1
|
Van Dessel H, Van Minnebruggen S, Dedapper J, Paciok P, Usoltsev O, Krajnc A, Bugaev A, De Vos DE. Shape-Selective Zeolites for Tandem CO 2 Hydrogenation-Carbonylation Reactions. Angew Chem Int Ed Engl 2024:e202418670. [PMID: 39513646 DOI: 10.1002/anie.202418670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
The valorization of carbon dioxide as a C1 building block in C-C bond forming reactions is a critical link on the road to carbon-circular chemistry. Activation of this inert molecule through reduction with H2 to carbon monoxide in the reverse water-gas shift (RWGS) reaction can be followed by a wide spectrum of consecutive carbonylation reactions, but the RWGS is severely equilibrium limited at the moderate temperatures of carbonylations. Here we successfully reconcile both reactions in one pot, while avoiding incompatibilities through a zeolite-based compartmentalized approach. More specifically, Pt encapsulated in a small-pore LTA zeolite selectively generates carbon monoxide in mild reaction conditions; an ensuing one-pot carbonylation reaction allows to shift the equilibrium through continuous consumption of CO. Moreover, the zeolite encapsulation avoids undesired reactions like hydrogenation of the olefin reactant through a molecular sieving effect. This strategy was first studied in-depth for Rh-catalyzed olefin hydroformylation with CO2/H2, affording aldehydes in good yields with high regioselectivities. The methodology was then extended to a variety of carbonylations using CO2 for the synthesis of bulk and fine chemicals.
Collapse
Affiliation(s)
- Hendrik Van Dessel
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Sam Van Minnebruggen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Jasper Dedapper
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Paul Paciok
- Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Julich, 52425, Jülich, Germany
| | - Oleg Usoltsev
- CELLS-ALBA Synchrotron Radiation Facility, 08290, Cerdanyola del Vallès, Spain
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Aram Bugaev
- SuperXAS Beamline, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| |
Collapse
|
2
|
Usoltsev O, Stoian D, Skorynina A, Kozyr E, Njoroge PN, Pellegrini R, Groppo E, van Bokhoven JA, Bugaev A. Restructuring of Palladium Nanoparticles during Oxidation by Molecular Oxygen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401184. [PMID: 38884188 DOI: 10.1002/smll.202401184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/02/2024] [Indexed: 06/18/2024]
Abstract
An interplay between Pd and PdO and their spatial distribution inside the particles are relevant for numerous catalytic reactions. Using in situ time-resolved X-ray absorption spectroscopy (XAS) supported by theoretical simulations, a mechanistic picture of the structural evolution of 2.3 nm palladium nanoparticles upon their exposure to molecular oxygen is provided. XAS analysis revealed the restructuring of the fcc-like palladium surface into the 4-coordinated structure of palladium oxide upon absorption of oxygen from the gas phase and formation of core@shell Pd@PdO structures. The reconstruction starts from the low-coordinated sites at the edges of palladium nanoparticles. Formation of the PdO shell does not affect the average Pd‒Pd coordination numbers, since the decrease of the size of the metallic core is compensated by a more spherical shape of the oxidized nanoparticles due to a weaker interaction with the support. The metallic core is preserved below 200 °C even after continuous exposure to oxygen, with its size decreasing insignificantly upon increasing the temperature, while above 200 °C, bulk oxidation proceeds. The Pd‒Pd distances in the metallic phase progressively decrease upon increasing the fraction of the Pd oxide due to the alignment of the cell parameters of the two phases.
Collapse
Affiliation(s)
- Oleg Usoltsev
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Dragos Stoian
- The Swiss-Norwegian Beamlines (SNBL) at ESRF, BP 220, Grenoble, 38043, France
| | - Alina Skorynina
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Elizaveta Kozyr
- Department of Chemistry, INSTM and NIS Centre, University of Torino, via Quarello 15A, Turin, 10125, Italy
| | - Peter N Njoroge
- Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo, 0315, Norway
| | - Riccardo Pellegrini
- Chimet S.p.A. - Catalyst Division, Via di Pescaiola 74, Viciomaggio Arezzo, 52041, Italy
| | - Elena Groppo
- Department of Chemistry, INSTM and NIS Centre, University of Torino, via Quarello 15A, Turin, 10125, Italy
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Villigen, 5232, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| |
Collapse
|
3
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
4
|
Butova VV, Zdravkova VR, Burachevskaia OA, Tereshchenko AA, Shestakova PS, Hadjiivanov KI. In Situ FTIR Spectroscopy for Scanning Accessible Active Sites in Defect-Engineered UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101675. [PMID: 37242091 DOI: 10.3390/nano13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Three UiO-66 samples were prepared by solvothermal synthesis using the defect engineering approach with benzoic acid as a modulator. They were characterized by different techniques and their acidic properties were assessed by FTIR spectroscopy of adsorbed CO and CD3CN. All samples evacuated at room temperature contained bridging μ3-OH groups that interacted with both probe molecules. Evacuation at 250 °C leads to the dehydroxylation and disappearance of the μ3-OH groups. Modulator-free synthesis resulted in a material with open Zr sites. They were detected by low-temperature CO adsorption on a sample evacuated at 200 °C and by CD3CN even on a sample evacuated at RT. However, these sites were lacking in the two samples obtained with a modulator. IR and Raman spectra revealed that in these cases, the Zr4+ defect sites were saturated by benzoates, which prevented their interaction with probe molecules. Finally, the dehydroxylation of all samples produced another kind of bare Zr sites that did not interact with CO but formed complexes with acetonitrile, probably due to structural rearrangement. The results showed that FTIR spectroscopy is a powerful tool for investigating the presence and availability of acid sites in UiO-66, which is crucial for its application in adsorption and catalysis.
Collapse
Affiliation(s)
- Vera V Butova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Videlina R Zdravkova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Olga A Burachevskaia
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Andrei A Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Pavletta S Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Konstantin I Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Amine-Functionalized Metal-Organic Frameworks: from Synthetic Design to Scrutiny in Application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Tereshchenko AA, Butova VV, Guda AA, Burachevskaya OA, Bugaev AL, Bulgakov AN, Skorynina AA, Rusalev YV, Pankov IV, Volochaev VA, Al-Omoush M, Ozhogin IV, Borodkin GS, Soldatov AV. Rational Functionalization of UiO-66 with Pd Nanoparticles: Synthesis and In Situ Fourier-Transform Infrared Monitoring. Inorg Chem 2022; 61:3875-3885. [PMID: 35192334 DOI: 10.1021/acs.inorgchem.1c03340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization of metal-organic frameworks (MOFs) with noble metal nanoparticles (NPs) is a challenging task. Conventional impregnation by metals often leads to agglomerates on the surface of MOF crystals. Functional groups on linkers interact with metal precursors and promote the homogeneous distribution of NPs in the pores of MOFs, but their uncontrolled localization can block channels and thus hinder mass transport. To overcome this problem, we created nucleation centers only in the defective pores of the UiO-66 MOF via the postsynthesis exchange. First, we have introduced defects into UiO-66 using benzoic acid as a modulator. Second, the modulator was exchanged for amino-benzoic acid. As a result, amino groups have decorated mainly the defective pores and attracted the Pd precursor after impregnation. The interaction of the metal precursor with amino groups and the growth of NPs were monitored by in situ infrared spectroscopy. Three processes were distinguished: the gaseous HCl release, NH2 reactivation, and growth of extended Pd surfaces. Uniform Pd NPs were located in the pores because of the homogeneous distribution of the precursor and pore diffusion-limited nucleation rate. Our work demonstrates an alternative approach of controlled Pd incorporation into UiO-66 that is of great importance for the rational design of heterogeneous catalysts.
Collapse
Affiliation(s)
- Andrei A Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Vera V Butova
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Olga A Burachevskaya
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Aram L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Aleksei N Bulgakov
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Alina A Skorynina
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Yury V Rusalev
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Ilya V Pankov
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave., 194/2, 344090 Rostov-on-Don, Russia
| | - Vadim A Volochaev
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave., 194/2, 344090 Rostov-on-Don, Russia
| | - Majd Al-Omoush
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave., 194/2, 344090 Rostov-on-Don, Russia
| | - Gennadii S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave., 194/2, 344090 Rostov-on-Don, Russia
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| |
Collapse
|
7
|
Sun M, Wang F, Hu J, Lv G, Zhang X. N-containing silane coupling agent-assisted synthesis of highly dispersed and stable PdC phase for semi-hydrogenation of acetylene. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.116939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Rasheed T, Rizwan K, Bilal M, Sher F, Iqbal HMN. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices-a review. CHEMOSPHERE 2021; 282:131056. [PMID: 34111632 DOI: 10.1016/j.chemosphere.2021.131056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Pesticides are among the top-priority contaminants, which significantly contribute to environmental deterioration. Conventional techniques are not efficient enough to remove pollutants from environmental matrices. The development of functional materials has emerged as promising candidates to remove and degrade pesticides and related hazardous compounds. Furthermore, the nanohybrid materials with unique structural and functional characteristics, such as better material anchorage, mass transfer, electron-hole separation, and charged interaction make them a versatile option to treat and reduce pollutants from aqueous matrices. Herein, we present the current progress in the development of functional materials for the abatement of toxic pesticides. The physicochemical characteristics and pesticide-removal functionalities of various metallic functional materials (e.g., zirconium, zinc, titanium, tungsten, and iron), polymer, and carbon-based materials are critically discussed with suitable examples. Finally, the industrial-scale applications of the functional materials, concluding remarks, and future directions in this important arena are given.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry, and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Komal Rizwan
- Department of Chemistry University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| |
Collapse
|
9
|
Bailey T, Pinto M, Hondow N, Wu KJ. Continuous microfluidic synthesis of zirconium-based UiO-67 using a coiled flow invertor reactor. MethodsX 2021; 8:101246. [PMID: 34434769 PMCID: PMC8374184 DOI: 10.1016/j.mex.2021.101246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
Metal-organic frameworks (MOFs), particularly Zirconium based, have a wide variety of potential applications, such as catalysis and separation. However, these are held back by traditionally only being synthesised in long batch reactions, which causes the process to be expensive and limit the amount of reaction control available, leading to potential batch to batch variation in the products, such as particle size distributions. Microfluidics allows for batch reactions to be performed with enhanced mass/heat transfer, with the coiled flow inverter reactor (CFIR) setup narrowing the residence time distribution, which is key in controlling the particle size and crystallinity. In this work, a Zirconium based MOF, UiO-67, has been synthesised continuously using a microfluidic CFIR, which has allowed for the product to be formed in 30 min, a fraction of the traditional batch heating time of 24 h. The microfluidicially synthesised UiO-67 is also smaller product with a narrower particle size distribution (≈200 nm to ≈400 nm) than its batch counterpart (~500 nm to over 3 µm).
Collapse
Key Words
- BPDC, biphenyl-4,4-dicarboxylic acid
- CFIR, coiled flow inverter reactor
- Coiled flow inverter reactor (CFIR)
- Continuous synthesis
- DMF, dimethylformamide
- MOFs, Metal organic frameworks
- Metal-organic frameworks (MOFs)
- PXRD, powder X-Ray Diffraction
- RTD, residence time distribution
- SBU, secondary building unit
- SEM, scanning electron microscopy
- UiO, universitetet i Oslo
Collapse
|
10
|
Liu KG, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Bugaev AL, Usoltsev OA, Guda AA, Lomachenko KA, Brunelli M, Groppo E, Pellegrini R, Soldatov AV, van Bokhoven JA. Hydrogenation of ethylene over palladium: evolution of the catalyst structure by operando synchrotron-based techniques. Faraday Discuss 2021; 229:197-207. [PMID: 33656030 DOI: 10.1039/c9fd00139e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Palladium-based catalysts are exploited on an industrial scale for the selective hydrogenation of hydrocarbons. The formation of palladium carbide and hydride phases under reaction conditions changes the catalytic properties of the material, which points to the importance of operando characterization for determining the relation between the relative fractions of the two phases and the catalyst performance. We present a combined time-resolved characterization by X-ray absorption spectroscopy (in both near-edge and extended regions) and X-ray diffraction of a working palladium-based catalyst during the hydrogenation of ethylene in a wide range of partial pressures of ethylene and hydrogen. Synergistic coupling of multiple techniques allowed us to follow the structural evolution of the palladium lattice as well as the transitions between the metallic, hydride and carbide phases of palladium. The nanometric dimensions of the particles resulted in the considerable contribution of both surface and bulk carbides to the X-ray absorption spectra. During the reaction, palladium carbide is formed, which does not lead to a loss of activity. Unusual contraction of the unit cell parameter of the palladium lattice in the spent catalyst was observed upon increasing hydrogen partial pressure.
Collapse
Affiliation(s)
- Aram L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | - Oleg A Usoltsev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | - Kirill A Lomachenko
- BM23/ID24, European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Michela Brunelli
- DUBBLE CRG at the European Synchrotron Radiation Facility, Netherlands Organization for Scientific Research (NWO), 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Elena Groppo
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, via P. Giuria 7, 10125 Turin, Italy
| | - Riccardo Pellegrini
- Chimet S.p.A. - Catalyst Division, Via di Pescaiola 74, 52041 Viciomaggio Arezzo, Italy
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland and Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
12
|
Butova VV, Burachevskaya OA, Muratidi MA, Surzhikova II, Zolotukhin PV, Medvedev PV, Gorban IE, Kuzharov AA, Soldatov MA. Loading of the Model Amino Acid Leucine in UiO-66 and UiO-66-NH 2: Optimization of Metal-Organic Framework Carriers and Evaluation of Host-Guest Interactions. Inorg Chem 2021; 60:5694-5703. [PMID: 33830750 DOI: 10.1021/acs.inorgchem.0c03751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were considered as containers for bioactive chemicals. We provide a synthesis technique, which allowed the production of these materials suitable for biomedical applications. Both MOFs were characterized as single-phase porous materials composed of nanoparticles (30-65 nm) with a ζ-potential of more than 40 mV in water suspension. D,L-Leucine was applied as a model molecule, which allowed us to trace the mechanism of the loading process. We showed that after synthesis, amino groups of UiO-66-NH2 are coordinated with solvent residuals. It results in a similar route of leucine loading in UiO-66 and UiO-66-NH2 samples. Using joint data of thermogravimetric analysis and calorimetry, infrared spectroscopy, and nitrogen adsorption, we revealed that methyl groups of leucine molecules are responsible for bonding of an MOF matrix. We proposed the formation of bonds between CH3 groups and benzene rings of linkers via CH-π interaction. We also assessed the toxicity of the synthesized MOFs toward HeLa cells at 50 μg/mL after 24 h incubation and revealed no negative effects on the viability of the cells, prompting further biomedical research in the areas of small-molecule delivery and cell signaling and metabolism modulation.
Collapse
Affiliation(s)
- Vera V Butova
- The Smart Materials Research Institute, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russian Federation
| | - Olga A Burachevskaya
- The Smart Materials Research Institute, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russian Federation
| | - Maria A Muratidi
- The Smart Materials Research Institute, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russian Federation
| | - Iana I Surzhikova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 prosp. Stachki, Rostov-on-Don 344090, Russian Federation
| | - Peter V Zolotukhin
- The Smart Materials Research Institute, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russian Federation
| | - Pavel V Medvedev
- The Smart Materials Research Institute, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russian Federation
| | - Ivan E Gorban
- The Smart Materials Research Institute, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russian Federation
| | - Andrey A Kuzharov
- The Smart Materials Research Institute, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russian Federation
| | - Mikhail A Soldatov
- The Smart Materials Research Institute, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russian Federation
| |
Collapse
|
13
|
Butova VV, Pankin IA, Burachevskaya OA, Vetlitsyna-Novikova KS, Soldatov AV. New fast synthesis of MOF-801 for water and hydrogen storage: Modulator effect and recycling options. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Cui Z, Fan T, Chen L, Fang R, Li C, Li Y. Encapsulation of ultrafine Pd nanoparticles within the shallow layers of UiO-67 for highly efficient hydrogenation reactions. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9881-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
|
16
|
Usoltsev OA, Pnevskaya AY, Kamyshova EG, Tereshchenko AA, Skorynina AA, Zhang W, Yao T, Bugaev AL, Soldatov AV. Dehydrogenation of Ethylene on Supported Palladium Nanoparticles: A Double View from Metal and Hydrocarbon Sides. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1643. [PMID: 32825750 PMCID: PMC7560039 DOI: 10.3390/nano10091643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 02/03/2023]
Abstract
Adsorption of ethylene on palladium, a key step in various catalytic reactions, may result in a variety of surface-adsorbed species and formation of palladium carbides, especially under industrially relevant pressures and temperatures. Therefore, the application of both surface and bulk sensitive techniques under reaction conditions is important for a comprehensive understanding of ethylene interaction with Pd-catalyst. In this work, we apply in situ X-ray absorption spectroscopy, X-ray diffraction and infrared spectroscopy to follow the evolution of the bulk and surface structure of an industrial catalysts consisting of 2.6 nm supported palladium nanoparticles upon exposure to ethylene under atmospheric pressure at 50 °C. Experimental results were complemented by ab initio simulations of atomic structure, X-ray absorption spectra and vibrational spectra. The adsorbed ethylene was shown to dehydrogenate to C2H3, C2H2 and C2H species, and to finally decompose to palladium carbide. Thus, this study reveals the evolution pathway of ethylene on industrial Pd-catalyst under atmospheric pressure at moderate temperatures, and provides a conceptual framework for the experimental and theoretical investigation of palladium-based systems, in which both surface and bulk structures exhibit a dynamic nature under reaction conditions.
Collapse
Affiliation(s)
- Oleg A. Usoltsev
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Anna Yu. Pnevskaya
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Elizaveta G. Kamyshova
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Andrei A. Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Alina A. Skorynina
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; (W.Z.); (T.Y.)
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; (W.Z.); (T.Y.)
| | - Aram L. Bugaev
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| |
Collapse
|
17
|
Synthesis of ZnO Nanoparticles Doped with Cobalt Using Bimetallic ZIFs as Sacrificial Agents. NANOMATERIALS 2020; 10:nano10071275. [PMID: 32629755 PMCID: PMC7408057 DOI: 10.3390/nano10071275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023]
Abstract
We report here a simple two-stage synthesis of zinc–cobalt oxide nanoparticles. We used Zn/Co-zeolite imidazolate framework (ZIF)-8 materials as precursors for annealing and optional impregnation with a silicon source for the formation of a protective layer on the surface of oxide nanoparticles. Using bimetallic ZIFs allowed us to trace the phase transition of the obtained oxide nanoparticles from wurtzite ZnO to spinel Co3O4 structures. Using (X-ray diffraction) XRD and (X-ray Absorption Near Edge Structure) XANES techniques, we confirmed the incorporation of cobalt ions into the ZnO structure up to 5 mol.% of Co. Simple annealing of Zn/Co-ZIF-8 materials in the air led to the formation of oxide nanoparticles of about 20–30 nm, while additional treatment of ZIFs with silicon source resulted in nanoparticles of about 5–10 nm covered with protective silica layer. We revealed the incorporation of oxygen vacancies in the obtained ZnO nanoparticles using FTIR analysis. All obtained samples were comprehensively characterized, including analysis with a synchrotron radiation source.
Collapse
|
18
|
In Situ Time-Resolved Decomposition of β-Hydride Phase in Palladium Nanoparticles Coated with Metal-Organic Framework. METALS 2020. [DOI: 10.3390/met10060810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The formation of palladium hydrides is a well-known phenomenon, observed for both bulk and nanosized samples. The kinetics of hydrogen adsorption/desorption strongly depends on the particle size and shape, as well as the type of support and/or coating of the particles. In addition, the structural properties of hydride phases and their distribution also depend on the particle size. In this work, we report on the in situ characterization of palladium nanocubes coated with HKUST-1 metal-organic framework (Pd@HKUST-1) during desorption of hydrogen by means of synchrotron-based time-resolved X-ray powder diffraction. A slower hydrogen desorption, compared to smaller sized Pd nanoparticles was observed. Rietveld refinement of the time-resolved data revealed the remarkable stability of the lattice parameters of α- and β-hydride phases of palladium during the α- to β- phase transition, denoting the behavior more similar to the bulk materials than nanoparticles. The stability in the crystal sizes for both α- and β-hydride phases during the phase transition indicates that no sub-domains are formed within a single particle during the phase transition.
Collapse
|
19
|
Yang D, Gaggioli CA, Conley E, Babucci M, Gagliardi L, Gates BC. Synthesis and characterization of tetrairidium clusters in the metal organic framework UiO-67: Catalyst for ethylene hydrogenation. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridinedicarboxylic acid based on a terbium(III)− functionalized UIO-67 metal-organic framework. Mikrochim Acta 2020; 187:122. [DOI: 10.1007/s00604-020-4113-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 01/16/2023]
|
21
|
Usoltsev OA, Bugaev AL, Guda AA, Guda SA, Soldatov AV. Absorption of Hydrocarbons on Palladium Catalysts: From Simple Models Towards Machine Learning Analysis of X-ray Absorption Spectroscopy Data. Top Catal 2020. [DOI: 10.1007/s11244-020-01221-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
23
|
Bugaev AL, Skorynina AA, Braglia L, Lomachenko KA, Guda A, Lazzarini A, Bordiga S, Olsbye U, Lillerud KP, Soldatov AV, Lamberti C. Evolution of Pt and Pd species in functionalized UiO-67 metal-organic frameworks. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
The role of palladium carbides in the catalytic hydrogenation of ethylene over supported palladium nanoparticles. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.02.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Bugaev AL, Skorynina AA, Kamyshova EG, Lomachenko KA, Guda AA, Soldatov AV, Lamberti C. In situ X-ray absorption spectroscopy data during formation of active Pt- and Pd-sites in functionalized UiO-67 metal-organic frameworks. Data Brief 2019; 25:104280. [PMID: 31384654 PMCID: PMC6661504 DOI: 10.1016/j.dib.2019.104280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/30/2022] Open
Abstract
We report a series of Pd K-edge and Pt L 3-edge X-ray absorption spectra (XAS) collected in situ during thermal treatment of functionalized UiO-67-Pd and UiO-67-Pt metal-organic frameworks in inert and reducing atmospheres. We present raw synchrotron data from three subsequent experiments at different beamlines, normalized XAS spectra and k 2-weighted oscillatory χ(k) functions extracted from one of the datasets. Pd K-edge spectra were collected for the samples in 5% H2/He, 3% H2/He and pure He in the temperature range from room temperature (RT) to 450 °C. Pt L 3-edge were collected for the samples in 3% H2/He, 10% H2/He and pure He in the temperature range from RT to 300 °C. All spectra are reported together with the used atmosphere and temperature. For the analysis of all reported datasets, please see "Evolution of Pt and Pd species in functionalized UiO-67 metal-organic frameworks". Fourier-analysis of Pd K-edge is reported in "Formation and growth of Pd nanoparticles in UiO-67 MOF by in situ EXAFS".
Collapse
Affiliation(s)
- Aram L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| | - Alina A Skorynina
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| | - Elizaveta G Kamyshova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| | - Carlo Lamberti
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia.,Department of Physics and CrisDi Interdepartmental Centre, University of Turin, Via P. Giuria 1, 10125 Turin, Italy
| |
Collapse
|
26
|
Bugaev AL, Guda AA, Pankin IA, Groppo E, Pellegrini R, Longo A, Soldatov AV, Lamberti C. Operando X-ray absorption spectra and mass spectrometry data during hydrogenation of ethylene over palladium nanoparticles. Data Brief 2019; 24:103954. [PMID: 31193062 PMCID: PMC6515128 DOI: 10.1016/j.dib.2019.103954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 11/26/2022] Open
Abstract
We report the series of Pd K-edge X-ray absorption spectra collected during hydrogenation of ethylene with variable ethylene/hydrogen ratio over carbon supported palladium nanoparticles. The data presented in this article includes normalized X-ray absorption spectra, k 2-weighted oscillatory χ(k) functions extracted from the extended X-ray absorption fine structure (EXAFS) and k 2-weighted Fourier-transformed EXAFS data, χ(R). Each spectrum is reported together with the hydrogen, ethylene and helium flow rates, adjusted during its collection. In addition, time evolution of the ratio of m/Z signals of 30 and 28 registered by online mass spectrometer is presented. The data analysis is reported in Bugaev et al., Catal. Today, 2019 [1].
Collapse
Affiliation(s)
- Aram L. Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Alexander A. Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Ilia A. Pankin
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
- Department of Chemistry, INSTM and NIS Centre, University of Turin, Via Quarello 15, 10125 Turin, Italy
| | - Elena Groppo
- Department of Chemistry, INSTM and NIS Centre, University of Turin, Via Quarello 15, 10125 Turin, Italy
| | - Riccardo Pellegrini
- Chimet SpA - Catalyst Division, Via di Pescaiola 74, Viciomaggio Arezzo, 52041 Italy
| | - Alessandro Longo
- Netherlands Organization for Scientific Research at ESRF, BP 220, F-38043 Grenoble Cedex 9, France
- Istituto per Lo Studio Dei Materiali Nanostrutturati (ISMN)-CNR, UOS Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Carlo Lamberti
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
- Department of Physics and CrisDi Interdepartmental Centre, University of Turin, Via P. Giuria 1, 10125 Turin, Italy
| |
Collapse
|
27
|
Debnath D, Gupta AK, Ghosal PS. Recent advances in the development of tailored functional materials for the treatment of pesticides in aqueous media: A review. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Butova VV, Budnyk AP, Charykov KM, Vetlitsyna-Novikova KS, Lamberti C, Soldatov AV. Water as a structure-driving agent between the UiO-66 and MIL-140A metal-organic frameworks. Chem Commun (Camb) 2019; 55:901-904. [PMID: 30520891 DOI: 10.1039/c8cc07709f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a careful investigation of a selective phase formation in the zirconium-terephthalic acid system during solvothermal synthesis, which could result in the UiO-66 (Zr6O6(OH)4(BDC)6) or MIL-140A (ZrO(BDC)) metal-organic frameworks (MOFs). The introduction of water varies the phase from MIL-140A to UiO-66 by producing at the nucleation stage tetragonal ZrO2 nanoparticles, where the local arrangement of Zr and O atoms is similar to that in the UiO-66 SBU.
Collapse
Affiliation(s)
- Vera V Butova
- The Smart Materials Research Institute, Southern Federal University, Sladkova str. 178/24, Rostov-on-Don, 344090, Russia.
| | | | | | | | | | | |
Collapse
|
29
|
Yang D, Gates BC. Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04515] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
30
|
Butova VV, Budnyk AP, Charykov KM, Vetlitsyna-Novikova KS, Bugaev AL, Guda AA, Damin A, Chavan SM, Øien-Ødegaard S, Lillerud KP, Soldatov AV, Lamberti C. Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H 2-Adsorption Properties. Inorg Chem 2019; 58:1607-1620. [PMID: 30624909 DOI: 10.1021/acs.inorgchem.8b03087] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe the synthesis and corresponding full characterization of the set of UiO-66 metal-organic frameworks (MOFs) with 1,4-benzenedicarboxylate (C6H4(COOH)2, hereafter H2BDC) and 1,4-naphthalenedicarboxylate (C10H6(COOH)2, hereafter H2NDC) mixed linkers with NDC contents of 0, 25, 50, and 100%. Their structural (powder X-ray diffraction, PXRD), adsorptive (N2, H2, and CO2), vibrational (IR/Raman), and thermal stability (thermogravimetric analysis, TGA) properties quantitatively correlate with the NDC content in the material. The UiO-66 phase topology is conserved at all relative fractions of BDC/NDC. The comparison between the synchrotron radiation PXRD and 77 K N2-adsorption isotherms obtained on the 50:50 BDC/NDC sample and on a mechanical mixture of the pure BDC and NDC samples univocally proves that in the mixed linkers of the MOFs the BDC and NDC linkers are shared in each MOF crystal, discarding the hypothesis of two independent phases, where each crystal contains only BDC or NDC linkers. The careful tuning of the NDC content opens a way for controlled alteration of the sorption properties of the resulting material as testified by the H2-adsorption experiments, showing that the relative ranking of the materials in H2 adsorption is different in different equilibrium-pressure ranges: at low pressures, 100NDC is the most efficient sample, while with increasing pressure, its relative performance progressively declines; at high pressures, the ranking follows the BDC content, reflecting the larger internal pore volume available in the MOFs with a higher fraction of smaller linkers. The H2-adsorption isotherms normalized by the sample Brunauer-Emmett-Teller specific surface area show, in the whole pressure range, that the surface-area-specific H2-adsorption capabilities in UiO-66 MOFs increase progressively with increasing NDC content. Density functional theory calculations, using the hybrid B3LYP exchange correlation functional and quadruple-ζ with four polarization functions (QZ4P) basis set, show that the interaction of H2 with the H2NDC linker results in an adsorption energy larger by about 15% with respect to that calculated for adsorption on the H2BDC linker.
Collapse
Affiliation(s)
- Vera V Butova
- The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don 344090 , Russia
| | - Andriy P Budnyk
- The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don 344090 , Russia
| | - Konstantin M Charykov
- The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don 344090 , Russia
| | - Kristina S Vetlitsyna-Novikova
- The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don 344090 , Russia
| | - Aram L Bugaev
- The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don 344090 , Russia
| | - Alexander A Guda
- The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don 344090 , Russia
| | | | | | - Sigurd Øien-Ødegaard
- Centre for Materials Science and Nanotechnology, Department of Chemistry , University of Oslo , Sem Saelands vei 26 , Oslo 0315 , Norway
| | - Karl Petter Lillerud
- Centre for Materials Science and Nanotechnology, Department of Chemistry , University of Oslo , Sem Saelands vei 26 , Oslo 0315 , Norway
| | - Alexander V Soldatov
- The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don 344090 , Russia
| | - Carlo Lamberti
- The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don 344090 , Russia
| |
Collapse
|
31
|
Jiang D, Fang G, Tong Y, Wu X, Wang Y, Hong D, Leng W, Liang Z, Tu P, Liu L, Xu K, Ni J, Li X. Multifunctional Pd@UiO-66 Catalysts for Continuous Catalytic Upgrading of Ethanol to n-Butanol. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04014] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dahao Jiang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Geqian Fang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuqin Tong
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xianyuan Wu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yifan Wang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dongsen Hong
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wenhua Leng
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhe Liang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pengxiang Tu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liu Liu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kaiyue Xu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jun Ni
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaonian Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
32
|
Soldatov MA, Martini A, Bugaev AL, Pankin I, Medvedev PV, Guda AA, Aboraia AM, Podkovyrina YS, Budnyk AP, Soldatov AA, Lamberti C. The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Borfecchia E, Beato P, Svelle S, Olsbye U, Lamberti C, Bordiga S. Cu-CHA – a model system for applied selective redox catalysis. Chem Soc Rev 2018; 47:8097-8133. [DOI: 10.1039/c8cs00373d] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review the structural chemistry and reactivity of copper-exchanged molecular sieves with chabazite (CHA) topology, as an industrially applied catalyst in ammonia mediated reduction of harmful nitrogen oxides (NH3-SCR) and as a general model system for red-ox active materials (also the recent results in the direct conversion of methane to methanol are considered).
Collapse
Affiliation(s)
| | | | - Stian Svelle
- Center for Materials Science and Nanotechnology (SMN)
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| | - Unni Olsbye
- Center for Materials Science and Nanotechnology (SMN)
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| | - Carlo Lamberti
- The Smart Materials Research Institute
- Southern Federal University
- 344090 Rostov-on-Don
- Russia
- Department of Physics
| | - Silvia Bordiga
- Center for Materials Science and Nanotechnology (SMN)
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| |
Collapse
|