1
|
Mochihara K, Morimoto T, Ota K, Marumoto S, Hashizume D, Matsuo T. Approach to the "Missing" Diarylsilylene: Formation, Characterization, and Intramolecular C-H Bond Activation of Blue Diarylsilylenes with Bulky Rind Groups. Int J Mol Sci 2024; 25:3761. [PMID: 38612569 PMCID: PMC11011690 DOI: 10.3390/ijms25073761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The treatment of the bulky Rind-based dibromosilanes, (Rind)2SiBr2 (2) [Rind = 1,1,7,7-tetra-R1-3,3,5,5-tetra-R2-s-hydrindacen-4-yl: EMind (a: R1 = Et, R2 = Me) and Eind (b: R1 = R2 = Et)], with two equivalents of tBuLi in Et2O at low temperatures resulted in the formation of blue solutions derived from the diarylsilylenes, (Rind)2Si: (3). Upon warming the solutions above -20 °C, the blue color gradually faded, accompanying the decomposition of 3 and yielding cyclic hydrosilanes (4) via intramolecular C-H bond insertion at the Si(II) center. The molecular structures of the bulky Eind-based 3b and 4b were confirmed by X-ray crystallography. Thus, at -20 °C, blue crystals were formed (Crystal-A), which were identified as mixed crystals of 3b and 4b. Additionally, colorless crystals of 4b as a singular component were isolated (Crystal-B), whose structure was also determined by an X-ray diffraction analysis. Although the isolation of 3 was difficult due to their thermally labile nature, their structural characteristics and electronic properties were discussed based on the experimental findings complemented by computational results. We also examined the hydrolysis of 3b to afford the silanol, (Eind)2SiH(OH) (5b).
Collapse
Grants
- JP20109003, JP15H00964, JP15H03788, 18K05160, 21K05091, 22K20561 Japan Society for the Promotion of Science
- #2016-94, #2017-99, #2018-110, #2019-120, #2020-126, #2021-130, #2022-134 Collaborative Research Program of The Institute for Chemical Research, Kyoto University
Collapse
Affiliation(s)
- Kazuki Mochihara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (K.M.); (T.M.); (K.O.)
| | - Tatsuto Morimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (K.M.); (T.M.); (K.O.)
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (K.M.); (T.M.); (K.O.)
| | - Shinsuke Marumoto
- Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan;
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (K.M.); (T.M.); (K.O.)
| |
Collapse
|
2
|
Zhang H, Wang Y, Lu Q, Song J, Duan Y, Zeng Y, Mo Y. Stretched Central Double Bonds in Dialumene and Disilene by Amino Substituents: A Case of Lone Pair Repulsion. Chemistry 2023; 29:e202301862. [PMID: 37506171 DOI: 10.1002/chem.202301862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
There have been remarkable advances in the syntheses and applications of groups 13 and 14 homonuclear ethene analogues. However, successes are largely limited to aryl- and/or silyl-substituted species. Analogues bearing two or more heteroatoms are still scarce. In this work, the block-localized wavefunction (BLW) method at the density functional theory (DFT) level was employed to study dialumene and disilene bearing two amino substituents whose optimal geometries exhibit significantly stretched central M=M (M=Al or Si) double bonds compared with aryl- and/or silyl-substituted species. Computational analyses showed that the repulsion between the lone electron pairs of amino substituents and M=M π bond plays a critical role in the elongation of the M=M bonds. Evidently, replacing the substituent groups -NH2 with -BH2 can enhance the planarity and shorten the central double bonds due to the absence of lone pair electrons in BH2 .
Collapse
Affiliation(s)
- Huaiyu Zhang
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yating Wang
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingrui Lu
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yandong Duan
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, and Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
3
|
Nishino R, Tokitoh N, Sasayama R, Waterman R, Mizuhata Y. Unusual nuclear exchange within a germanium-containing aromatic ring that results in germanium atom transfer. Nat Commun 2023; 14:4519. [PMID: 37507362 PMCID: PMC10382490 DOI: 10.1038/s41467-023-40188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The delivery of single atoms is highly desirable for the straightforward synthesis of complex molecules, however this approach is limited by a lack of suitable atomic transfer reagents. Here, we report a germanium atom transfer reaction employing a germanium analogue of the phenyl anion. The reaction yields a germanium-substituted benzene, along with a germanium atom which can be transferred to other chemical species. The transfer of atomic germanium is demonstrated by the formation of well-defined germanium doped molecules. Furthermore, computational studies reveal that the reaction mechanism proceeds via the first example of an aromatic-to-aromatic nuclear germanium replacement reaction on the germabenzene ring. This unusual reaction pathway was further probed by the reaction of our aromatic germanium anion with a molecular silicon species, which selectively yielded the corresponding silicon-substituted benzene derivative.
Collapse
Affiliation(s)
- Ryohei Nishino
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Ryuto Sasayama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Rory Waterman
- Department of Chemistry, University of Vermont, Burlington, VT, 05405-0125, USA
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
4
|
Lee VY. Organogermanium Analogues of Alkenes, Alkynes, 1,3-Dienes, Allenes, and Vinylidenes. Molecules 2023; 28:molecules28041558. [PMID: 36838546 PMCID: PMC9960162 DOI: 10.3390/molecules28041558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
In this review, the latest achievements in the field of multiply bonded organogermanium derivatives, mostly reported within the last two decades, are presented. The isolable Ge-containing analogues of alkenes, alkynes, 1,3-dienes, allenes, and vinylidenes are discussed, and for each class of unsaturated organogermanium compounds, the most representative examples are given. The synthetic approaches toward homonuclear multiply bonded combinations solely consisting of germanium atoms, and their heteronuclear variants containing germanium and other group 14 elements, both acyclic and cyclic, are discussed. The peculiar structural features and nonclassical bonding nature of the abovementioned compounds are discussed based on their spectroscopic and structural characteristics, in particular their crystallographic parameters (double bond length, trans-bending at the doubly bonded centers, and twisting about the double bond). The prospects for the practical use of the title compounds in synthetic and catalytic fields are also briefly discussed.
Collapse
Affiliation(s)
- Vladimir Ya Lee
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| |
Collapse
|
5
|
Yagura S, Hayakawa N, Kuroda A, Ota K, Tanishita R, Urasaki G, Nakahodo T, Nakai H, Hoshino M, Hashizume D, Matsuo T. A series of ( E)-1,2-diaryldigermenes incorporating bulky Eind groups: structural characteristics and absorption properties. Dalton Trans 2022; 51:18633-18641. [PMID: 36448427 DOI: 10.1039/d2dt03427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A series of (E)-1,2-diaryldigermenes, (Eind)ArGeGeAr(Eind) [Ar = phenyl (2), thiophen-2-yl (3), 9,9-dimethyl-2-fluorenyl (4) and 2,2'-bithiophen-5-yl (5)], supported by the fused-ring bulky 1,1,3,3,5,5,7,7-octaethyl-s-hydrindacen-4-yl (Eind) groups, have been obtained as yellow-orange to red crystalline solids by the reaction of 1,2-dibromodigermene, (Eind)BrGeGeBr(Eind) (1), with ArLi. In the crystals of 2-5, the digermene cores show a flexible nature adopting a trans-bent geometry with the trans-bent angles (θ) between the Ge-Ge vector and the CEind-Ge-CAr plane of 34.04(12)° (2), 38.3(3)° and 38.8(3)° (3), 33.69(12)° (4) and 39.30(13)° (5). In the UV-vis spectra, strong π-π* absorptions have been observed with an absorption maximum at 451 nm (ε = 1.3 × 104) (2), 455 nm (ε = 9.7 × 103) (3), 480 nm (ε = 1.3 × 104) (4) and 497 nm (ε = 1.4 × 104) (5), retaining the GeGe double bond in solution. The absorption data and DFT calculations provide evidence for the intrinsic π-conjugation between the GeGe chromophore and aromatic rings involving the narrowing of the HOMO-LUMO gaps (ΔE) with the extension of the carbon π-electron systems.
Collapse
Affiliation(s)
- Shogo Yagura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Naoki Hayakawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Airi Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Rhota Tanishita
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Genya Urasaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Tsukasa Nakahodo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Hidetaka Nakai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Manabu Hoshino
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
6
|
Izod K, Liu M, Evans P, Wills C, Dixon CM, Waddell PG, Probert MR. Spontaneous Decomposition of an Extraordinarily Twisted and Trans-Bent Fully-Phosphanyl-Substituted Digermene to an Unusual Ge I Cluster. Angew Chem Int Ed Engl 2022; 61:e202208851. [PMID: 35946808 PMCID: PMC9804623 DOI: 10.1002/anie.202208851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 01/05/2023]
Abstract
Ditetrelenes R2 E=ER2 (E=Si, Ge, Sn, Pb) substituted by multiple N/P/O/S-donor groups are extremely rare due to their propensity to disaggregate into their tetrylene monomers R2 E. We report the synthesis of the first fully phosphanyl-substituted digermene {(Mes)2 P}2 Ge=Ge{P(Mes)2 }2 (3, Mes=2,4,6-Me3 C6 H2 ), which adopts a highly unusual structure in the solid state, that is both strongly trans-bent and highly twisted. Variable-temperature 31 P{1 H} NMR spectroscopy suggests that 3 persists in solution, but is subject to a dynamic equilibrium between two conformations, which have different geometries about the Ge=Ge bond (twisted/non-twisted) due to a difference in the nature of their π-stacking interactions. Compound 3 undergoes unprecedented, spontaneous decomposition in solution to give a unique GeI cluster {(Mes)2 P}4 Ge4 ⋅5 CyMe (7).
Collapse
Affiliation(s)
- Keith Izod
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Mo Liu
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Peter Evans
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Corinne Wills
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Casey M. Dixon
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Paul G. Waddell
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | |
Collapse
|
7
|
Izod K, Liu M, Evans P, Wills C, Dixon CM, Waddell PG, Probert MR. Spontaneous decomposition of an extraordinarily twisted and trans‐bent fully‐phosphanyl‐substituted digermene to an unusual Ge(I) cluster. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Keith Izod
- University of Newcastle School of Chemistry Bedson Building NE1 7RU Newcastle upon Tyne UNITED KINGDOM
| | - Mo Liu
- Newcastle University School of Chemistry UNITED KINGDOM
| | - Peter Evans
- Newcastle University School of Chemistry UNITED KINGDOM
| | - Corinne Wills
- Newcastle University School of Chemistry UNITED KINGDOM
| | | | | | | |
Collapse
|
8
|
Kuroda A, Fujita N, Horita T, Ota K, Rosas-Sánchez A, Hoshino M, Hashizume D, Matsuo T. Formation and Reactions of Ge=O Double-Bonded Species Bearing EMind Groups. CHEM LETT 2022. [DOI: 10.1246/cl.220222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Airi Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naoko Fujita
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tomomi Horita
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Alfredo Rosas-Sánchez
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, C.P. 44430 Guadalajara, Jalisco, México
| | - Manabu Hoshino
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
9
|
Ohno R, Numata Y, Konaka S, Yagura S, Kuroda A, Harada M, Fujita N, Hayakawa N, Nakai H, Rosas-Sánchez A, Hashizume D, Matsuo T. Synthesis and Characterization of a Series of Diarylgermylenes and Dihalodigermenes Having Fused-Ring Bulky “Rind” Groups. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryoma Ohno
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yasuyuki Numata
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeaki Konaka
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shogo Yagura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Airi Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Mao Harada
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naoko Fujita
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naoki Hayakawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hidetaka Nakai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Alfredo Rosas-Sánchez
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
10
|
Numata Y, Nishikawa Y, Inoue K, Ohnishi H, Konaka S, Tanikawa T, Hashizume D, Matsuo T. A Series of Room-Temperature Thermally Stable Bromostannylenes Bearing the Bulky Rind Group: Synthesis, Characterization, and Crystal Structures. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yasuyuki Numata
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuri Nishikawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Konan Inoue
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hiroaki Ohnishi
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeaki Konaka
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tomoharu Tanikawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
11
|
Keil PM, Szilvási T, Hadlington TJ. Reversible metathesis of ammonia in an acyclic germylene-Ni 0 complex. Chem Sci 2021; 12:5582-5590. [PMID: 34168794 PMCID: PMC8179610 DOI: 10.1039/d1sc00450f] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Carbenes, a class of low-valent group 14 ligand, have shifted the paradigm in our understanding of the effects of supporting ligands in transition-metal reactivity and catalysis. We now seek to move towards utilizing the heavier group 14 elements in effective ligand systems, which can potentially surpass carbon in their ability to operate via 'non-innocent' bond activation processes. Herein we describe our initial results towards the development of scalable acyclic chelating germylene ligands (viz. 1a/b), and their utilization in the stabilization of Ni0 complexes (viz. 4a/b), which can readily and reversibly undergo metathesis with ammonia with no net change of oxidation state at the GeII and Ni0 centres, through ammonia bonding at the germylene ligand as opposed to the Ni0 centre. The DFT-derived metathesis mechanism, which surprisingly demonstrates the need for three molecules of ammonia to achieve N-H bond activation, supports reversible ammonia binding at GeII, as well as the observed reversibility in the overall reaction.
Collapse
Affiliation(s)
- Philip M Keil
- Department of Chemistry, Technical University Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, University of Alabama Tuscaloosa AL 35487 USA
| | - Terrance J Hadlington
- Department of Chemistry, Technical University Munich Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
12
|
Mohapatra C, Darmandeh H, Steinert H, Mallick B, Feichtner K, Gessner VH. Synthesis of Low-Valent Dinuclear Group 14 Compounds with Element-Element Bonds by Transylidation. Chemistry 2020; 26:15145-15149. [PMID: 32954596 PMCID: PMC7756224 DOI: 10.1002/chem.202004242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/04/2022]
Abstract
Dinuclear low-valent compounds of the heavy main group elements are rare species owing to their intrinsic reactivity. However, they represent desirable target molecules due to their unusual bonding situations as well as applications in bond activations and materials synthesis. The isolation of such compounds usually requires the use of substituents that provide sufficient stability and synthetic access. Herein, we report on the use of strongly donating ylide-substituents to access low-valent dinuclear group 14 compounds. The ylides not only impart steric and electronic stabilization, but also allow facile synthesis via transfer of an ylide from tetrylene precursors of type R Y2 E to ECl2 (E=Ge, Sn; R Y=TolSO2 (PR3 )C with R=Ph, Cy). This method allowed the isolation of dinuclear complexes amongst a germanium analogue of a vinyl cation, [(Ph Y)2 GeGe(Ph Y)]+ with an electronic structure best described as a germylene-stabilized GeII cation and a ylide(chloro)digermene [Cy Y(Cl)GeGe(Cl)Cy Y] with an unusually unsymmetrical structure.
Collapse
Affiliation(s)
- Chandrajeet Mohapatra
- Chair of Inorganic Chemistry II, Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Heidar Darmandeh
- Chair of Inorganic Chemistry II, Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Henning Steinert
- Chair of Inorganic Chemistry II, Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Bert Mallick
- Chair of Inorganic Chemistry II, Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry II, Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry II, Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
13
|
Agarwal A, Bose SK. Bonding Relationship between Silicon and Germanium with Group 13 and Heavier Elements of Groups 14-16. Chem Asian J 2020; 15:3784-3806. [PMID: 33006219 DOI: 10.1002/asia.202001043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
The topic of heavier main group compounds possessing multiple bonds is the subject of momentous interest in modern organometallic chemistry. Importantly, there is an excitement involving the discovery of unprecedented compounds with unique bonding modes. The research in this area is still expanding, particularly the reactivity aspects of these compounds. This article aims to describe the overall developments reported on the stable derivatives of silicon and germanium involved in multiple bond formation with other group 13, and heavier groups 14, 15, and 16 elements. The synthetic strategies, structural features, and their reactivity towards different nucleophiles, unsaturated organic substrates, and in small molecule activation are discussed. Further, their physical and chemical properties are described based on their spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
14
|
Sasamori T. Ferrocenyl-substituted low-coordinated heavier group 14 elements. Dalton Trans 2020; 49:8029-8035. [PMID: 32427270 DOI: 10.1039/d0dt01426e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several examples of stable low-coordinated species of heavier group 14 elements (Si, Ge, Sb, Pb) such as divalent species and multiple-bond compounds have been reported. With the goal in mind to create unprecedented low-coordinated species of heavier group 14 elements that exhibit considerably increased redox stability, ferrocenyl (Fc)-substituted low-coordinated species of heavier group 14 elements were designed. In this short account article, recent progress on the synthesis of Fc-based low-coordinated species of heavier group 14 elements is summarized.
Collapse
Affiliation(s)
- Takahiro Sasamori
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan.
| |
Collapse
|
15
|
Sugahara T, Espinosa Ferao A, Rey Planells A, Guo JD, Aoyama S, Igawa K, Tomooka K, Sasamori T, Hashizume D, Nagase S, Tokitoh N. 1,2-Insertion reactions of alkynes into Ge-C bonds of arylbromogermylene. Dalton Trans 2020; 49:7189-7196. [PMID: 32415829 DOI: 10.1039/d0dt01223h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2-Insertion reactions of alkynes into the Ge-C bonds in dibromodigermenes afford stable crystalline bromovinylgermylenes. In contrast to previously reported Lewis-base-supported vinylgermylenes, the bromovinylgermylene obtained from reaction of the bromogermylene with 3-hexyne via such an 1,2-insertion is a donor-free monomer. A feasible reaction mechanism, proposed on the basis of the observed experimental results in combination with theoretical calculations, suggests that the [1+2]-cycloadduct and the insertion product are the kinetic and thermodynamic product, respectively.
Collapse
Affiliation(s)
- Tomohiro Sugahara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tsys KV, Chegerev MG, Fukin GK, Starikov AG, Piskunov AV. Low-valent oligogermanium amidophenolate complex comprising a unique Ge4 chain. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Guo Y, Xia Z, Liu J, Yu J, Yao S, Shi W, Hu K, Chen S, Wang Y, Li A, Driess M, Wang W. A Tetra-amido-Protected Ge5-Spiropentadiene. J Am Chem Soc 2019; 141:19252-19256. [DOI: 10.1021/jacs.9b10946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Jiaxiu Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Shenglai Yao
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, 10623 Berlin, Germany
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Matthias Driess
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, 10623 Berlin, Germany
| | - Wenyuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
| |
Collapse
|
18
|
Aysin RR, Bukalov SS, Leites LA, Lee VY, Sekiguchi A. Electronic structure and conformational isomerism of the digermene (tBu2MeSi)2Ge=Ge(SiMetBu2)2 as studied by temperature-dependent Raman and UV–vis spectra and quantum-chemistry calculations. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Suzuki K, Numata Y, Fujita N, Hayakawa N, Tanikawa T, Hashizume D, Tamao K, Fueno H, Tanaka K, Matsuo T. A stable free tetragermacyclobutadiene incorporating fused-ring bulky EMind groups. Chem Commun (Camb) 2018; 54:2200-2203. [PMID: 29354837 DOI: 10.1039/c7cc09443d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first free cyclobutadiene (CBD) germanium analogue was obtained as room-temperature stable dark red crystals via the reaction of the bulky EMind-substituted 1,2-dichlorodigermene with lithium naphthalenide. The cyclic 4π-electron antiaromaticity is essentially stabilized by the polar Jahn-Teller distortion in the germanium CBD producing a planar rhombic-shaped charge-separated structure.
Collapse
Affiliation(s)
- Katsunori Suzuki
- Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute (ASI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|