1
|
Kumar Rajput S, Kapoor A, Yogi A, Yarlagadda V, Suresh Mothika V. π-Conjugated Porous Polymer Nanosheets for Explosive Sensing: Investigation on the Role of H-Bonding. Chem Asian J 2024; 19:e202400939. [PMID: 39354879 DOI: 10.1002/asia.202400939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Nitroaromatic explosive sensing plays a critical role in ensuring public security and environmental protection. Herein, we report 2-pyridyl-thiazolothiazole (pyTTz) integrated blue-fluorescent π-conjugated porous polymer nanosheets, NTzCMP and TzCMP for selective sensing of picric acid (PA) among nitrophenol explosives. Acid-base interactions between PA and pyTTz of CMP lead to H-bonding interactions, where the hydroxy group of PA engaged in weak H-bonding interactions with pyridine and TTz of pyTTz moiety. This led to a strong fluorescence quenching of CMPs-such formation of ground state complex was supported by linear Stern-Volmer quenching plots, unaltered excited state lifetimes, and detailed FTIR analysis of PA exposed CMPs. Interestingly, both CMPs exhibited an excellent response to smaller analytes such as o-nitrotoluene compared to 2,4-dinitrotoluene. Both NTzCMP and TzCMP CMPs exhibited high KSV values of 9×103 and 2.1×103 M-1 for PA and the corresponding limit of detection values were found to be 0.46 and 1.6 ppm, respectively.
Collapse
Affiliation(s)
- Saurabh Kumar Rajput
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | - Atul Kapoor
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | - Abhishek Yogi
- Department of Physics, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | | | - Venkata Suresh Mothika
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| |
Collapse
|
2
|
Payce EN, Knighton RC, Platts JA, Horton PN, Coles SJ, Pope SJA. Luminescent Pt(II) Complexes Using Unsymmetrical Bis(2-pyridylimino)isoindolate Analogues. Inorg Chem 2024; 63:8273-8285. [PMID: 38656154 PMCID: PMC11080048 DOI: 10.1021/acs.inorgchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
A series of ligands based upon a 1,3-diimino-isoindoline framework have been synthesized and investigated as pincer-type (N∧N∧N) chelates for Pt(II). The synthetic route allows different combinations of heterocyclic moieties (including pyridyl, thiazole, and isoquinoline) to yield new unsymmetrical ligands. Pt(L1-6)Cl complexes were obtained and characterized using a range of spectroscopic and analytical techniques: 1H and 13C NMR, IR, UV-vis and luminescence spectroscopies, elemental analyses, high-resolution mass spectrometry, electrochemistry, and one example via X-ray crystallography which showed a distorted square planar environment at Pt(II). Cyclic voltammetry on the complexes showed one irreversible oxidation between +0.75 and +1 V (attributed to Pt2+/3+ couple) and a number of ligand-based reductions; in four complexes, two fully reversible reductions were noted between -1.4 and -1.9 V. Photophysical studies showed that Pt(L1-6)Cl absorbs efficiently in the visible region through a combination of ligand-based bands and metal-to-ligand charge-transfer features at 400-550 nm, with assignments supported by DFT calculations. Excitation at 500 nm led to luminescence (studied in both solutions and solid state) in all cases with different combinations of the heterocyclic donors providing tuning of the emission wavelength around 550-678 nm.
Collapse
Affiliation(s)
- Ellie N Payce
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Richard C Knighton
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - James A Platts
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| |
Collapse
|
3
|
Knighton RC, Beames JM, Pope SJA. Polycationic Ru(II) Luminophores: Syntheses, Photophysics, and Application in Electrostatically Driven Sensitization of Lanthanide Luminescence. Inorg Chem 2023; 62:19446-19456. [PMID: 37984058 DOI: 10.1021/acs.inorgchem.3c02352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A series of photoluminescent Ru(II) polypyridine complexes have been synthesized in a manner that varies the extent of the cationic charge. Two ligand systems (L1 and L2), based upon 2,2'-bipyridine (bipy) mono- or difunctionalized at the 5- or 5,5'-positions using N-methylimidazolium groups, were utilized. The resulting Ru(II) species therefore carried +3, +4, +6, and +8 complex moieties based on a [Ru(bipy)3]2+ core. Tetra-cationic [Ru(bipy)2(L2)][PF6]4 was characterized using XRD, revealing H-bonding interactions between two of the counteranions and the cationic unit. The ground-state features of the complexes were found to closely resemble those of the parent unfunctionalized [Ru(bipy)3]2+ complex. In contrast, the excited state properties produce a variation in emission maxima, including a bathochromic 44 nm shift of the 3MLCT band for the tetra-cationic complex; interestingly, further increases in overall charge to +6 and +8 produced a hypsochromic shift in the 3MLCT band. Supporting DFT calculations suggest that the trend in emission behavior may, in part, be due to the precise nature of the LUMO and its localization. The utility of a photoactive polycationic Ru(II) complex was then demonstrated through the sensitization of a polyanionic Yb(III) complex in free solution. The study shows that electrostatically driven ion pairing is sufficient to facilitate energy transfer between the 3MLCT donor state of the Ru(II) complex and the accepting 2F5/2 excited state of Yb(III).
Collapse
Affiliation(s)
- Richard C Knighton
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Joseph M Beames
- School of Chemistry, University of Birmingham, Birmingham B152TT, England
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| |
Collapse
|
4
|
Nurnabi M, Gurusamy S, Wu JY, Lee CC, Sathiyendiran M, Huang SM, Chang CH, Chao I, Lee GH, Peng SM, Sathish V, Thanasekaran P, Lu KL. Aggregation-induced emission enhancement (AIEE) of tetrarhenium(I) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics. Dalton Trans 2023; 52:1939-1949. [PMID: 36691828 DOI: 10.1039/d2dt03408e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The self-assembly of tetrarhenium metallacycles [{Re(CO)3}2(μ-dhaq)(μ-N-N)]2 (3a, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene; 3b, N-N = 1,3-bis(1-octylbenzimidazol-2-yl)benzene), (H2-dhaq = 1,4-dihydroxy-9,10-anthraquinone) and [{Re(CO)3}2(μ-thaq)(μ-N-N)]2 (4, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene), (H2-thaq = 1,2,4-trihydroxy-9,10-anthraquinone) under solvothermal conditions is described. The metallacycles 3a,b and 4 underwent aggregation-induced emission enhancement (AIEE) in THF upon the incremental addition of water. TEM images revealed that metallacycle 3a in a 60% aqueous THF solution formed rectangular aggregates with a wide size distribution, while a 90% aqueous THF solution resulted in the formation of a mixture of nanorods and amorphous aggregates due to rapid and abrupt aggregation. UV-vis and emission spectral profiles supported the formation of nanoaggregates of metallacycles 3a,b and 4 upon the gradual addition of water to a THF solution containing metallacycles. Further studies indicated that these nanoaggregates were excellent probes for the sensitive and selective detection of nitro group containing picric acid (PA) derivatives as well as antibiotics.
Collapse
Affiliation(s)
| | - Shunmugasundaram Gurusamy
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Chung-Chou Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | - Che-Hao Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam - 638 401, India
| | | | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. .,Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
5
|
Mohite SS, Chavan SS. Synthesis and conjugation properties of alkynyl functionalized salicylidene Ni(II) and Zn(II) phosphine complexes and their use as a precursor for preparation of NiO and ZnO nanoparticles. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sagar S. Mohite
- Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Sanjay S. Chavan
- Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| |
Collapse
|
6
|
Leon F, Li C, Reynes JF, Singh VK, Lian X, Ong HC, Hum G, Sun H, García F. Mechanosynthesis and photophysics of colour-tunable photoluminescent group 13 metal complexes with sterically demanding salen and salophen ligands. Faraday Discuss 2023; 241:63-78. [PMID: 36218327 DOI: 10.1039/d2fd00117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of four photoluminescent Al and In complexes were synthesised using an environmentally-benign mechanosynthesis strategy. Sterically crowded 3,5-di-tert-butyl functionalised salophen and salen ligands and their respective complexes have been synthesised in the solid-state and fully characterised. Subsequent photophysics and electrochemistry studies of the resulting complexes suggest that these new group 13 complexes can be viable alternatives to traditional photoluminescent complexes based on expensive and low abundant noble metals. The herein-reported strategy avoids the use of organic solvents and provides a process with low environmental impact and enhanced energy efficiency.
Collapse
Affiliation(s)
- Felix Leon
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Chenfei Li
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain.
| | - Varun K Singh
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiao Lian
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Gavin Hum
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Handong Sun
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain.
| |
Collapse
|
7
|
Guo R, Wang S, Shuai Y, Lin Q, Tu Q, Liu H, Wang H. Multi-responsive luminescent sensitivities of two pillared-layer frameworks towards nitroaromatics, Cr 2O 72-, MnO 4- and PO 43- anions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121491. [PMID: 35700611 DOI: 10.1016/j.saa.2022.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Combining Zn(II) with two dicarboxylic acids of different length and functional groups results in the 2D metal-carboxylate layer of different size and shape, which are further connected by the same bis-pyridyl-bis-amide pillar to afford two 4-fold and 3-fold interpenetrating pillared-layer networks (1 and 2). Luminescent properties of 1 and 2 have been systematically investigated and demonstrated multi-responsive luminescent sensitivities. 1 can be used for highly sensitive detection of nitroaromatics. In particular, 2 can be used turn-off sensing towards Cr2O72- and MnO4- anions as well as turn-on sensing towards PO43- anion in aqueous solution with high sensitivity and remarkable recyclability. The sensing mechanism is also discussed.
Collapse
Affiliation(s)
- Runzhong Guo
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Suhan Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yutian Shuai
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qin Lin
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Huiyan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Haiying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
8
|
Expanding the Knowledge of the Selective-Sensing Mechanism of Nitro Compounds by Luminescent Terbium Metal-Organic Frameworks through Multiconfigurational ab Initio Calculations. J Phys Chem A 2022; 126:7040-7050. [PMID: 36154179 DOI: 10.1021/acs.jpca.2c05468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current research shows that the excited-state dynamics of the antenna ligand, both in the interacting system sensor/analyte and in the sensor without analyte, is a safe tool for elucidating the detection principle of the luminescent lanthanide-based metal-organic framework sensors. In this report the detection principle of the luminescence quenching mechanism in two Tb-based MOFs sensors is elucidated. The first system is a luminescent Tb-MOF [Tb(BTTA)1.5(H2O)4.5]n (H2BTTA = 2,5-bis(1H-1,2,4-triazol-1-yl) terephthalic acid) selective to nitrobenzene (NB), labeled as Tb-1. The second system is {[Tb(DPYT)(BPDC)1/2(NO3)]·H2O}n (DPYT = 2,5-di(pyridin-4-yl) terephthalic acid, BPDC = biphenyl-4,4'-dicarboxylic acid), reported as a selective chemical sensor to nitromethane (NM) in situ, labeled as Tb-2. The luminescence quenching of the MOFs is promoted by intermolecular interactions with the analytes that induce destabilization of the T1 electronic state of the linker "antenna", altering thus the sensitization pathways of the Tb atoms. This study demonstrates the value of host-guest interaction simulations and the rate constants of the radiative and nonradiative processes in understanding and elucidating the sensing mechanism in Ln-MOF sensors.
Collapse
|
9
|
S A, B S S, Reddy MLP. Phosphorescent Iridium Molecular Materials as Chemosensors for Nitroaromatic Explosives: Recent Advances. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2090347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Anjali S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695 019, India
| | - Sasidhar B S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695 019, India
| | - M L P Reddy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695 019, India
| |
Collapse
|
10
|
Rashid A, Mondal S, Mondal S, Ghosh P. A bis‐heteroleptic imidazolium‐bipyridine functionalized iridium(III) complex for fluorescence lifetime‐based recognition and sensing of phosphates. Chem Asian J 2022; 17:e202200393. [DOI: 10.1002/asia.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ambreen Rashid
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Sahidul Mondal
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Subal Mondal
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Pradyut - Ghosh
- Indian Association for the Cultivation of Science School of Chemical Sciences 2A & 2B Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
11
|
Lunev AM, Belousov YA. Luminescent sensor materials based on rare-earth element complexes for detecting cations, anions, and small molecules. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Singh P, Sharma A, Kumar S. Naphthalimide‐Hydroxyquinoline Conjugates for Discriminative Detection of Nitro Aromatic Compounds in Aqueous Medium and Soil Sample. ChemistrySelect 2022. [DOI: 10.1002/slct.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prabhpreet Singh
- Department of Chemistry UGC Centre for Advanced Studies-II Guru Nanak Dev University Amritsar 143001 pb.) India
| | - Ananay Sharma
- Department of Chemistry UGC Centre for Advanced Studies-II Guru Nanak Dev University Amritsar 143001 pb.) India
| | - Sanjeev Kumar
- Department of Chemistry UGC Centre for Advanced Studies-II Guru Nanak Dev University Amritsar 143001 pb.) India
| |
Collapse
|
13
|
Malik P, Jain I. Synthesis and characterization of a double helical dinuclear Zn–salen complex and its application in the detection of nitroaromatics. NEW J CHEM 2022. [DOI: 10.1039/d2nj02269a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of double helical dinuclear Zn–salen complex for the detection of nitroaromatics.
Collapse
Affiliation(s)
- Payal Malik
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106, India
| | - Isha Jain
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106, India
| |
Collapse
|
14
|
Ramdass A, Sathish V, Thanasekaran P. AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
Kinzhalov MA, Grachova EV, Luzyanin KV. Tuning the luminescence of transition metal complexes with acyclic diaminocarbene ligands. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01288f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organometallics featuring acyclic diaminocarbene ligands have recently emerged as powerful emitters for use in electroluminescent technologies.
Collapse
Affiliation(s)
- Mikhail A. Kinzhalov
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | - Elena V. Grachova
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | | |
Collapse
|
16
|
Olasunkanmi LO, Govender PP. Theoretical probe of absorption and fluorescence emission characteristics of highly luminescent ReL(CO)3X (L = 12H-indazolo[5,6-f][1,10]phenanthroline and X = F, Cl, Br, I): a DFT/TD-DFT study. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2018062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lukman O. Olasunkanmi
- Department of Chemical Sciences, University of Johannesburg Johannesburg, South Africa
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Penny P. Govender
- Department of Chemical Sciences, University of Johannesburg Johannesburg, South Africa
| |
Collapse
|
17
|
Sasaki K, Yoshino H, Shimoda Y, Saigo M, Miyata K, Onda K, Sugimoto K, Yamate H, Miura H, Le Ouay B, Ohtani R, Ohba M. Guest-Tunable Excited States in a Cyanide-Bridged Luminescent Coordination Polymer. Inorg Chem 2021; 60:6140-6146. [PMID: 33853327 DOI: 10.1021/acs.inorgchem.1c00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The excited-state energy was tuned successfully by guest molecules in a cyanide-bridged luminescent coordination polymer (CP). Methanol or ethanol vapor reversibly and significantly changed the luminescent color of the CP between green and yellow (Δλem = 32 nm). These vapors did not significantly affect the environment around the luminophore in the ground state of the CP, whereas they modulated the excited states for the resulting bathochromic shift. The time-resolved photoluminescent spectra of the CP systems showed that solvent adsorption enhanced the energetic relaxation in the excited states. Furthermore, time-resolved infrared spectroscopy indicated that cyanide bridging in the CP became more flexible in the excited states than that in the ground state, highlighting the sensitivity of the excited states to external stimuli, such as the guest vapor. Overall, guest-tunable excited states will allow the more straightforward design of sensing materials by characterizing the transient excited states.
Collapse
Affiliation(s)
- Kenta Sasaki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Yoshino
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuushi Shimoda
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Saigo
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kunihisa Sugimoto
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hitomi Yamate
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Miura
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Xie F, Wang LL, Yang RX, Yu YM, Wang DZ, Zhang YX. Characterization, luminescent and magnetic analysis of five new lanthanide complexes based on carboxylate ligands. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1884856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fei Xie
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China
| | - Lu-Lu Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China
| | - Ru-Xia Yang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China
| | - Yu-Ming Yu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China
| | - Duo-Zhi Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China
| | - Ya-Xin Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, P. R. China
| |
Collapse
|
19
|
Ramachandran M, Syed A, Marraiki N, Anandan S. The aqueous dependent sensing of hydrazine and phosphate anions using a bis-heteroleptic Ru(II) complex with a phthalimide-anchored pyridine-triazole ligand. Analyst 2021; 146:1430-1443. [PMID: 33410834 DOI: 10.1039/d0an02299c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective turn-on luminescence properties are shown by a non-luminescent metalloreceptor upon the addition of phosphate anions in CH3CN and hydrazine in CH3CN/H2O (6/4, v/v). The non-luminescent metalloreceptors [RuII(phen)2(TpH)]2PF6- (RtpH) and [RuII(Phen)2(TpI)]2PF6- (RtpI) {phen = 1,10-phenanthroline; TpH = 2-(2-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)ethyl)isoindoline-1,3-dione; and TpI = 2-(2-(5-iodo-4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)ethyl)isoindoline-1,3-dione} were synthesized and characterized. Both metalloreceptors have excellent sensing properties for phosphate anions (H2PO4- and H2P2O72-) over other anions in CH3CN. The limit of detection (LOD) values were calculated to be 79 nM and 48 nM for H2PO4- upon addition to RtpH and RtpI, respectively. Noncovalent interactions play a key role in the sensing of phosphate anions, among which the halogen-anion interaction showed superior recognition properties over the hydrogen-anion interaction. Comparative electrochemical experiments, 1H NMR titration, 31P NMR titration, and lifetime studies also show that RtpI has better sensing properties, as evidenced by its more drastic emission response to H2PO4- anions compared with RtpH. Moreover, the metalloreceptors showed a remarkable fluorescence increase (at ∼584 nm) upon the addition of hydrazine, without the interference of other amines in CH3CN/H2O (6/4, v/v). Interestingly, fluorescence enhancement was observed within live HeLa cells upon hydrazine addition, which is caused by the efficient photoinduced electron transfer process.
Collapse
Affiliation(s)
- Mohanraj Ramachandran
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India.
| | - Asad Syed
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India.
| |
Collapse
|
20
|
Maisuls I, Wang C, Gutierrez Suburu ME, Wilde S, Daniliuc CG, Brünink D, Doltsinis NL, Ostendorp S, Wilde G, Kösters J, Resch-Genger U, Strassert CA. Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(ii) and Pd(ii) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters. Chem Sci 2021; 12:3270-3281. [PMID: 34164096 PMCID: PMC8179353 DOI: 10.1039/d0sc06126c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(ii) and Pt(ii) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (Φ L) and long excited state lifetimes (τ) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal-metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(ii) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of these complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced Φ L up to about 80% and extended τ exceeding 100 μs. Additionally, these nanoarrays constitute rare examples for self-referenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching).
Collapse
Affiliation(s)
- Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| | - Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM) Richard-Willstaetter-Straße 11 12489 Berlin Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| | - Sebastian Wilde
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| | - Constantin-Gabriel Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 D-48149 Münster Germany
| | - Dana Brünink
- Institut für Festkörpertheorie, Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie, Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Stefan Ostendorp
- Institut für Materialphysik, CeNTech, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Gerhard Wilde
- Institut für Materialphysik, CeNTech, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Jutta Kösters
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM) Richard-Willstaetter-Straße 11 12489 Berlin Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| |
Collapse
|
21
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Steric crowding of a series of pyridine based ligands influencing the photophysical properties of Zn( II) complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00833a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The combination of α-acetamidocinnamic acid (HACA) and different N, N,N and N,N,N pyridines (dPy) leads to crowded Zn(ii) metal centers. The increasing bulkiness competes with the chelation enhanced effect (CHEF) in the resulting quantum yields.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
22
|
Saravanan A, Maruthapandi M, Das P, Ganguly S, Margel S, Luong JHT, Gedanken A. Applications of N-Doped Carbon Dots as Antimicrobial Agents, Antibiotic Carriers, and Selective Fluorescent Probes for Nitro Explosives. ACS APPLIED BIO MATERIALS 2020; 3:8023-8031. [DOI: 10.1021/acsabm.0c01104] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Arumugam Saravanan
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Moorthy Maruthapandi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Poushali Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sayan Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shlomo Margel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - John H. T. Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
23
|
Sun Y, Huang J, Lan B, Wu J, Liang Y, Zhang Z. Multi‐emissive 1D Cd(II) polymers with a biphenyl bridged bisazamacrocycle for ratiometric discrimination of nitroaromatics and selective visual detection of picric acid. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yao Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Jin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Bi‐Liu Lan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Ji‐Qing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Yu‐Ning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| | - Zhong Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
24
|
Preparation, structural characterization, voltammetry and Hirshfeld surface analysis of homoleptic iron(III) thiosemicarbazone complexes. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00404-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
26
|
Venkatappa L, Ture SA, Yelamaggad CV, Narayanan Naranammalpuram Sundaram V, Martínez‐Máñez R, Abbaraju V. Mechanistic Insight into the Turn‐Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline. ChemistrySelect 2020. [DOI: 10.1002/slct.202001170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lakshmidevi Venkatappa
- Materials Chemistry LaboratoryDepartment of Materials Science, Gulbarga University Kalaburagi 585106 India
| | | | | | | | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y DesarrolloTecnológico (IDM). Universitat Politècnica de ValènciaUniversitat de València, Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales yNanomedicina (CIBER-BBN) Spain
| | - Venkataraman Abbaraju
- Materials Chemistry LaboratoryDepartment of Materials Science, Gulbarga University Kalaburagi 585106 India
- Department of ChemistryGulbarga University Kalaburagi 585106 India
| |
Collapse
|
27
|
Moshkina TN, Nosova EV, Kopotilova AE, Lipunova GN, Valova MS, Sadieva LK, Kopchuk DS, Slepukhin PA, Zaleśny R, Ośmiałowski B, Charushin VN. Synthesis and Photophysical Studies of Novel V‐Shaped 2,3‐Bis{5‐aryl‐2‐thienyl}(dibenzo[ f,h])quinoxalines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tatyana N. Moshkina
- Department of Organic and Biomolecular ChemistryUral Federal University 19 Mira Str. Yekaterinburg 620002 Russia
| | - Emiliya V. Nosova
- Department of Organic and Biomolecular ChemistryUral Federal University 19 Mira Str. Yekaterinburg 620002 Russia
- Postovsky Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russia
| | - Alexandra E. Kopotilova
- Department of Organic and Biomolecular ChemistryUral Federal University 19 Mira Str. Yekaterinburg 620002 Russia
| | - Galina N. Lipunova
- Department of Organic and Biomolecular ChemistryUral Federal University 19 Mira Str. Yekaterinburg 620002 Russia
- Postovsky Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russia
| | - Marina S. Valova
- Postovsky Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russia
| | - Leila K. Sadieva
- Department of Organic and Biomolecular ChemistryUral Federal University 19 Mira Str. Yekaterinburg 620002 Russia
- Postovsky Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russia
| | - Dmitry S. Kopchuk
- Department of Organic and Biomolecular ChemistryUral Federal University 19 Mira Str. Yekaterinburg 620002 Russia
- Postovsky Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russia
| | - Pavel A. Slepukhin
- Department of Organic and Biomolecular ChemistryUral Federal University 19 Mira Str. Yekaterinburg 620002 Russia
- Postovsky Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russia
| | - Robert Zaleśny
- Department of Physical and Quantum ChemistryWroclaw University of Science and Technology 27 Wyb. Wyspiańskiego Wrocław PL-50370 Poland
| | - Borys Ośmiałowski
- Department of Organic Chemistry, Faculty of ChemistryNicolaus Copernicus University in Torun 7 Gagarin Street Torun 87-100 Poland
| | - Valery N. Charushin
- Department of Organic and Biomolecular ChemistryUral Federal University 19 Mira Str. Yekaterinburg 620002 Russia
- Postovsky Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russia
| |
Collapse
|
28
|
Dhiman S, Kumar G, Luxami V, Singh P, Kumar S. A stilbazolium dye-based chromogenic and red-fluorescent probe for recognition of 2,4,6-trinitrophenol in water. NEW J CHEM 2020. [DOI: 10.1039/d0nj00489h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Probe DMAS-DP in water shows highly selective decrease in absorbance (475 nm) and fluorescence intensity (615 nm) with 2,4,6-trinitrophenol and colour change from red to yellow (visible light) and red fluorescent to black (365 nm light).
Collapse
Affiliation(s)
- Sukhvinder Dhiman
- Department of Chemistry
- Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar
- India
| | - Gulshan Kumar
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala
- India
| | - Vijay Luxami
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala
- India
| | - Prabhpreet Singh
- Department of Chemistry
- Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar
- India
| | - Subodh Kumar
- Department of Chemistry
- Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
29
|
Sasaki K, Yamate H, Yoshino H, Miura H, Shimoda Y, Miyata K, Onda K, Ohtani R, Ohba M. Vapor switching of the luminescence mechanism in a Re(v) complex. Chem Commun (Camb) 2020; 56:12961-12964. [DOI: 10.1039/d0cc05462c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Re(v) mononuclear complex switches the characters of emissive states by methanol vapor via a single-crystal-to-single-crystal ligand exchange reaction.
Collapse
Affiliation(s)
- Kenta Sasaki
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| | - Hitomi Yamate
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| | - Haruka Yoshino
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| | - Hiroki Miura
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| | - Yuushi Shimoda
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| | - Kiyoshi Miyata
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| | - Ken Onda
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| | - Masaaki Ohba
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Nishi-ku
- Japan
| |
Collapse
|
30
|
Nath J, Tarai A, Baruah JB. Copper(II), Zinc(II), and Cadmium(II) Formylbenzoate Complexes: Reactivity and Emission Properties. ACS OMEGA 2019; 4:18444-18455. [PMID: 31720548 PMCID: PMC6844117 DOI: 10.1021/acsomega.9b02779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/17/2019] [Indexed: 05/11/2023]
Abstract
Synthesis, characterization, reactivity, and sensing properties of 4-formylbenzoate complexes of copper(II), zinc(II), and cadmium(II) possessing the 1,10-phenanthroline ancillary ligand are studied. The crystal structures of the (1,10-phenanthroline)bis(4-formylbenzoate)(aqua)copper(II) and (1,10-phenanthroline)bis(4-formylbenzo-ate)zinc(II) and a novel molecular complex comprising an assembly of mononuclear and dinuclear species of (1,10-phenanthroline)bis(4-formylbenzoate)cadmium(II) are reported. These zinc and cadmium complexes are fluorescent; they show differentiable sensitivity to detect three positional isomers of nitroaniline. The mechanism of sensing of nitroanilines by 1,10-phenanthroline and the complexes are studied by fluorescence titrations, photoluminescence decay, and dynamic light scattering. A plausible mechanism showing that 1,10-phenanthroline ligand-based emission quenched by electron transfer from the excited state of 1,10-phenanthroline to nitroaniline is supported by density functional theory calculations. In an anticipation to generate a fluorescent d10-copper(I) formylbenzoate complex by a mild reducing agent such as hydroxylamine hydrochloride for similar sensing of nitroaromatics as that of the d10-zinc and cadmium 4-formylbenzoate complexes, reactivity of d9-copper(II) with hydroxylamine hydrochloride in the presence of 4-formylbenzoic acid and 1,10-phenanthroline is studied. It did not provide the expected copper(I) complex but resulted in stoichiometry-dependent reactions of 4-formylbenzoic acid with hydroxylamine hydrochloride in the presence of copper(II) acetate and 1,10-phenanthroline. Depending on the stoichiometry of reactants, an inclusion complex of bis(1,10-phenanthroline)(chloro)copper(II) chloride with in situ-formed 4-((hydroxyimino)methyl)benzoic acid or copper(II) 4-(hydroxycarbamoyl)benzoate complex was formed. The self-assembly of the inclusion complex has the bis(1,10-phenanthroline)(chloro)copper(II) cation encapsulated in hydrogen-bonded chloride-hydrate assembly with 4-((hydroxyimino)methyl)benzoic acid.
Collapse
|
31
|
Luminescent sensors for nitroaromatic compound detection: Investigation of mechanism and evaluation of suitability of using in screening test in forensics. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Liu JW, Xu YN, Qin CY, Wang ZN, Wu CJ, Li YH, Wang S, Zhang KY, Huang W. Simple fluorene oxadiazole-based Ir(iii) complexes with AIPE properties: synthesis, explosive detection and electroluminescence studies. Dalton Trans 2019; 48:13305-13314. [PMID: 31429837 DOI: 10.1039/c9dt02751c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two novel phosphorescent Ir(iii) complexes, Ir(fom)2(pic) and Ir(fof)2(pic), containing fluorene oxadiazole groups have been synthesized and characterized. The photophysical properties of the complexes have been investigated. Interestingly, both complexes exhibited aggregation-induced phosphorescent emission. The X-ray diffraction study showed that the AIPE properties resulted from weak π-π and C-HN hydrogen-bonding interactions in the aggregated state restricting the rotation of the phenyl groups in the cyclometalating ligands. Owing to the sensitive and selective luminescence quenching of the complexes using picric acid (PA), the complexes were used for PA detection in aqueous media. Additionally, electroluminescence devices have been fabricated using the complexes at 5%-30% doping concentrations. The devices based on Ir(fof)2(pic) obtained the highest luminance 11 877 cd m-2 and current efficiency 23.2 cd A-1, which implied that the incorporation of fluorine could improve the electron affinity and ameliorate the capability of electron injection or transporting.
Collapse
Affiliation(s)
- Jia-Wei Liu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Ya-Nan Xu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Chun-Yan Qin
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Zi-Ning Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Cong-Jin Wu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Yong-Hua Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Shi Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China. and Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710000, China
| |
Collapse
|
33
|
Two 4′-(4-carboxyphenyl)-3,2′:6′,3″-terpyridine-based luminescent Zn(II) coordination polymers for detection of 2,4,6-trinitrophenol. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Sharma V, Chatterjee N, Srivastava P, De D, Bharadwaj PK. Peripheral Fluorophore Functionalized Shape‐Persistent [2+3] Organic Cage for Highly Selective Detection of Picric Acid. ChemistrySelect 2019. [DOI: 10.1002/slct.201901778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vivekanand Sharma
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Nabanita Chatterjee
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Payal Srivastava
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Dinesh De
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Parimal K. Bharadwaj
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
35
|
Shamsieva AV, Musina EI, Gerasimova TP, Fayzullin RR, Kolesnikov IE, Samigullina AI, Katsyuba SA, Karasik AA, Sinyashin OG. Intriguing Near-Infrared Solid-State Luminescence of Binuclear Silver(I) Complexes Based on Pyridylphospholane Scaffolds. Inorg Chem 2019; 58:7698-7704. [DOI: 10.1021/acs.inorgchem.8b03474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aliia V. Shamsieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Elvira I. Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Tatiana P. Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Ilya E. Kolesnikov
- Center for Optical and Laser Materials Research, Research Park of St. Petersburg State University, Ulianovskaya Street 5, 198504 St. Petersburg, Russian Federation
| | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Sergey A. Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Andrey A. Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| |
Collapse
|
36
|
Xu B, Luo F, Tang G, Zhang J. A 4'-(4-carboxyphenyl)-3,2':6',3''-terpyridine-based luminescent cadmium(II) coordination polymer for the detection of 2,4,6-trinitrophenol. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:508-513. [PMID: 31062706 DOI: 10.1107/s2053229619004248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/28/2019] [Indexed: 11/10/2022]
Abstract
The title coordination polymer, poly[bis[μ3-4-(3,2':6',3''-terpyridin-4'-yl)benzoato]cadmium(II)], [Cd(C22H14N3O2)2]n or [Cd(3-cptpy)2]n, (I), has been synthesized solvothermally and characterized by IR spectroscopy, thermogravimetric analysis, and single-crystal and powder X-ray diffraction. The structure is composed of 3-cptpy- ligands bridging Cd atoms, with each Cd atom coordinated by six ligands and each ligand coordinating to three Cd atoms. Each Cd atom is in a slightly distorted trans-N2O4 octahedral environment, forming a two-dimensional layer structure with a (3,6)-connected topology. Layers are linked to each other by π-π stacking, resulting in a three-dimensional supramolecular framework. The strong luminescence and good thermal stability of (I) indicate that it can potentially be used as a luminescence sensor. The compound also shows a highly selective and sensitive response to 2,4,6-trinitrophenol through the luminescence quenching effect.
Collapse
Affiliation(s)
- Bin Xu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Fuming Luo
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guodong Tang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, People's Republic of China
| | - Jinfang Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
37
|
Krishnan S, Suneesh CV. Fluorene – Triazine conjugated porous organic polymer framework for superamplified sensing of nitroaromatic explosives. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Kandel S, Sathish V, Mathivathanan L, Morozov AN, Mebel AM, Raptis RG. Aggregation induced emission enhancement (AIEE) of tripodal pyrazole derivatives for sensing of nitroaromatics and vapor phase detection of picric acid. NEW J CHEM 2019. [DOI: 10.1039/c9nj00166b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organosoluble tris-pyrazole compounds aggregate in organic/aqueous solvent mixtures, showing aggregation-induced emission enhancement (AIEE), the latter being quenched by picric acid.
Collapse
Affiliation(s)
- Shambhu Kandel
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Veerasamy Sathish
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
- Department of Chemistry
| | - Logesh Mathivathanan
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Alexander N. Morozov
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Alexander M. Mebel
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Raphael G. Raptis
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| |
Collapse
|
39
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Liang L, Miao M, Liu C, Zong Z, Zhang J, Fang Q. Antibacterial and aqueous dual-responsive sensing activities of monomeric complexes with uncoordinated imidazole sites. NEW J CHEM 2019. [DOI: 10.1039/c9nj03960k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The butterfly-shaped monomeric complex is stable and slight soluble in water, which shows antibacterial and aqueous dual-responsive sensing activities.
Collapse
Affiliation(s)
- Lili Liang
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| | - Maomao Miao
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| | - Congsen Liu
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| | - Zhihui Zong
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering
- Anhui Jianzhu University
- Hefei
- P. R. China
| | - Qiang Fang
- Department of Pharmaceutical Engineering
- Bengbu Medical College
- Bengbu
- P. R. China
| |
Collapse
|
41
|
Jana A, Bhowmick S, Kumar S, Singh K, Garg P, Das N. Self-assembly of Pt(II) based nanoscalar ionic hexagons and their anticancer potencies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Mistek E, Fikiet MA, Khandasammy SR, Lednev IK. Toward Locard's Exchange Principle: Recent Developments in Forensic Trace Evidence Analysis. Anal Chem 2018; 91:637-654. [PMID: 30404441 DOI: 10.1021/acs.analchem.8b04704] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ewelina Mistek
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Marisia A Fikiet
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Shelby R Khandasammy
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Igor K Lednev
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
43
|
Huang C, Ran G, Zhao Y, Wang C, Song Q. Synthesis and application of a water-soluble phosphorescent iridium complex as turn-on sensing material for human serum albumin. Dalton Trans 2018; 47:2330-2336. [PMID: 29367989 DOI: 10.1039/c7dt04676f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel water-soluble cyclometallated iridium complex [Ir(pq-COOH)2FDS]- (pq-COOH = 2-phenylquinoline-4-carboxylic acid, FDS = 3-(2-pyridyl)-5,6-bis(4-sulfophenyl)-1,2,4-triazine dianions) (abbreviated as Ir) was synthesized and its phosphorescent property was comprehensively studied. It was found that the complex exhibited strong phosphorescence, which peaked at 634 nm in neutral conditions (maximized at pH 8.0). Its phosphorescence decreased with an increase in acidity of the aqueous solution. At pH 2.0, the quenched phosphorescence could be resumed upon the addition of human serum albumin (HSA) because of the hydrophobic and electrostatic interactions between HSA and Ir. Based on this phenomenon, a "turn on" type phosphorescence probe was developed for the detection of HSA. Under optimal conditions, a wide calibration range of 1-280 nM was obtained with a limit of detection of 0.8 nM for HSA. The phosphorescence probe was successfully used for the determination of HSA in blood serum and urine samples.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | |
Collapse
|
44
|
New complexes constructed based on (1H-tetrazol-5-yl)phenol: Synthesis, structures and properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Zhang S, Yuan W, Qin Y, Zhang J, Lu N, Liu W, Li H, Wang Y, Li Y. Bidentate BODIPY-appended 2-pyridylimidazo[1,2-a]pyridine ligand and fabrication of luminescent transition metal complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Berezin AS, Samsonenko DG, Brel VK, Artem'ev AV. "Two-in-one" organic-inorganic hybrid Mn II complexes exhibiting dual-emissive phosphorescence. Dalton Trans 2018; 47:7306-7315. [PMID: 29770407 DOI: 10.1039/c8dt01041b] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Unprecedented organic-inorganic hybrid complexes, [Mn(L)3]MnHal4, containing both four- and hexacoordinated Mn2+ ions were synthesized by reacting MnCl2 or MnBr2 with bis(phosphine oxide) ligands (L) such as dppmO2, dppeO2, and 2,3-bis(diphenylphosphinyl)-1,3-butadiene (dppbO2). In the [Mn(L)3]2+ cation of the complexes, the Mn2+ ion features a [MnO6] octahedral coordination environment (Oh), and the [MnHal4]2- anion adopts a tetrahedral geometry (Td). These "two-in-one" complexes exhibit strong long-lived luminescence (τav = 12-15 ms at 300 K) having interesting thermochromic behavior attributed to the thermal equilibrium between two emission bands. So, in an emission spectrum of the typical complex [Mn(dppbO2)3]MnBr4, the intense "red" (ca. 620 nm) and weak "green" (ca. 520 nm) bands, originating from Mn2+ ions in Oh and Td environments, respectively, are observed. Cooling from 300 to 77 K simultaneously leads to (i) redshift of both bands by ca. 20 nm, (ii) increasing their intensities, and (iii) causing a substantial change of their integral intensity ratio from about 4 : 1 to 2 : 1. As a result, the colour of the emission changes from orange (CIE 0.56, 0.45) at 300 K to deep red (CIE 0.62, 0.39) at 77 K. This behavior was rationalized using steady-state and time-resolved fluorescent spectroscopy at various temperatures. The high photoluminescence quantum yields (up to 61% at 300 K) and fascinating dual-emissive phosphorescence coupled with high thermal stability and solubility suggest a high potential of this novel class of emissive Mn2+ complexes as promising emitters for OLED devices and potential stimuli-responsive materials.
Collapse
Affiliation(s)
- Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| | | | | | | |
Collapse
|