1
|
Chi LA, Pandey SK, Kolodziejczyk W, Lund-Andersen P, Barnes JE, Kapusta K, Patel JS. Molecular Mechanisms Underlying the Spectral Shift in Zebrafish Cone Opsins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614827. [PMID: 39386526 PMCID: PMC11463405 DOI: 10.1101/2024.09.24.614827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Visual pigments are essential for converting light into electrical signals during vision. Composed of an opsin protein and a retinal-based chromophore, pigments in vertebrate rods (Rh1) and cones (Rh2) have different spectral sensitivities, with distinct peak absorption wavelengths determined by the shape and composition of the chromophore binding pocket. Despite advances in understanding Rh1 pigments such as bovine rhodopsin, the molecular basis of spectral shifts in Rh2 cone opsins has been less studied, particularly the E122Q mutation, which accounts for about half of the observed spectral shift in these pigments. In this study, we employed molecular modeling and quantum mechanical techniques to investigate the molecular mechanisms behind the spectral difference in blue-shifted Rh2-1 (absorption peak = 467 nm, 122Q) and green-shifted Rh2-4 (absorption peak = 505 nm, 122E) zebrafish cone opsins. We modeled the pigments 3D structures based on their sequences and conducted all-atom molecular dynamics simulations totaling 2 microseconds. Distance analysis of the trajectories identified three key sites: E113, E181, and E122. The E122Q mutation, previously known, validates our findings, while E181 and E113 are newly identified contributors. Structural analysis revealed key features with differing values that explain the divergent spectral sensitivities of Rh2-1 and Rh2-4: 1) chromophore atom fluctuations and C5-C6 torsion angle, 2) binding pocket volume, 3) hydration patterns, and 4) E113-chromophore interaction stability. Quantum mechanics further confirms the critical role of residue E181 in Rh2-1 and E122 in Rh2-4 for their spectral behavior. Our study provides new insights into the molecular determinants of spectral shifts in cone opsins, and we anticipate that it will serve as a starting point for a broader understanding of the functional diversity of visual pigments.
Collapse
Affiliation(s)
- L América Chi
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Shubham Kumar Pandey
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Wojciech Kolodziejczyk
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi, United States of America
| | - Peik Lund-Andersen
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jonathan E Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, Mississippi, United States of America
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
2
|
Choudhury A, Santra S, Ghosh D. Understanding the Photoprocesses in Biological Systems: Need for Accurate Multireference Treatment. J Chem Theory Comput 2024; 20:4951-4964. [PMID: 38864715 DOI: 10.1021/acs.jctc.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Light-matter interaction is crucial to life itself and revolves around many of the central processes in biology. The need for understanding these photochemical and photophysical processes cannot be overemphasized. Interaction of light with biological systems starts with the absorption of light and subsequent phenomena that occur in the excited states of the system. However, excited states are typically difficult to understand within the mean field approximation of quantum chemical methods. Therefore, suitable multireference methods and methodologies have been developed to understand these phenomena. In this Perspective, we will describe a few methods and methodologies suitable for these descriptions and discuss some persisting difficulties.
Collapse
Affiliation(s)
- Arpan Choudhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Liu J, He X. Recent advances in quantum fragmentation approaches to complex molecular and condensed‐phase systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai China
- New York University‐East China Normal University Center for Computational Chemistry New York University Shanghai Shanghai China
| |
Collapse
|
4
|
Church JR, Amoyal GS, Borin VA, Adam S, Olsen JMH, Schapiro I. Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry. Chemistry 2022; 28:e202200139. [PMID: 35307890 PMCID: PMC9325082 DOI: 10.1002/chem.202200139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 11/11/2022]
Abstract
Proteorhodopsin (PR) is a photoactive proton pump found in marine bacteria. There are two phenotypes of PR exhibiting an environmental adaptation to the ocean's depth which tunes their maximum absorption: blue‐absorbing proteorhodopsin (BPR) and green‐absorbing proteorhodopsin (GPR). This blue/green color‐shift is controlled by a glutamine to leucine substitution at position 105 which accounts for a 20 nm shift. Typically, spectral tuning in rhodopsins is rationalized by the external point charge model but the Q105L mutation is charge neutral. To study this tuning mechanism, we employed the hybrid QM/MM method with sampling from molecular dynamics. Our results reveal that the positive partial charge of glutamine near the C14−C15 bond of retinal shortens the effective conjugation length of the chromophore compared to the leucine residue. The derived mechanism can be applied to explain the color regulation in other retinal proteins and can serve as a guideline for rational design of spectral shifts.
Collapse
Affiliation(s)
- Jonathan R Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Gil S Amoyal
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | | | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
5
|
Chang C, Kuramochi H, Singh M, Abe‐Yoshizumi R, Tsukuda T, Kandori H, Tahara T. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chun‐Fu Chang
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-Ku Tokyo 113-0033 Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP), RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- PRESTO (Japan) Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Present address: Research Center of Integrative Molecular Systems Institute for Molecular Science 38 Nishigo-Naka Myodaiji Okazaki 444-8585 Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology, Showa-Ku Nagoya Aichi 466-8555 Japan
| | - Rei Abe‐Yoshizumi
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology, Showa-Ku Nagoya Aichi 466-8555 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-Ku Tokyo 113-0033 Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology, Showa-Ku Nagoya Aichi 466-8555 Japan
- OptoBioTechnology Research Center Nagoya Institute of Technology Showa-Ku, Nagoya Aichi 466-8555 Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP), RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
6
|
Chang CF, Kuramochi H, Singh M, Abe-Yoshizumi R, Tsukuda T, Kandori H, Tahara T. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angew Chem Int Ed Engl 2022; 61:e202111930. [PMID: 34670002 DOI: 10.1002/anie.202111930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/08/2022]
Abstract
All-trans to 13-cis photoisomerization of the protonated retinal Schiff base (PRSB) chromophore is the primary step that triggers various biological functions of microbial rhodopsins. While this ultrafast primary process has been extensively studied, it has been recognized that the relevant excited-state relaxation dynamics differ significantly from one rhodopsin to another. To elucidate the origin of the complicated ultrafast dynamics of the primary process in microbial rhodopsins, we studied the excited-state dynamics of proteorhodopsin, its D97N mutant, and bacteriorhodopsin by femtosecond time-resolved absorption (TA) spectroscopy in a wide pH range. The TA data showed that their excited-state relaxation dynamics drastically change when pH approaches the pKa of the counterion residue of the PRSB chromophore in the ground state. This result reveals that the varied excited-state relaxation dynamics in different rhodopsins mainly originate from the difference of the ground-state heterogeneity (i.e., protonation/deprotonation of the PRSB counterion).
Collapse
Affiliation(s)
- Chun-Fu Chang
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- PRESTO (Japan) Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Present address: Research Center of Integrative Molecular Systems, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-Ku, Nagoya, Aichi, 466-8555, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
7
|
Shen C, Jin X, Glover WJ, He X. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Molecules 2021; 26:4486. [PMID: 34361639 PMCID: PMC8347797 DOI: 10.3390/molecules26154486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Many experiments have been carried out to display different colors of Proteorhodopsin (PR) and its mutants, but the mechanism of color tuning of PR was not fully elucidated. In this study, we applied the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method to the prediction of excitation energies of PRs. Excitation energies of 10 variants of Blue Proteorhodopsin (BPR-PR105Q) in residue 105GLN were calculated with the EE-GMFCC method at the TD-B3LYP/6-31G* level. The calculated results show good correlation with the experimental values of absorption wavelengths, although the experimental wavelength range among these systems is less than 50 nm. The ensemble-averaged electric fields along the polyene chain of retinal correlated well with EE-GMFCC calculated excitation energies for these 10 PRs, suggesting that electrostatic interactions from nearby residues are responsible for the color tuning. We also utilized the GMFCC method to decompose the excitation energy contribution per residue surrounding the chromophore. Our results show that residues ASP97 and ASP227 have the largest contribution to the absorption spectral shift of PR among the nearby residues of retinal. This work demonstrates that the EE-GMFCC method can be applied to accurately predict the absorption spectral shifts for biomacromolecules.
Collapse
Affiliation(s)
- Chenfei Shen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
| | - Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
| | - William J. Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China;
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
8
|
Aquilante F, Autschbach J, Baiardi A, Battaglia S, Borin VA, Chibotaru LF, Conti I, De Vico L, Delcey M, Fdez Galván I, Ferré N, Freitag L, Garavelli M, Gong X, Knecht S, Larsson ED, Lindh R, Lundberg M, Malmqvist PÅ, Nenov A, Norell J, Odelius M, Olivucci M, Pedersen TB, Pedraza-González L, Phung QM, Pierloot K, Reiher M, Schapiro I, Segarra-Martí J, Segatta F, Seijo L, Sen S, Sergentu DC, Stein CJ, Ungur L, Vacher M, Valentini A, Veryazov V. Modern quantum chemistry with [Open]Molcas. J Chem Phys 2020; 152:214117. [PMID: 32505150 DOI: 10.1063/5.0004835] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.
Collapse
Affiliation(s)
- Francesco Aquilante
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, USA
| | - Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefano Battaglia
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Liviu F Chibotaru
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Mickaël Delcey
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Nicolas Ferré
- Aix-Marseille University, CNRS, Institut Chimie Radicalaire, Marseille, France
| | - Leon Freitag
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Xuejun Gong
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Stefan Knecht
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ernst D Larsson
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Thomas B Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Quan M Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luis Seijo
- Departamento de Química, Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Christopher J Stein
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Liviu Ungur
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 44300 Nantes, France
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Université de Liège, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Valera Veryazov
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| |
Collapse
|
9
|
Lee C, Sekharan S, Mertz B. Theoretical Insights into the Mechanism of Wavelength Regulation in Blue-Absorbing Proteorhodopsin. J Phys Chem B 2019; 123:10631-10641. [PMID: 31757123 DOI: 10.1021/acs.jpcb.9b08189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Choongkeun Lee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sivakumar Sekharan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- XtalPi Inc, 245 Main Street, 12th Floor, Cambridge, Massachusetts 01242, United States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
10
|
Paulikat M, Mata RA, Gelabert R. A high-throughput computational approach to UV-Vis spectra in protein mutants. Phys Chem Chem Phys 2019; 21:20678-20692. [PMID: 31508628 DOI: 10.1039/c9cp03908b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work we present a high-throughput approach to the computation of absorption UV-Vis spectra tailored to mutagenesis studies. The scheme makes use of a single molecular dynamics trajectory of a reference (non-mutated) species. The shifts in absorption energy caused by a residue mutation are evaluated by building an effective potential of the environment and computing a correction term based on perturbation theory. The sampling is only performed in the phase space of the initial protein. We analyze the robustness of the method by comparing different approximations for the effective potential, the sampling of mutant residue geometries and observing the impact in the prediction of both bathocromic and hypsochromic shifts. As a test subject, we consider a red fluorescent protein variant with potential biotechnological applications.
Collapse
Affiliation(s)
- Mirko Paulikat
- Institute of Physical Chemistry, University of Goettingen, Tammannstraße 6, D-37077 Göttingen, Germany.
| | - Ricardo A Mata
- Institute of Physical Chemistry, University of Goettingen, Tammannstraße 6, D-37077 Göttingen, Germany.
| | - Ricard Gelabert
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
11
|
Valentini A, Nucci M, Frutos LM, Marazzi M. Photosensitized Retinal Isomerization in Rhodopsin Mediated by a Triplet State. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alessio Valentini
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Department of Biotechnology, Chemistry and PharmacyUniversity of Siena via A. Moro 2 53100 Siena Italy
- Theoretical Physical Chemistry, Research Unit MolSysUniversité de Liège Allée du 6 Aôut, 11 4000 Liège Belgium
| | - Martina Nucci
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares, Madrid Spain
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares, Madrid Spain
| |
Collapse
|
12
|
Fujisawa T, Abe M, Tamogami J, Kikukawa T, Kamo N, Unno M. Low-temperature Raman spectroscopy reveals small chromophore distortion in primary photointermediate of proteorhodopsin. FEBS Lett 2018; 592:3054-3061. [PMID: 30098005 DOI: 10.1002/1873-3468.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 11/07/2022]
Abstract
Proteorhodopsin (PR) is a microbial rhodopsin functioning as a light-driven proton pump in aquatic bacteria. We performed low-temperature Raman measurements of PR to obtain the structure of the primary photoproduct, the K intermediate (PRK ). PRK showed the hydrogen-out-of-plane modes that are much less intense than those of bacteriorhodopsin as the prototypical light-driven proton pump from haloarchaea. The present results reveal the significantly relaxed chromophore structure in PRK , which can be coupled to the slow kinetics of the K intermediate. This structure suggests that PR transports protons using the small energy storage within the chromophore at the start of its photocycle.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Japan
| | - Masahiro Abe
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Takashi Kikukawa
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Japan
| |
Collapse
|
13
|
Guo Y, Wolff FE, Schapiro I, Elstner M, Marazzi M. Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Phys Chem Chem Phys 2018; 20:27501-27509. [DOI: 10.1039/c8cp05210g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans-to-cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Franziska E. Wolff
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research
- Institute of Chemistry
- Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Marcus Elstner
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| |
Collapse
|