The correlation between the reactivity and the pKa of the substrates, basic properties of catalysts, and kinetic isotope effects suggest a basicity-controlled mechanism of hydrogen atom transfer. The 18O-labeling experiments, kinetics, and mechanistic studies showed that H abstraction of the hydrocarbon proceeds via a mechanism involving O2 activation. The structure of Mg6MnO8 consisting of isolated Mn4+ species located in a basic MgO matrix plays an important role in the present oxidation.
Collapse
Affiliation(s)
- Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takatoshi Tamura
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
5
|
Wang ZY, Liu YR, Duan YL, Zhou R, Zhang X. Manganese(II)-based coordination polymer as a bi-responsive luminescent sensor for highly selective detection of picric acid and CrO42− ion. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00492-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Hydrotalcite-based CoxNiyAl1Ox mixed oxide as a highly efficient catalyst for selective ethylbenzene oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Visible-light-mediated aerobic oxidation of toluene via V2O5@CN boosting benzylic C(sp3) H bond activation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Core-shell Co-MOF-74@Mn-MOF-74 catalysts with Controllable shell thickness and their enhanced catalytic activity for toluene oxidation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Lyu P, Zhu J, Han C, Qiang L, Zhang L, Mei B, He J, Liu X, Bian Z, Li H. Self-Driven Reactive Oxygen Species Generation via Interfacial Oxygen Vacancies on Carbon-Coated TiO 2-x with Versatile Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2033-2043. [PMID: 33378149 DOI: 10.1021/acsami.0c19414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effective activation and utilization of O2 have always been the focus of scientists because of its wide applications in catalysis, organic synthesis, life and medical science. Here, a novel method for activating O2 spontaneously via interfacial oxygen vacancies on carbon-coated TiO2-x to generate reactive oxygen species (ROS) with versatile applications is reported. The interfacial oxygen vacancies can be stabilized by the carbon layer and hold its intrinsic properties for spontaneous oxygen activation without light irradiation, while common surface oxygen vacancies on TiO2-x are always consumed by the capture of H2O to form the surface hydroxyls. Thus, O2 absorbed at the interface of carbon and TiO2-x can be directly activated into singlet oxygen (1O2) or superoxide radicals (·O2-), confirmed both experimentally and theoretically. These reactive oxygen species exhibit excellent performance in oxidation reactions and inhibition of MCF-7 cancer cells, providing new insight into the effective utilization of O2 via oxygen vacancies on metal oxides.
Collapse
Affiliation(s)
- Pin Lyu
- The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Jian Zhu
- The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Chongchong Han
- The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Lei Qiang
- The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Linlin Zhang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Bingbao Mei
- Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai 201203, P.R. China
| | - Jiehong He
- The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Xiaoyan Liu
- The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Zhenfeng Bian
- The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Hexing Li
- The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
10
|
Wang A, Zhou W, Sun Z, Zhang Z, Zhang Z, He M, Chen Q. Mn(III) active site in hydrotalcite efficiently catalyzes the oxidation of alkylarenes with molecular oxygen. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Gupta SSR, Lakshmi Kantam M. Finely dispersed CuO on nitrogen-doped carbon hollow nanospheres for selective oxidation of sp 3 C–H bonds. NEW J CHEM 2021. [DOI: 10.1039/d1nj02406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective oxidation of sp3 C–H bonds has been demonstrated using a novel nanocomposite, CuO/N-C-HNSs, as the catalyst.
Collapse
Affiliation(s)
- Shyam Sunder R. Gupta
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai – 400019, Maharashtra, India
| | - Mannepalli Lakshmi Kantam
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai – 400019, Maharashtra, India
| |
Collapse
|
12
|
Huang C, Gu X, Su X, Xu Z, Liu R, Zhu H. Controllable synthesis of Co-MOF-74 catalysts and their application in catalytic oxidation of toluene. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Shen HM, Liu L, Qi B, Hu MY, Ye HL, She YB. Efficient and selective oxidation of secondary benzylic C H bonds to ketones with O2 catalyzed by metalloporphyrins under solvent-free and additive-free conditions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Mian MR, Afrin U, Fataftah MS, Idrees KB, Islamoglu T, Freedman DE, Farha OK. Control of the Porosity in Manganese Trimer-Based Metal-Organic Frameworks by Linker Functionalization. Inorg Chem 2020; 59:8444-8450. [PMID: 32463656 DOI: 10.1021/acs.inorgchem.0c00885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Manganese complexes have attracted significant interest in chemical industries and academic research for their application as catalysts owing to their ability to attain a variety of oxidation states. Generally, sterically bulky ligands are required to isolate molecular homogeneous catalysts in order to prevent decomposition. Herein, we capitalize on the catalytic properties of Mn and circumvent the instability of these complexes through incorporation of Mn-atoms into porous crystalline frameworks, such as metal-organic frameworks (MOFs). MOFs are able to enhance the stability of these catalysts while also providing accessibility to the Mn sites for enhanced reactivity. We solvothermally synthesized two trinuclear Mn-based MOFs, namely [Mn3O(BDC)3(H2O)3]n (Mn-MIL-88, where H2BDC = benzene-1,4-dicarboxylic acid) and [Mn3O(BDC-Me4)3(H2O)3]n (Mn-MIL-88-Me4, where H2BDC-Me4 = 2,3,5,6-tetramethylterephthalic acid). Through comprehensive single-crystal X-ray diffraction, spectroscopic, and magnetic studies, we revealed that both MOFs are in a Mn(II/III) mixed-valence state instead of the commonly observed Mn(III) oxidation state. Furthermore, the use of a methylated linker (BDC-Me4) allowed access to permanent porosity in Mn-MIL-88-Me4, which is an analogue of the flexible MIL-88 family, yielding a catalyst for alcohol oxidation.
Collapse
Affiliation(s)
- Mohammad Rasel Mian
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Unjila Afrin
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Majed S Fataftah
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Danna E Freedman
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Kuwahara Y, Kato G, Fujibayashi A, Mori K, Yamashita H. Diesel Soot Combustion over Mn
2
O
3
Catalysts with Different Morphologies: Elucidating the Role of Active Oxygen Species in Soot Combustion. Chem Asian J 2020; 15:2005-2014. [DOI: 10.1002/asia.202000461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Yasutaka Kuwahara
- Division of Materials and Manufacturing Science Graduate School of EngineeringOsaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB)Kyoto University Katsura Kyoto 615-8520 Japan
- JST, PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Genki Kato
- Division of Materials and Manufacturing Science Graduate School of EngineeringOsaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Akihiro Fujibayashi
- Division of Materials and Manufacturing Science Graduate School of EngineeringOsaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science Graduate School of EngineeringOsaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB)Kyoto University Katsura Kyoto 615-8520 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science Graduate School of EngineeringOsaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB)Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
16
|
Liu H, Guo Z, Lv H, Liu X, Che Y, Mei Y, Bai R, Chi Y, Xing H. Visible-light-driven self-coupling and oxidative dehydrogenation of amines to imines via a Mn(ii)-based coordination polymer. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01396b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The direct synthesis of various imines through visible-light-driven photocatalytic self-coupling and dehydrogenation of amines was achieved using a novel coordination polymer.
Collapse
Affiliation(s)
- Hui Liu
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Zhifen Guo
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hui Lv
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xin Liu
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yan Che
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yingchun Mei
- Dyestuff Factory
- Jilin Petrochemical Company
- Jilin 132022
- China
| | - Rong Bai
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yanhong Chi
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
17
|
Qin Y, Guo H, Wang B, Li J, Gao R, Qiu P, Sun M, Chen L. Controllable Sulfur, Nitrogen Co-doped Porous Carbon for Ethylbenzene Oxidation: The Role of Nano-CaCO 3. Chem Asian J 2019; 14:1535-1540. [PMID: 30834685 DOI: 10.1002/asia.201900086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/02/2019] [Indexed: 11/10/2022]
Abstract
Heteroatom-doped porous carbon materials have exhibited promising applications in various fields. In this work, sulfur, nitrogen co-doped carbon materials (SNCs) with abundant pore structure were prepared by pyrolysis of sulfur, nitrogen-containing porous organic polymers (POPs) mixed with nano-CaCO3 at high temperature. Among the resultant materials, SNC-Ca-850 possesses a relatively high level of doped heteroatoms and exhibits an excellent catalytic performance for the selective oxidation of benzylic C-H bonds. It is noteworthy that nano-CaCO3 increases the doped sulfur content in the synthesized carbon materials to a large extent and impacts the existence modes of sulfur. In addition, it enhances the porous structure and specific surface area of the resultant SNCs significantly. This work provides a viable strategy to promote the doping of sulfur into carbon materials during the pyrolysis process.
Collapse
Affiliation(s)
- Yutian Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Haotian Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300072, P. R. China
| | - Jiayi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Ruixiao Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Pengzhi Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Mingming Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300072, P. R. China
| |
Collapse
|
18
|
Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Two‐Phase System Utilizing Hydrophobic Metal–Organic Frameworks (MOFs) for Photocatalytic Synthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2019; 58:5402-5406. [DOI: 10.1002/anie.201901961] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Isaka
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yudai Kawase
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICBKyoto University Katsura Kyoto 615-8520 Japan
| | - Kohsuke Mori
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICBKyoto University Katsura Kyoto 615-8520 Japan
- JSTPREST 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Hiromi Yamashita
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICBKyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
19
|
Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Two‐Phase System Utilizing Hydrophobic Metal–Organic Frameworks (MOFs) for Photocatalytic Synthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yusuke Isaka
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yudai Kawase
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICBKyoto University Katsura Kyoto 615-8520 Japan
| | - Kohsuke Mori
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICBKyoto University Katsura Kyoto 615-8520 Japan
- JSTPREST 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Hiromi Yamashita
- Graduate School of EngineeringOsaka University 1-2 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICBKyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
20
|
Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chem Rev 2019; 119:2453-2523. [PMID: 30376310 PMCID: PMC6396130 DOI: 10.1021/acs.chemrev.8b00361] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Computational chemistry provides a versatile toolbox for studying mechanistic details of catalytic reactions and holds promise to deliver practical strategies to enable the rational in silico catalyst design. The versatile reactivity and nontrivial electronic structure effects, common for systems based on 3d transition metals, introduce additional complexity that may represent a particular challenge to the standard computational strategies. In this review, we discuss the challenges and capabilities of modern electronic structure methods for studying the reaction mechanisms promoted by 3d transition metal molecular catalysts. Particular focus will be placed on the ways of addressing the multiconfigurational problem in electronic structure calculations and the role of expert bias in the practical utilization of the available methods. The development of density functionals designed to address transition metals is also discussed. Special emphasis is placed on the methods that account for solvation effects and the multicomponent nature of practical catalytic systems. This is followed by an overview of recent computational studies addressing the mechanistic complexity of catalytic processes by molecular catalysts based on 3d metals. Cases that involve noninnocent ligands, multicomponent reaction systems, metal-ligand and metal-metal cooperativity, as well as modeling complex catalytic systems such as metal-organic frameworks are presented. Conventionally, computational studies on catalytic mechanisms are heavily dependent on the chemical intuition and expert input of the researcher. Recent developments in advanced automated methods for reaction path analysis hold promise for eliminating such human-bias from computational catalysis studies. A brief overview of these approaches is presented in the final section of the review. The paper is closed with general concluding remarks.
Collapse
Affiliation(s)
| | | | - Justin K. Kirkland
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Townsend
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ali Hashemi
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Chong Liu
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Pidko
- TheoMAT
group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
21
|
Xu WF, Chen WJ, Li DC, Cheng BH, Jiang H. Highly Dispersed Manganese Based Mn/N–C/Al2O3 Catalyst for Selective Oxidation of the C–H Bond of Ethylbenzene. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wan-Fei Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Jing Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - De-Chang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bin-Hai Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Isaka Y, Kondo Y, Kuwahara Y, Mori K, Yamashita H. Incorporation of a Ru complex into an amine-functionalized metal–organic framework for enhanced activity in photocatalytic aerobic benzyl alcohol oxidation. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02599a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulation of [Ru(bpy)3]2+ in the cavity of a metal–organic framework was found to enhance its activity in the photocatalytic aerobic oxidation of benzyl alcohol.
Collapse
Affiliation(s)
- Yusuke Isaka
- Graduate School of Engineering
- Osaka University
- Osaka 565-087
- Japan
| | - Yoshifumi Kondo
- Graduate School of Engineering
- Osaka University
- Osaka 565-087
- Japan
| | - Yasutaka Kuwahara
- Graduate School of Engineering
- Osaka University
- Osaka 565-087
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Kohsuke Mori
- Graduate School of Engineering
- Osaka University
- Osaka 565-087
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Hiromi Yamashita
- Graduate School of Engineering
- Osaka University
- Osaka 565-087
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| |
Collapse
|
23
|
Tian X, Cheng X, Yang X, Ren YL, Yao K, Wang H, Wang J. Aerobic conversion of benzylic sp3 C–H in diphenylmethanes and benzyl ethers to CO bonds under catalyst-, additive- and light-free conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00004f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalyst-, additive- and light-free aerobic conversion of benzylic C–H to CO bonds is, for the first time, reported.
Collapse
Affiliation(s)
- Xinzhe Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Chemical Engineering & Pharmaceutics
| | - Xinqiang Cheng
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yun-Lai Ren
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Kaisheng Yao
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Huiyong Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Jianji Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| |
Collapse
|
24
|
Recent Advances in Homogeneous Metal-Catalyzed Aerobic C–H Oxidation of Benzylic Compounds. Catalysts 2018. [DOI: 10.3390/catal8120640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Csp3–H oxidation of benzylic methylene compounds is an established strategy for the synthesis of aromatic ketones, esters, and amides. The need for more sustainable oxidizers has encouraged researchers to explore the use of molecular oxygen. In particular, homogeneous metal-catalyzed aerobic oxidation of benzylic methylenes has attracted much attention. This account summarizes the development of this oxidative strategy in the last two decades, examining key factors such as reaction yields, substrate:catalyst ratio, substrate scope, selectivity over other oxidation byproducts, and reaction conditions including solvents and temperature. Finally, several mechanistic proposals to explain the observed results will be discussed.
Collapse
|
25
|
Li G, Zhao S, Zhang Y, Tang Z. Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800702. [PMID: 30247789 DOI: 10.1002/adma.201800702] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/10/2018] [Indexed: 05/21/2023]
Abstract
Beyond conventional porous materials, metal-organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long-range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state-of-the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo-, photo-, and electrocatalysis are summarized. Notably, encapsulation-structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF-based encapsulation-structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well-defined nanocatalysts with atomically accurate structures and high performance in challenging reactions.
Collapse
Affiliation(s)
- Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yin Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, Center for Nanochemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Cirujano FG, Leo P, Vercammen J, Smolders S, Orcajo G, De Vos DE. MOFs Extend the Lifetime of Pd(II) Catalyst for Room Temperature Alkenylation of Enamine-Like Arenes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francisco G. Cirujano
- Centre for Surface Chemistry and Catalysis KU Leuven, Celestijnenlaan 200F; 3001 Leuven Belgium
| | - Pedro Leo
- Department of Chemical and Energy Technology, ESCET; Rey Juan Carlos University, C/Tulipan s/n; 28933 Móstoles Spain
| | - Jannick Vercammen
- Centre for Surface Chemistry and Catalysis KU Leuven, Celestijnenlaan 200F; 3001 Leuven Belgium
| | - Simon Smolders
- Centre for Surface Chemistry and Catalysis KU Leuven, Celestijnenlaan 200F; 3001 Leuven Belgium
| | - Gisela Orcajo
- Department of Chemical and Energy Technology, ESCET; Rey Juan Carlos University, C/Tulipan s/n; 28933 Móstoles Spain
| | - Dirk E. De Vos
- Centre for Surface Chemistry and Catalysis KU Leuven, Celestijnenlaan 200F; 3001 Leuven Belgium
| |
Collapse
|
27
|
Zavrazhnov SA, Esipovich AL, Danov SM, Zlobin SY, Belousov AS. Catalytic Conversion of Glycerol to Lactic Acid: State of the Art and Prospects. KINETICS AND CATALYSIS 2018. [DOI: 10.1134/s0023158418040171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Dong H, Xie R, Yang L, Li F. A hierarchical flower-like hollow alumina supported bimetallic AuPd nanoparticle catalyst for enhanced solvent-free ethylbenzene oxidation. Dalton Trans 2018; 47:7776-7786. [PMID: 29845150 DOI: 10.1039/c8dt01182f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, oxidation of alkylaromatics is considered as one of the most crucial chemical technologies to produce high added-value alcohols, ketones and carboxylic acids, due to its significant importance both in fine synthetic chemistry and in the academic field. In this work, a novel hierarchical marigold-like hollow alumina supported bimetallic AuPd nanoparticle catalyst was successfully fabricated and employed for highly efficient solvent-free ethylbenzene oxidation to produce acetophenone with the coexistence of both molecular oxygen and tert-butyl hydroperoxide as the oxidant and the initiator. The as-fabricated bimetallic AuPd nanocatalyst conferred a superior catalytic performance to the corresponding monometallic counterparts and commercial Al2O3 or solid Al2O3 microsphere supported AuPd ones, along with a high acetophenone selectivity of 88.2% at a conversion of 50.9% under mild reaction conditions (120 °C and oxygen pressure of 1.0 MPa), as well as an unprecedentedly high turnover frequency value of 46 768 h-1. Such exceptional efficiency of the catalyst was related to both the significant synergy between the Au-Pd atoms and strong metal-support interactions, and the unique hierarchical micro/nanostructure of the support being beneficial to the close contact of reactants with surface adsorption and reaction sites and easy product diffusion. Moreover, the present bimetallic AuPd catalyst was recyclable and stable. The developed approach is expected to offer exciting opportunities for designing other supported monometallic or bimetallic catalysts with various active components applied in heterogeneous catalysis.
Collapse
Affiliation(s)
- Huijuan Dong
- State Key Laboratory of Chemical Resources Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | |
Collapse
|
29
|
Wen M, Mori K, Kuwahara Y, An T, Yamashita H. Design of Single-Site Photocatalysts by Using Metal-Organic Frameworks as a Matrix. Chem Asian J 2018; 13:1767-1779. [PMID: 29756680 DOI: 10.1002/asia.201800444] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/09/2018] [Indexed: 11/09/2022]
Abstract
Single-site photocatalysts generally display excellent photocatalytic activity and considerably high stability compared with homogeneous catalytic systems. A rational structural design of single-site photocatalysts with isolated, uniform, and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attention has been focused on the design and fabrication of single-site photocatalysts by using porous materials as a platform. Metal-organic frameworks (MOFs) have great potential in the design and fabrication of single-site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability, and significant diversity. MOFs can provide an abundant number of binding sites to anchor active sites, which results in a significant enhancement in photocatalytic performance. In this focus review, the development of single-site MOF photocatalysts that perform important and challenging chemical redox reactions, such as photocatalytic H2 production, photocatalytic CO2 conversion, and organic transformations, is summarized thoroughly. Successful strategies for the construction of single-site MOF photocatalysts are summarized and major challenges in their practical applications are noted.
Collapse
Affiliation(s)
- Meicheng Wen
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong, 510006, China
| | - Kohsuke Mori
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto, Japan
- JST, PRESTO, 4-1-8 HonCho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yasutaka Kuwahara
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto, Japan
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong, 510006, China
| | - Hiromi Yamashita
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Khramenkova EV, Polynski MV, Vinogradov AV, Pidko EA. Degradation paths of manganese-based MOF materials in a model oxidative environment: a computational study. Phys Chem Chem Phys 2018; 20:20785-20795. [DOI: 10.1039/c8cp00397a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding MOF degradation for controlled drug delivery.
Collapse
Affiliation(s)
- Elena V. Khramenkova
- TheoMAT group, International Laboratory “Solution Chemistry of Advanced Materials and Technologies”
- ITMO University
- St. Petersburg 191002
- Russia
| | - Mikhail V. Polynski
- TheoMAT group, International Laboratory “Solution Chemistry of Advanced Materials and Technologies”
- ITMO University
- St. Petersburg 191002
- Russia
| | - Alexander V. Vinogradov
- TheoMAT group, International Laboratory “Solution Chemistry of Advanced Materials and Technologies”
- ITMO University
- St. Petersburg 191002
- Russia
| | - Evgeny A. Pidko
- TheoMAT group, International Laboratory “Solution Chemistry of Advanced Materials and Technologies”
- ITMO University
- St. Petersburg 191002
- Russia
- Inorganic Systems Engineering group
| |
Collapse
|
31
|
Kuwahara Y, Fujibayashi A, Uehara H, Mori K, Yamashita H. Catalytic combustion of diesel soot over Fe and Ag-doped manganese oxides: role of heteroatoms in the catalytic performances. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00077h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe/Ag-doped manganese oxides show promising catalytic activities in diesel soot combustion, which occurviamechanisms involving activated surface/lattice oxygen species.
Collapse
Affiliation(s)
- Yasutaka Kuwahara
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Akihiro Fujibayashi
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Hiroki Uehara
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| |
Collapse
|
32
|
Huang C, Liu R, Yang W, Li Y, Huang J, Zhu H. Enhanced catalytic activity of MnCo-MOF-74 for highly selective aerobic oxidation of substituted toluene. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00429c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Novel MnCo-MOF-74 catalysts were prepared and used for highly selective aerobic oxidation of substituted toluene under mild conditions.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Applied Chemistry
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Rui Liu
- Department of Applied Chemistry
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wenyu Yang
- Department of Applied Chemistry
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yunpeng Li
- Department of Applied Chemistry
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jinsong Huang
- Department of Applied Chemistry
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Hongjun Zhu
- Department of Applied Chemistry
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
33
|
Isaka Y, Kondo Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. Chem Commun (Camb) 2018; 54:9270-9273. [DOI: 10.1039/c8cc02679c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic H2O2 production via two-electron reduction of O2 is realized by visible-light irradiation of a Ti-based metal–organic framework, MIL-125-NH2.
Collapse
Affiliation(s)
- Yusuke Isaka
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | | | - Yudai Kawase
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Yasutaka Kuwahara
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Kohsuke Mori
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Hiromi Yamashita
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| |
Collapse
|
34
|
Kang XM, Wang WM, Yao LH, Ren HX, Zhao B. Solvent-dependent variations of both structure and catalytic performance in three manganese coordination polymers. Dalton Trans 2018; 47:6986-6994. [DOI: 10.1039/c8dt01103f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new Mn-based MOFs have been prepared, and a 3D framework can act as an efficient and recycled catalyst in CO2 cycloaddition with different epoxides.
Collapse
Affiliation(s)
- Xiao-Min Kang
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin
- China
| | - Wen-Min Wang
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin
- China
| | - Lin-Hong Yao
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin
- China
| | - Hong-Xia Ren
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin
- China
| | - Bin Zhao
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin
- China
| |
Collapse
|
35
|
Stubbs AW, Braglia L, Borfecchia E, Meyer RJ, Román- Leshkov Y, Lamberti C, Dincă M. Selective Catalytic Olefin Epoxidation with MnII-Exchanged MOF-5. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02946] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amanda W. Stubbs
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Luca Braglia
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
- International
research center “Smart Materials”, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russia
| | - Elisa Borfecchia
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
| | - Randall J. Meyer
- Corporate
Strategic Research, ExxonMobil Research and Engineering, 1545 Route 22, Annandale, New Jersey 08801, United States
| | - Yuriy Román- Leshkov
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Carlo Lamberti
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
- International
research center “Smart Materials”, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russia
| | - Mircea Dincă
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|