1
|
Laukaitiene J, Gujyte G, Kadusevicius E. Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options. Int J Mol Sci 2023; 24:12846. [PMID: 37629039 PMCID: PMC10454599 DOI: 10.3390/ijms241612846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that "time is muscle", which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing changes of the ischemic myocardium. As the latest studies show, metabolic changes after acute myocardial infarction (AMI) are inconsistent and depend on many constituents, which leads to many limitations and lack of unification. Nevertheless, one of the promising novel mechanistic approaches related to iron metabolism now plays an invaluable role in the ischemic heart research field. The heart, because of its high levels of oxygen consumption, is one of the most susceptible organs to iron-induced damage. In the past few years, a relatively new form of programmed cell death, called ferroptosis, has been gaining much attention in the context of myocardial infarction. This review will try to summarize the main novel metabolic pathways and show the pivotal limitations of the affected myocardium metabolomics.
Collapse
Affiliation(s)
- Jolanta Laukaitiene
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania;
- Cardiology Clinic, University Hospital, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania;
| | - Greta Gujyte
- Cardiology Clinic, University Hospital, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania;
| | - Edmundas Kadusevicius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
2
|
Bai X, Jiang M, Wang J, Yang S, Liu Z, Zhang H, Zhu X. Cyanidin attenuates the apoptosis of rat nucleus pulposus cells and the degeneration of intervertebral disc via the JAK2/STAT3 signal pathway in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2022; 60:427-436. [PMID: 35175176 PMCID: PMC8856032 DOI: 10.1080/13880209.2022.2035773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Cyanidin has been shown to have therapeutic potential in osteoarthritis. However, it is unclear whether cyanidin prevents the progression of intervertebral disc degeneration (IVDD). OBJECTIVE This study evaluates the effects of cyanidin on IVDD in vitro and in vivo. MATERIALS AND METHODS Nucleus pulposus cells (NPCs) isolated from lumbar IVD of 4-week-old male Sprague-Dawley (SD) rats were exposed to 20 ng/mL IL-1β, and then treated with different doses (0-120 µM) of cyanidin for 24 h. SD rats were classified into three groups (n = 8) and treated as follows: control (normal saline), IVDD (vehicle), IVDD + cyanidin (50 mg/kg). Cyanidin was administered intraperitoneally for 8 weeks. RESULTS The IC50 of cyanidin for NPCs was 94.78 µM, and cyanidin had no toxicity at concentrations up to 500 mg/kg in SD rats. Cyanidin inhibited the apoptosis of NPCs induced by IL-1β (12.73 ± 0.61% vs. 18.54 ± 0.60%), promoted collagen II (0.82-fold) and aggrecan (0.81-fold) expression, while reducing MMP-13 (1.02-fold) and ADAMTS-5 (1.40-fold) expression. Cyanidin increased the formation of autophagosomes in IL-1β-induced NPCs, and promoted LC3II/LC3I (0.83-fold) and beclin-1 (0.85-fold) expression, which could be reversed by chloroquine. Cyanidin inhibited the phosphorylation of JAK2 (0.47-fold) and STAT3 (0.53-fold) in IL-1β-induced NPCs. The effects of cyanidin could be enhanced by AG490. Furthermore, cyanidin mitigated disc degeneration in IVDD rats in vivo. DISCUSSION AND CONCLUSIONS Cyanidin improved the function of NPCs in IVDD by regulating the JAK2/STAT3 pathway, which may provide a novel alternative strategy for IVDD. The mechanism of cyanidin improving IVDD still needs further work for in-depth investigation.
Collapse
Affiliation(s)
- Xiaoliang Bai
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
- Department of Spine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meichao Jiang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Jie Wang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Shuai Yang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
- Department of Spine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiwei Liu
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Hongxin Zhang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Xiaojuan Zhu
- Department of Geratology, Baoding NO.1 Central Hospital, Baoding, China
- CONTACT Xiaojuan Zhu Department of Geratology, Baoding NO.1 Central Hospital, No.320 Great Wall North Street, Baoding, 071000, China
| |
Collapse
|
3
|
Raj P, Sayfee K, Parikh M, Yu L, Wigle J, Netticadan T, Zieroth S. Comparative and Combinatorial Effects of Resveratrol and Sacubitril/Valsartan alongside Valsartan on Cardiac Remodeling and Dysfunction in MI-Induced Rats. Molecules 2021; 26:5006. [PMID: 34443591 PMCID: PMC8401506 DOI: 10.3390/molecules26165006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
The development and progression of heart failure (HF) due to myocardial infarction (MI) is a major concern even with current optimal therapy. Resveratrol is a plant polyphenol with cardioprotective properties. Sacubitril/valsartan is known to be beneficial in chronic HF patients. In this study, we investigated the comparative and combinatorial benefits of resveratrol with sacubitril/valsartan alongside an active comparator valsartan in MI-induced male Sprague Dawley rats. MI-induced and sham-operated animals received vehicle, resveratrol, sacubitril/valsartan, valsartan alone or sacubitril/valsartan + resveratrol for 8 weeks. Echocardiography was performed at the endpoint to assess cardiac structure and function. Cardiac oxidative stress, inflammation, fibrosis, brain natriuretic peptide (BNP), creatinine and neutrophil gelatinase associated lipocalin were measured. Treatment with resveratrol, sacubitril/valsartan, valsartan and sacubitril/valsartan + resveratrol significantly prevented left ventricular (LV) dilatation and improved LV ejection fraction in MI-induced rats. All treatments also significantly reduced myocardial tissue oxidative stress, inflammation and fibrosis, as well as BNP. Treatment with the combination of sacubitril/valsartan and resveratrol did not show additive effects. In conclusion, resveratrol, sacubitril/valsartan, and valsartan significantly prevented cardiac remodeling and dysfunction in MI-induced rats. The reduction in cardiac remodeling and dysfunction in MI-induced rats was mediated by a reduction in cardiac oxidative stress, inflammation and fibrosis.
Collapse
Affiliation(s)
- Pema Raj
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (P.R.); (M.P.)
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada; (K.S.); (L.Y.)
- Agriculture and Agri-Food Canada, Winnipeg, MB R3T 2M9, Canada
| | - Karen Sayfee
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada; (K.S.); (L.Y.)
| | - Mihir Parikh
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (P.R.); (M.P.)
| | - Liping Yu
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada; (K.S.); (L.Y.)
| | - Jeffrey Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (P.R.); (M.P.)
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada; (K.S.); (L.Y.)
- Agriculture and Agri-Food Canada, Winnipeg, MB R3T 2M9, Canada
| | - Shelley Zieroth
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (P.R.); (M.P.)
- Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
4
|
Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E, Martorell M, Tonelli C, Petroni K, Docea AO, Calina D, Maroyi A. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front Pharmacol 2020; 11:1300. [PMID: 32982731 PMCID: PMC7479177 DOI: 10.3389/fphar.2020.01300] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are natural phenolic pigments with biological activity. They are well-known to have potent antioxidant and antiinflammatory activity, which explains the various biological effects reported for these substances suggesting their antidiabetic and anticancer activities, and their role in cardiovascular and neuroprotective prevention. This review aims to comprehensively analyze different studies performed on this class of compounds, their bioavailability and their therapeutic potential. An in-depth look in preclinical, in vitro and in vivo, and clinical studies indicates the preventive effects of anthocyanins on cardioprotection, neuroprotection, antiobesity as well as their antidiabetes and anticancer effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Debora Zorzan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehtap Kilic
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nouran M. Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
5
|
Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, Liobikas J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr 2019; 60:3352-3365. [PMID: 31718251 DOI: 10.1080/10408398.2019.1687421] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anthocyanins are water-soluble pigments providing certain color for various plant parts, especially in edible berries. Earlier these compounds were only known as natural food colorants, the stability of which depended on pH, light, storage temperature and chemical structure. However, due to the increase of the in vitro, in vivo experimental data, as well as of the epidemiological studies, today anthocyanins and their metabolites are also regarded as potential pharmaceutical compounds providing various beneficial health effects on either human or animal cardiovascular system, brain, liver, pancreas and kidney. Many of these effects are shown to be related to the free-radical scavenging and antioxidant properties of anthocyanins, or to their ability to modulate the intracellular antioxidant systems. However, it is generally overlooked that instead of acting exclusively as antioxidants certain anthocyanins affect the activity of mitochondria that are the main source of energy in cells. Therefore, the aim of the present review is to summarize the major knowledge about the chemistry and regulation of biosynthesis of anthocyanins in plants, to overview the facts on bioavailability, and to discuss the most recent experimental findings related to the beneficial health effects emphasizing mitochondria.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | | | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
6
|
Cyanidin-3-O-glucoside protects against cadmium-induced dysfunction of sex hormone secretion via the regulation of hypothalamus-pituitary-gonadal axis in male pubertal mice. Food Chem Toxicol 2019; 129:13-21. [PMID: 31014900 DOI: 10.1016/j.fct.2019.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
Abstract
Cadmium (Cd) has been generally recognized as an endocrine-disrupting chemical for its toxic effects on the hypothalamus-pituitary-gonadal (HPG) axis accompanied by dysfunction in sex hormone secretion. Particularly, exposure to Cd during puberty versus post-puberty exhibits differing age-dependent effects that require further examination. This study sought to determine if cyanidin-3-O-glucoside (C3G), a typical anthocyanin with neuroprotective bioactivity, could protect against Cd-induced sex hormone-disorder in Pubertal male mice. C3G treatment reversed the disruption of hormone levels and increased Gnrh1 gene expression in the hypothalamus. In addition, the levels of gonadotropins, including luteinizing hormone (LH) and follicle stimulating hormone (FSH), were reversed by C3G. Interestingly, C3G improved the expression of LH and FSH receptor in the testis in mice exposed to Cd. Furthermore, C3G activated the signaling pathway related to the synthesis of testosterone processing. In conclusion, C3G protected against Cd-induced dysfunction of sex hormone secretion through the regulation of the HPG axis in male mice during puberty. The results of this study suggest that consumption of anthocyanins can be protective against metal-induced male reproductive dysfunction.
Collapse
|
7
|
Ginseng Berry Extract Rich in Phenolic Compounds Attenuates Oxidative Stress but not Cardiac Remodeling post Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20040983. [PMID: 30813472 PMCID: PMC6412860 DOI: 10.3390/ijms20040983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 11/17/2022] Open
Abstract
The cardioprotective effects of ginseng root extracts have been reported. However, nothing is known about the myocardial actions of the phenolic compounds enriched in ginseng berry. Therefore, this study was undertaken to investigate the effects of American ginseng berry extract (GBE) in an experimental model of myocardial infarction (MI). Coronary artery ligation was performed on Sprague–Dawley male rats to induce MI after which animals were randomized into groups receiving either distilled water or GBE intragastrically for 8 weeks. Echocardiography and assays for malondialdehyde (MDA) and TNF-α were conducted. Flow cytometry was used to test the effects of GBE on T cell phenotypes and cytokine production. Although GBE did not improve the cardiac functional parameters, it significantly attenuated oxidative stress in post-MI rat hearts. GBE treatment also resulted in lower than control levels of TNF-α in post-MI rat hearts indicating a strong neutralizing effect of GBE on this cytokine. However, there was no effect of GBE on the proportion of different T cell subsets or ex-vivo cytokine production. Taken together, the present study demonstrates GBE reduces oxidative stress, however no effect on cardiac structure and function in post-MI rats. Moreover, reduction of TNF-α levels below baseline raises concern regarding its use as prophylactic or preventive adjunct therapy in cardiovascular disease.
Collapse
|
8
|
Louis XL, Raj P, Chan L, Zieroth S, Netticadan T, Wigle JT. Are the cardioprotective effects of the phytoestrogen resveratrol sex-dependent? 1. Can J Physiol Pharmacol 2018; 97:503-514. [PMID: 30576226 DOI: 10.1139/cjpp-2018-0544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease (CVD) is the number one cause of death in both men and women. Younger women have a lower risk for CVD, but their risk increases considerably after menopause when estrogen levels decrease. The cardiovascular protective properties of estrogen are mediated through decreasing vascular inflammation and progression of atherosclerosis, decreasing endothelial cell damage by preventing apoptosis and anti-hypertrophic mechanisms. Estrogen also regulates glucose and lipid levels, which are 2 important risk factors for CVD. Resveratrol (RES), a cardioprotective polyphenolic compound, is classified as a phytoestrogen due its capacity to bind to and modulate estrogen receptor signalling. Due to its estrogen-like property, we speculate that the cardioprotective effects of RES treatment could be sex-dependent. Based on earlier reports and more recent data from our lab presented here, we found that RES treatment may have more favourable cardiovascular outcomes in females than in males. This review will discuss estrogen- and phytoestrogen-mediated cardioprotection, with a specific focus on sex-dependent effects reported in preclinical and clinical studies.
Collapse
Affiliation(s)
- Xavier Lieben Louis
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| | - Pema Raj
- c Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2E 0J9, Canada.,d Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen, Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Laura Chan
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| | - Shelley Zieroth
- c Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2E 0J9, Canada.,e Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Thomas Netticadan
- d Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen, Research Centre, Winnipeg, MB R2H 2A6, Canada.,f Agriculture and Agri-Food Canada, Winnipeg, MB R3C 3G7, Canada
| | - Jeffrey T Wigle
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| |
Collapse
|
9
|
Sandoval-Ramírez BA, Catalán Ú, Fernández-Castillejo S, Rubió L, Macià A, Solà R. Anthocyanin Tissue Bioavailability in Animals: Possible Implications for Human Health. A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11531-11543. [PMID: 30345762 DOI: 10.1021/acs.jafc.8b04014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anthocyanins (ACNs) are promising health-enhancing phenolic compounds. We focus on ACN animal tissue bioavailability to provide an evidentiary link between tissue ACNs and their associated health properties. We performed a systematic review of electronic libraries; 279 results were retrieved, and 13 publications met inclusion criteria. Extracted information included animal model employed, administration route, doses, analysis method, and ACN concentration values in tissues. Total ACN concentrations were detected in mice kidney (2.17 × 105 pmol/g), liver (1.73 × 105 pmol/g), heart (3.6 × 103 pmol/g), and lung (1.16 × 105 pmol/g); and in pig brain (6.08 × 103 pmol/g). ACNs showed a predominance of parent ACNs in long-term experiments versus an ACN metabolite predominance in short-term experiments. ACNs detected in animal tissues, such as cyanidin-3-glucoside, suggest it may have an important role in human health. This information could be useful to determine proper ACN-intake biomarkers in biological samples in futures studies.
Collapse
Affiliation(s)
- Berner Andrée Sandoval-Ramírez
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut) , Universitat Rovira i Virgili , 43201 Reus , Spain
| | - Úrsula Catalán
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut) , Universitat Rovira i Virgili , 43201 Reus , Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV) , 43204 Reus , Spain
| | - Sara Fernández-Castillejo
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut) , Universitat Rovira i Virgili , 43201 Reus , Spain
| | - Laura Rubió
- Food Technology Department, Agrotecnio Research Center , University of Lleida , Av/78 Alcalde Rovira Roure 191 , 25198 Lleida , Spain
| | - Alba Macià
- Food Technology Department, Agrotecnio Research Center , University of Lleida , Av/78 Alcalde Rovira Roure 191 , 25198 Lleida , Spain
| | - Rosa Solà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut) , Universitat Rovira i Virgili , 43201 Reus , Spain
- Hospital Universitari Sant Joan de Reus (HUSJR) , 43204 Reus , Spain
| |
Collapse
|
10
|
Aloud BM, Raj P, McCallum J, Kirby C, Louis XL, Jahan F, Yu L, Hiebert B, Duhamel TA, Wigle JT, Blewett H, Netticadan T. Cyanidin 3-O-glucoside prevents the development of maladaptive cardiac hypertrophy and diastolic heart dysfunction in 20-week-old spontaneously hypertensive rats. Food Funct 2018; 9:3466-3480. [PMID: 29878020 DOI: 10.1039/c8fo00730f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study investigated the effects of cyanidin 3-O-glucoside (C3G) in cardiomyocytes (CM) and fibroblasts exposed to endothelin 1 (ET1), as well as in the spontaneously hypertensive rat (SHR) model, alone or in combination with hydrochlorothiazide (HCT). Adult rat CM and cardiac fibroblasts (CF) were pretreated with C3G and co-incubated with ET1 (10-7 M) for 24 hours. Five-week-old male SHR and their normotensive controls, Wistar-Kyoto rats (WKY), received one of 4 treatments via oral gavage daily for 15 weeks: (1) water (control); (2) C3G (10 mg per kg per day); (3) HCT (10 mg per kg per day); (4) C3G + HCT (10 mg per kg per day each). Blood pressure (BP) was measured at 1, 8 and 15 weeks. Echocardiography measurements were performed at 15 weeks. C3G prevented ET1-induced CM death and hypertrophy. Stimulating CF with ET1 did not induce their phenoconversion; nevertheless, C3G inhibited un-stimulated CF differentiation. HCT slowed the rise of systolic BP (SBP) in the SHR over time (week 1: SHRs control = 161 ± 6.3 mmHg, SHRs HCT = 129 ± 6.3 mmHg; week 15: SHRs control = 201 ± 7.3 mmHg, SHRs HCT = 168 ± 7.3 mmHg), but C3G had no effect on SBP (week 1: SHRs control = 161 ± 6.3 mmHg, SHRs C3G = 126 ± 6.3 mmHg; week 15: SHRs control = 201 ± 7.3 mmHg, SHRs C3G = 186 ± 7.3 mmHg). SHRs treated with C3G, HCT, and C3G + HCT had lower left ventricular mass and shorter isovolumetric relaxation time compared to control SHRs. C3G ameliorated cardiac hypertrophy and diastolic dysfunction in SHRs.
Collapse
Affiliation(s)
- Basma Milad Aloud
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cyanidin-3-glucoside Alleviates 4-Hydroxyhexenal-Induced NLRP3 Inflammasome Activation via JNK-c-Jun/AP-1 Pathway in Human Retinal Pigment Epithelial Cells. J Immunol Res 2018; 2018:5604610. [PMID: 29854843 PMCID: PMC5952446 DOI: 10.1155/2018/5604610] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
Recently, the NLRP3 inflammasome activation in the eyes has been known to be associated with the pathogenesis of age-related macular degeneration. The aim of this study was to investigate the protective effects of cyanidin-3-glucoside (C3G), an important anthocyanin with great potential for preventing eye diseases, against 4-hydroxyhexenal- (HHE-) induced inflammatory damages in human retinal pigment epithelial cells, ARPE-19. We noticed that C3G pretreatment to the ARPE-19 cells rescued HHE-induced antiproliferative effects. Cell apoptosis ratio induced by HHE was also decreased by C3G, measured by flow cytometry. The activation of NLRP3 inflammasome induced by HHE was found with increases of caspase-1 activity, proinflammatory cytokine releases (IL-1β and IL-18), and NLRP3 inflammasome-related gene expressions (NLRP3, IL-1β, IL-18, and caspase-1). The C3G showed potent inhibitive effects on these NLRP3 inflammasome activation hallmarks induced by HHE. Moreover, we noticed that the C3G's pretreatment leads to a delayed and a decreased JNK activation in HHE-challenged ARPE-19 cells. Finally, using a luciferase reporter gene assay system, we demonstrated that HHE-induced activation protein- (AP-) 1 transcription activity was abolished by C3G pretreatment in a dose-dependent manner. Taken together, these data showed that HHE leads to inflammatory damages to ARPE-19 cells while C3G has great protective effects, highlighting future potential applications of C3G against AMD-associated inflammation.
Collapse
|
12
|
Rakhshan K, Azizi Y, Naderi N, Ghardashi Afousi A, Aboutaleb N. ELABELA (ELA) Peptide Exerts Cardioprotection Against Myocardial Infarction by Targeting Oxidative Stress and the Improvement of Heart Function. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9707-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|