1
|
Bhati FK, Bhat MK. An anti-neoplastic tale of metformin through its transport. Life Sci 2024; 357:123060. [PMID: 39278619 DOI: 10.1016/j.lfs.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Metformin is an attractive candidate drug among all the repurposed drugs for cancer. Extensive preclinical and clinical research has evaluated its efficacy in cancer therapy, revealing a mixed outcome in clinical settings. To fully exploit metformin's therapeutic potential, understanding cellular factors relevant to its transport and accumulation in cancer cells needs to be understood. This review highlights the relevance of metformin transporter status towards its anti-cancer potential. Metformin transporters are regulated at pre-transcriptional, transcriptional, and post-translational levels. Moreover, the tumour microenvironment can also influence metformin accumulation in cancer cells. Also, Metformin treatment can regulate its transporters by altering global DNA methylation, protein acetylation, and transcription factors. Importantly, metformin transporters not only influence chemotherapeutic drug toxicity but are also associated with the prognosis and survival of individuals having cancer. Strategic decisions based on the expression and regulation of metformin transporters holds promise for its therapeutic implications and relevance.
Collapse
Affiliation(s)
- Firoz Khan Bhati
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
2
|
Bai W, Tan H, Duan X, Hu J, Wang F, Wu J, Bai J, Hu J. Inhibitory effects of flavonoids on organic cation transporter 1: Implications for food/herb-drug interactions and hepatoprotective effects. Food Chem Toxicol 2024; 193:114983. [PMID: 39245401 DOI: 10.1016/j.fct.2024.114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Organic cation transporter 1 (OCT1, gene symbol: SLC22A1) is mainly responsible for the hepatic uptake of various cationic drugs, closely associated with drug-induced liver injury (DILI). Screening and identifying potent OCT1 inhibitors with little toxicity in natural products is of great value in alleviating OCT1-mediated liver injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions (FDIs). Our objective was to investigate potential inhibitors of OCT1 from 96 flavonoids, evaluate the hepatoprotective effects on retrorsine-induced liver injury, and clarify the structure-activity relationships of flavonoids with OCT1. Thirteen flavonoids exhibited significant inhibition (>50%) on OCT1 in OCT1-HEK293 cells. Among them, the five strongest flavonoid inhibitors (IC50 < 10 μM), including α-naphthoflavone, apigenin, 6-hydroxyflavone, luteolin, and isosilybin markedly decreased oxaliplatin-induced cytotoxicity. In retrorsine-induced liver injury models, they also reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to different levels, the best of which was 6-hydroxyflavone. The pharmacophore model clarified that hydrogen bond acceptors at the 4,8,5' position might play a vital role in the inhibitory effect of flavonoids on OCT1. Taken together, our findings would pave the way to predicting the potential risks of flavonoid-related FDIs in humans and optimizing flavonoid structure to alleviate OCT1-mediated liver injury.
Collapse
Affiliation(s)
- Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinjin Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Bai
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
5
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
6
|
Guo C, Wang KKA, Nolan EM. Investigation of Siderophore-Platinum(IV) Conjugates Reveals Differing Antibacterial Activity and DNA Damage Depending on the Platinum Cargo. ACS Infect Dis 2024; 10:1250-1266. [PMID: 38436588 DOI: 10.1021/acsinfecdis.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The growing threat of bacterial infections coupled with the dwindling arsenal of effective antibiotics has heightened the urgency for innovative strategies to combat bacterial pathogens, particularly Gram-negative strains, which pose a significant challenge due to their outer membrane permeability barrier. In this study, we repurpose clinically approved anticancer agents as targeted antibacterials. We report two new siderophore-platinum(IV) conjugates, both of which consist of an oxaliplatin-based Pt(IV) prodrug (oxPt(IV)) conjugated to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron acquisition. We demonstrate that l/d-Ent-oxPt(IV) (l/d-EOP) are selectively delivered into the Escherichia coli cytoplasm, achieving targeted antibacterial activity, causing filamentous morphology, and leading to enhanced Pt uptake by bacterial cells but reduced Pt uptake by human cells. d-EOP exhibits enhanced potency compared to oxaliplatin and l-EOP, primarily attributed to the intrinsic antibacterial activity of its non-native siderophore moiety. To further elucidate the antibacterial activity of Ent-Pt(IV) conjugates, we probed DNA damage caused by l/d-EOP and the previously reported cisplatin-based conjugates l/d-Ent-Pt(IV) (l/d-EP). A comparative analysis of these four conjugates reveals a correlation between antibacterial activity and the ability to induce DNA damage. This work expands the scope of Pt cargos targeted to the cytoplasm of Gram-negative bacteria via Ent conjugation, provides insight into the cellular consequences of Ent-Pt(IV) conjugates in E. coli, and furthers our understanding of the potential of Pt-based therapeutics for antibacterial applications.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kwo-Kwang A Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Cong S, Bai S, Zhang M, Bi Y, Wang Y, Jin S, He H. A study on metabolic characteristics and metabolic markers of gastrointestinal tumors. Cancer Biol Ther 2023; 24:2255369. [PMID: 37705174 PMCID: PMC10503448 DOI: 10.1080/15384047.2023.2255369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/28/2022] [Accepted: 06/06/2023] [Indexed: 09/15/2023] Open
Abstract
Tumor cells have significant heterogeneity in metabolism and are closely related to prognosis, gene mutation, and subtype. However, this association has not been demonstrated in reports of gastrointestinal tumors. In this study, we constructed four metabolic subtypes and identified four gene signatures using the expression data and clinical information of 252 metabolism-related genes from TCGA and NCBI databases for gastric adenocarcinoma (STAD) and colorectal cancer (COAD and READ). MC1 had the worst prognosis compared to other classifications. GSig1 was mainly related to drug metabolism and was the highest in MC1 with the worst prognosis, while the other subtypes were mainly related to glucose metabolism pathways. This difference also existed in other different malignant tumors. In addition, metabolic typing was associated with chemotherapeutic drug response and tumor heterogeneity, which indicated that monitoring metabolic typing could contribute to drug efficacy and gene-targeted therapy. In conclusion, we identified differences among subtypes in clinical characteristics such as prognosis and revealed the potential function of metabolic subtype in response to chemotherapeutic agents and oncogene mutations. This work highlighted the potential clinical meaning of metabolic subtype and characteristics in drug therapy and prognosis assessment of malignant tumors.
Collapse
Affiliation(s)
- Shan Cong
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - shanshan Bai
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Minghao Zhang
- Department of Vascular Interventional, Affiliated Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - yanfang Bi
- Department of Nursing, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - yu Wang
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - shi Jin
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - hui He
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
8
|
Gabano E, Gariboldi MB, Marras E, Barbato F, Ravera M. Platinum(IV) combo prodrugs containing cyclohexane-1 R,2 R-diamine, valproic acid, and perillic acid as a multiaction chemotherapeutic platform for colon cancer. Dalton Trans 2023; 52:11349-11360. [PMID: 37530512 DOI: 10.1039/d3dt01876h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The complex [PtCl2(cyclohexane-1R,2R-diamine)] has been combined in a Pt(IV) molecule with two different bioactive molecules (i.e., the histone deacetylase inhibitor 2-propylpentanoic acid or valproic acid, VPA, and the potential antimetastatic molecule 4-isopropenylcyclohexene-1-carboxylic acid or perillic acid, PA) in order to obtain a set of multiaction or multitarget antiproliferative agents. In addition to traditional thermal synthetic procedures, microwave-assisted heating was used to speed up their preparation. All Pt(IV) complexes showed antiproliferative activity on four human colon cancer cell lines (namely HCT116, HCT8, RKO and HT29) in the nanomolar range, considerably better than those of [PtCl2(cyclohexane-1R,2R-diamine)], VPA, PA, and the reference drug oxaliplatin. The synthesized complexes showed pro-apoptotic and pro-necrotic effects and the ability to induce cell cycle alterations. Moreover, the downregulation of histone deacetylase activity, leading to an increase in histone H3 and H4 levels, and the antimigratory activity, indicated by the reduction of the levels of matrix metalloproteinases MMP2 and MMP9, demonstrated the multiaction nature of the complexes, which showed biological properties similar to or better than those of VPA and PA, but at lower concentrations, probably due to the lipophilicity of the combo molecule that increases the intracellular concentration of the single components (i.e., [PtCl2(cyclohexane-1R,2R-diamine)], VPA and PA).
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Piazza Sant'Eusebio 5, 13100 Vercelli, Italy
| | - Marzia Bruna Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Francesca Barbato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
9
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
10
|
Wang X, Lou Q, Fan T, Zhang Q, Yang X, Liu H, Fan R. Copper transporter Ctr1 contributes to enhancement of the sensitivity of cisplatin in esophageal squamous cell carcinoma. Transl Oncol 2023; 29:101626. [PMID: 36689863 PMCID: PMC9876974 DOI: 10.1016/j.tranon.2023.101626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence has demonstrated that Ctr1 plays a crucial role in the regulation of cisplatin uptake in a variety of tumors. The purpose of this study was to investigate its role in mediating cisplatin sensitivity in ESCC cells. Immunohistochemistry (IHC), In situ hybridization (ISH) and semi-quantitative RT-PCR were used to detect Ctr1 expressions in ESCC tissues. qRT-PCR and Western blot was performed to investigate the levels of Ctr1 mRNA and protein in ESCC cells. CCK-8, Flow cytometry and Transwell chamber assay were carried out to examine cell proliferation, apoptosis, migration and invasion abilities in ESCC cells. We found that ESCC tissues and cells had higher Ctr1 level than normal tissues and Het-1A cell. Ctr1 expression was correlated with histological grade, invasion depth, TNM staging and lymph node metastasis in ESCC patients. Ctr1 depletion reduced the suppressive role of proliferation, migration and invasion as well as the inductive role of cell apoptosis and Caspase-3 activity evoked by cisplatin, whereas Ctr1 upregulation combined with cisplatin exerted the synergistic role in regulation of proliferation, apoptosis, Caspase-3 activity, migration and invasion in ESCC. In conclusion, Ctr1 is implicated in ESCC development and progression and its expression may be a novel predictor for assessment of cisplatin sensitivity in ESCC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qianqian Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Qing Zhang
- Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, China
| | - Xiangxiang Yang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China,Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, China,Corresponding author at: College of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China.
| | - Ruitai Fan
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China,Corresponding author at: Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
11
|
Chen L, Chen L, Li X, Qin L, Zhu Y, Zhang Q, Tan D, He Y, Wang YH. Transcriptomic profiling of hepatic tissues for drug metabolism genes in nonalcoholic fatty liver disease: A study of human and animals. Front Endocrinol (Lausanne) 2023; 13:1034494. [PMID: 36686439 PMCID: PMC9845619 DOI: 10.3389/fendo.2022.1034494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Background Drug metabolism genes are involved in the in vivo metabolic processing of drugs. In previous research, we found that a high-fat diet affected the transcript levels of mouse hepatic genes responsible for drug metabolism. Aims Our research intends to discover the drug metabolism genes that are dysregulated at the transcriptome level in nonalcoholic fatty liver disease (NAFLD). Methods We analyzed the transcriptome for drug metabolism genes of 35 human liver tissues obtained during laparoscopic cholecystectomy. Additionally, we imported transcriptome data from mice fed a high-fat diet in previous research and two open-access Gene Expression Omnibus (GEO) datasets (GSE63067 and GSE89632). Then, using quantitative real-time polymerase chain reaction (qRT-PCR), we cross-linked the differentially expressed genes (DEGs) in clinical and animal samples and validated the common genes. Results In this study, we identified 35 DEGs, of which 33 were up-regulated and two were down-regulated. Moreover, we found 71 DEGs (39 up- and 32 down-regulated), 276 DEGs (157 up- and 119 down-regulated), and 158 DEGs (117 up- and 41 down-regulated) in the GSE63067, GSE89632, and high-fat diet mice, respectively. Of the 35 DEGs, nine co-regulated DEGs were found in the Venn diagram (CYP20A1, CYP2U1, SLC9A6, SLC26A6, SLC31A1, SLC46A1, SLC46A3, SULT1B1, and UGT2A3). Conclusion Nine significant drug metabolism genes were identified in NAFLD. Future research should investigate the impacts of these genes on drug dose adjustment in patients with NAFLD. Clinical Trial Registration http://www.chictr.org.cn, identifier ChiCTR2100041714.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Lu Chen
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xu Li
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Lin Qin
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Zhu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianru Zhang
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu-He Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Key Laboratory of the Ministry of Education of the Basic Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Woods JJ, Novorolsky RJ, Bigham NP, Robertson GS, Wilson JJ. Dinuclear nitrido-bridged osmium complexes inhibit the mitochondrial calcium uniporter and protect cortical neurons against lethal oxygen-glucose deprivation. RSC Chem Biol 2023; 4:84-93. [PMID: 36685255 PMCID: PMC9811523 DOI: 10.1039/d2cb00189f] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of mitochondrial calcium uptake mediated by the mitochondrial calcium uniporter (MCU) is implicated in several pathophysiological conditions. Dinuclear ruthenium complexes are effective inhibitors of the MCU and have been leveraged as both tools to study mitochondrial calcium dynamics and potential therapeutic agents. In this study, we report the synthesis and characterization of Os245 ([Os2(μ-N)(NH3)8Cl2]3+) which is the osmium-containing analogue of our previously reported ruthenium-based inhibitor Ru265. This complex and its aqua-capped analogue Os245' ([Os2(μ-N)(NH3)8(OH2)2]5+) are both effective inhibitors of the MCU in permeabilized and intact cells. In comparison to the ruthenium-based inhibitor Ru265 (k obs = 4.92 × 10-3 s-1), the axial ligand exchange kinetics of Os245 are two orders of magnitude slower (k obs = 1.63 × 10-5 s-1) at 37 °C. The MCU-inhibitory properties of Os245 and Os245' are different (Os245 IC50 for MCU inhibition = 103 nM; Os245' IC50 for MCU inhibition = 2.3 nM), indicating that the axial ligands play an important role in their interactions with this channel. We further show that inhibition of the MCU by these complexes protects primary cortical neurons against lethal oxygen-glucose deprivation. When administered in vivo to mice (10 mg kg-1), Os245 and Os245' induce seizure-like behaviors in a manner similar to the ruthenium-based inhibitors. However, the onset of these seizures is delayed, a possible consequence of the slower ligand substitution kinetics for these osmium complexes. These findings support previous studies that demonstrate inhibition of the MCU is a promising therapeutic strategy for the treatment of ischemic stroke, but also highlight the need for improved drug delivery strategies to mitigate the pro-convulsant effects of this class of complexes before they can be implemented as therapeutic agents. Furthermore, the slower ligand substitution kinetics of the osmium analogues may afford new strategies for the development and modification of this class of MCU inhibitors.
Collapse
Affiliation(s)
- Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University Ithaca NY 14853 USA
| | - Robyn J Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute Halifax NS B3H 0A8 Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute Halifax NS B3H 0A8 Canada
| | - Nicholas P Bigham
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - George S Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute Halifax NS B3H 0A8 Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute Halifax NS B3H 0A8 Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute Halifax NS B3H0A8 Canada
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| |
Collapse
|
13
|
Zhao Y, Zhao H, Zhang D, Quan Q, Ge Y, Li L, Guo L. YTHDF3 Facilitates eIF2AK2 and eIF3A Recruitment on mRNAs to Regulate Translational Processes in Oxaliplatin-Resistant Colorectal Cancer. ACS Chem Biol 2022; 17:1778-1788. [PMID: 35708211 DOI: 10.1021/acschembio.2c00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxaliplatin, as a first-line drug, frequently causes chemo-resistance in colorectal cancer (CRC). The role of N6-methyladenosine (m6A) modification in multiple biological functions has been well studied. However, the molecular mechanisms underlying m6A methylation in modulating anti-cancer drug resistance in CRC remain obscure. In the present study, we found that YTH m6A RNA-binding protein 3 (YTHDF3) was highly expressed in oxaliplatin-resistant (OXAR) CRC tissues and cells. Moreover, we observed that YTHDF3 could recognize the 5' untranslated region of significantly m6A-methylated RNAs, which were associated with tumor resistance and recruit eukaryotic translation initiation factor 3 subunit A (eIF3A) to facilitate the translation of these target genes. Furthermore, we determined that eukaryotic translation initiation factor 2 alpha kinase 2 (eIF2AK2) bridged YTHDF3 and eIF3A, enhancing the stability of the YTHDF3/eIF3A complex in OXAR CRC cells. Taken together, our data identified YTHDF3 as a novel hallmark and revealed the molecular mechanism of YTHDF3 on gene translation via coordination with eIF2AK2 in OXAR CRC cells.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongchao Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Danhuan Zhang
- Department of Nephrology, Shanghai Tongren Hospital, Shanghai 200336, China
| | - Qiuying Quan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yan Ge
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
14
|
Tsvetkova D, Ivanova S. Application of Approved Cisplatin Derivatives in Combination Therapy against Different Cancer Diseases. Molecules 2022; 27:2466. [PMID: 35458666 PMCID: PMC9031877 DOI: 10.3390/molecules27082466] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/03/2023] Open
Abstract
The problems with anticancer therapy are resistance and toxicity. From 3000 Cisplatin derivatives tested as antitumor agents, most of them have been rejected, due to toxicity. The aim of current study is the comparison of therapeutic combinations of the currently applied in clinical practice: Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin, Lobaplatin, Heptaplatin, and Satraplatin. The literature data show that the strategies for the development of platinum anticancer agents and bypassing of resistance to Cisplatin derivatives and their toxicity are: combination therapy, Pt IV prodrugs, the targeted nanocarriers. The very important strategy for the improvement of the antitumor effect against different cancers is synergistic combination of Cisplatin derivatives with: (1) anticancer agents-Fluorouracil, Gemcitabine, Cytarabine, Fludarabine, Pemetrexed, Ifosfamide, Irinotecan, Topotecan, Etoposide, Amrubicin, Doxorubicin, Epirubicin, Vinorelbine, Docetaxel, Paclitaxel, Nab-Paclitaxel; (2) modulators of resistant mechanisms; (3) signaling protein inhibitors-Erlotinib; Bortezomib; Everolimus; (4) and immunotherapeutic drugs-Atezolizumab, Avelumab, Bevacizumab, Cemiplimab, Cetuximab, Durvalumab, Erlotinib, Imatinib, Necitumumab, Nimotuzumab, Nivolumab, Onartuzumab, Panitumumab, Pembrolizumab, Rilotumumab, Trastuzumab, Tremelimumab, and Sintilimab. An important approach for overcoming the drug resistance and reduction of toxicity of Cisplatin derivatives is the application of nanocarriers (polymers and liposomes), which provide improved targeted delivery, increased intracellular penetration, selective accumulation in tumor tissue, and enhanced therapeutic efficacy. The advantages of combination therapy are maximum removal of tumor cells in different phases; prevention of resistance; inhibition of the adaptation of tumor cells and their mutations; and reduction of toxicity.
Collapse
Affiliation(s)
- Dobrina Tsvetkova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, Dunav Str. 2, 1000 Sofia, Bulgaria
| | - Stefka Ivanova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Medical University-Pleven, Kliment Ohridski Str. 1, 5800 Pleven, Bulgaria;
| |
Collapse
|
15
|
Hashemi R, Peymani M, Ghaedi K, Saffar H. In silico identification of the specific pathways in each stage of colorectal cancer and the association of their top genes with drug resistance and sensitivity. Med Oncol 2022; 39:57. [PMID: 35150347 DOI: 10.1007/s12032-022-01661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Investigating the specific pathways and their relation with survival, mutation, sensitivity, and resistance to various drugs in different stages of colorectal cancer (CRC) could be effective in cancer treatment. In this study, identifying the specific pathways in each stage of CRC compared to other stages was considered via meta-analytic methodology. The Cancer Genome Atlas (TCGA) data with gene set enrichment analysis (GSEA) software, and CRC RNA-Seq data were used to enrich and determine specific pathways as well as to evaluate the expression level of TOP RANK genes. In addition, The Cancer Cell Line Encyclopedia (CCLE) data were used to correlate candidate genes with drug resistance. Finally, using Gene Expression Omnibus (GEO) data, drugs that could affect the expression level of these genes were identified. Three specific molecular pathways, including oxidative phosphorylation (OXPHOS), regulation of transporter activity (RTA), and negative regulation of transmembrane receptor protein serine threonine kinase (NRSTK) have been identified as hub pathways for stages II, III, and IV, respectively (P < 0.01). The expression level of TOP RANK genes in each stage increased on average twice compared to other stages (P < 0.01), and CCNB1, DKK1, NOG genes were associated with survival in stages II and IV, respectively (P < 0.01). The expression of some selected genes had a correlation with drug resistance and sensitivity (P < 0.05). GEO data revealed that gamma-tocotrienol (g-T3), NSC319726, and Casiopeina Cas-II-gly may reduce the expression of, NDUFAF1, CCNB1, DKK1 genes, respectively (P < 0.01). Specific pathways and TOP RANK genes could lead to cancer progression and malignancy, resistance to chemotherapy drugs, poor survival in patients, and metastasis. Therefore, identification and targeting these pathways at each stage could be crucial in inhibiting progression at different stages of CRC.
Collapse
Affiliation(s)
- Reza Hashemi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Kamran Ghaedi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Esfahän, Iran
| | - Hana Saffar
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Khan MA, Vikramdeo KS, Sudan SK, Singh S, Wilhite A, Dasgupta S, Rocconi RP, Singh AP. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin Cancer Biol 2021; 77:99-109. [PMID: 34418576 PMCID: PMC8665066 DOI: 10.1016/j.semcancer.2021.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Annelise Wilhite
- Department of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Santanu Dasgupta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Rodney Paul Rocconi
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States.
| |
Collapse
|
17
|
Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol 2021; 15:3527-3544. [PMID: 34390123 PMCID: PMC8637554 DOI: 10.1002/1878-0261.13079] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/10/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer cells reprogram their copper metabolism to adapt to adverse microenvironments, such as oxidative stress. The copper chelator elesclomol has been reported to have considerable anticancer efficacy, but the underlying mechanisms remain largely unknown. In this study, we found that elesclomol-mediated copper overload inhibits colorectal cancer (CRC) both in vitro and in vivo. Elesclomol alone promotes the degradation of the copper transporter copper-transporting ATPase 1 (ATP7A), which retards the proliferation of CRC cells. This property distinguishes it from several other copper chelators. Combinational treatment of elesclomol and copper leads to copper retention within mitochondria due to ATP7A loss, leading to reactive oxygen species accumulation, which in turn promotes the degradation of SLC7A11, thus further enhancing oxidative stress and consequent ferroptosis in CRC cells. This effect accounts for the robust antitumour activity of elesclomol against CRC, which can be reversed by the administration of antioxidants and ferroptosis inhibitors, as well as the overexpression of ATP7A. In summary, our findings indicate that elesclomol-induced copper chelation inhibits CRC by targeting ATP7A and regulating ferroptosis.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jie Lin
- Department of Medical OncologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
18
|
Gu Z, Wei G, Zhu L, Zhu L, Hu J, Li Q, Cai G, Lu H, Liu M, Chen C, Ji Y, Li G, Huo J. Preventive Efficacy and Safety of Yiqi-Wenjing-Fang Granules on Oxaliplatin-Induced Peripheral Neuropathy: A Protocol for a Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5551568. [PMID: 34630609 PMCID: PMC8494586 DOI: 10.1155/2021/5551568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Background. Oxaliplatin-induced peripheral neuropathy (OIPN) is one of the most common side effects of oxaliplatin, which can cause reduction and cessation of oxaliplatin-based chemotherapy and significantly affect patients' quality of life. However, no drug has got recognition to prevent or treat OIPN. Yiqi-Wenjing-Fang (YWF) is a joint name of Chinese medicine prescriptions with similar effects of tonifying qi and warming meridians, represented by Huangqi Guizhi Wuwu decoction (HGWD) and Danggui Sini decoction (DSD), both from "Treatise on Cold Pathogenic and Miscellaneous Diseases." YWF granules, including HGWD granules and DSD granules, have been, respectively, demonstrated to be effective in preventing OIPN in previous small-sample observations. The purpose of this study is to enlarge the sample size for further evaluation of the preventive efficacy and safety of YWF granules on OIPN. Methods and Analysis. This study is a randomized, double-blind, placebo-controlled, and multicenter clinical trial. 360 postoperative patients with stage IIa-IIIc colorectal cancer will be randomly assigned into placebo-control group, intervention group I, and intervention group II, taking the mimetic granules of YWF as placebo, HGWD granules and DSD granules, respectively. All subjects will receive oxaliplatin-based chemotherapy regimen at the same time. EORTC QLQ-CIPN20 will be used to assess the degree of OIPN as the primary outcome measure. The grades of OIPN, quality of life, chemotherapeutic efficacy, and the number of completed chemotherapy cycles are selected as the secondary outcome measures. Discussion. Based on the condition of no recognized effective drugs in preventing OIPN, evidence-based medical study will be conducted for seeking a breakthrough in the field of Chinese herb medicine. This protocol could provide reliable and systemic research basis about the efficacy of YWF granules and the differentiation of two classical prescriptions of YWF on preventing OIPN objectively. Trial Registration. This study was registered at ClinicalTrials.gov on 26 December 2020 (ID: https://clinicaltrials.gov/ct2/show/NCT04690283).
Collapse
Affiliation(s)
- Zhancheng Gu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Guoli Wei
- Department of Oncology, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Nanjing 210046, China
| | - Liangjun Zhu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Hu
- Department of Medical Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qi Li
- Department of Oncology, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hong Lu
- Department of Chemotherapy, Changshu No. 1 People's Hospital, Chuzhou 239001, China
| | - Min Liu
- Department of Oncology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215002, China
| | - Chen Chen
- Department of Oncology, Yancheng Hospital of Traditional Chinese Medicine, Yancheng 224005, China
| | - Yi Ji
- Department of Oncology, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Nanjing 210046, China
| | - Guochun Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jiege Huo
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Oncology, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Nanjing 210046, China
| |
Collapse
|
19
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021; 605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
The three main FDA-approved platinum drugs in chemotherapy such as carboplatin, cisplatin, and oxaliplatin are extensively applied in cancer treatments. Although the clinical applications of platinum-based drugs are extremely effective, their toxicity profile restricts their extensive application. Therefore, recent studies focus on developing new platinum drug formulations, expanding the therapeutic aspect. In this sense, recent advances in the development of novel drug delivery carriers will help with the increase of drug stability and biodisponibility, concomitantly with the reduction of drug efflux and undesirable secondary toxic effects of platinum compounds. The present review describes the state of the art of platinum drugs with their biological effects, pre- and clinical studies, and novel drug delivery nanodevices based on lipids, polymers, and inorganic.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv. 120 1465, La Plata, Argentina.
| |
Collapse
|
21
|
Mahnashi MH, Mahmoud AM, Alhazzani K, Alanazi AZ, Alaseem AM, Algahtani MM, El-Wekil MM. Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@cu MOF as a signal enhancer and reporter nanohybrid. Mikrochim Acta 2021; 188:124. [PMID: 33712895 DOI: 10.1007/s00604-021-04781-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 01/16/2023]
Abstract
A sensitive and selective molecular imprinted polymeric network (MIP) electrochemical sensor is proposed for the determination of anti-cancer drug oxaliplatin (OXAL). The polymeric network [poly(pyrrole)] was electrodeposited on a glassy carbon electrode (GCE) modified with silver nanoparticles (Ag) functionalized Cu-metal organic framework (Cu-BDC) and nitrogen-doped carbon nanotubes (N-CNTs). The MIP-Ag@Cu-BDC /N-CNTs/GCE showed an observable reduction peak at -0.14 V, which corresponds to the Cu-BDC reduction. This peak increased and decreased by eluting and rebinding of OXAL, respectively. The binding constant between OXAL and Cu-BDC was calculated to be 3.5 ± 0.1 × 107 mol-1 L. The electrochemical signal (∆i) increased with increasing OXAL concentration in the range 0.056-200 ng mL-1 with a limit of detection (LOD, S/N = 3) of 0.016 ng mL-1. The combination of N-CNTs and Ag@Cu-BDC improves both the conductivity and the anchoring sites for binding the polymer film on the surface of the electrode. The MIP-based electrochemical sensor offered outstanding sensitivity, selectivity, reproducibility, and stability. The MIP-Ag@Cu-BDC /N-CNTs/GCE was applied to determine OXAL in pharmaceutical injections, human plasma, and urine samples with good recoveries (97.5-105%) and acceptable relative standard deviations (RSDs = 1.8-3.2%). Factors affecting fabrication of MIP and OXAL determination were optimized using standard orthogonal design using L25 (56) matrix. This MIP based electrochemical sensor opens a new venue for the fabrication of other similar sensors and biosensors.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Khalid Alhazzani
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ali Mohammed Alaseem
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
22
|
Zhou S, Zeng S, Shu Y. Drug-Drug Interactions at Organic Cation Transporter 1. Front Pharmacol 2021; 12:628705. [PMID: 33679412 PMCID: PMC7925875 DOI: 10.3389/fphar.2021.628705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
The interaction between drugs and various transporters is one of the decisive factors that affect the pharmacokinetics and pharmacodynamics of drugs. The organic cation transporter 1 (OCT1) is a member of the Solute Carrier 22A (SLC22A) family that plays a vital role in the membrane transport of organic cations including endogenous substances and xenobiotics. This article mainly discusses the drug-drug interactions (DDIs) mediated by OCT1 and their clinical significance.
Collapse
Affiliation(s)
- Shiwei Zhou
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, United States.,Department of Thyroid Surgery, The Second Xiangya Hospital, Central South University, Hunan, China
| | - Sujuan Zeng
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yan Shu
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, United States
| |
Collapse
|
23
|
Zhao Z, Zhang G, Li W. MT2A Promotes Oxaliplatin Resistance in Colorectal Cancer Cells. Cell Biochem Biophys 2020; 78:475-482. [PMID: 32638210 DOI: 10.1007/s12013-020-00930-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
We aimed to understand the molecular mechanism underlying the incidence of Oxaliplatin resistance in colorectal cancer. The Oxaliplatin-resistant (OR) HT29 colorectal cell line was established by long-term exposure to Oxaliplatin. Cell viability and proliferation were determined by the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide and direct counting assays, respectively. Transcript level of metallothionein 2A (MT2A) was measured by real-time polymerase chain reaction. Protein levels of MT2A, BRCA1-associated RING domain 1 (BARD1), BRCA1, and β-actin were quantified by immunoblotting. Direct interaction between MT2A with BARD1 and BRCA1 was analyzed by co-immunoprecipitation. Colocalization between of MT2A and BARD1 was determined by immunofluorescence. MT2A was upregulated in OR cells at both transcript and protein levels. Knockdown of MT2A in HT29 OR cells improved sensitivity to Oxaliplatin, while ectopic overexpression of MT2A conferred HT29 cells relative resistance to Oxaliplatin. We further demonstrated that MT2A interacted with and positively regulated BARD1/BRCA1 in colorectal cancer cells. BARD1 overexpression partially restored the compromised Oxaliplatin resistance elicited by MT2A deficiency in terms of both cell proliferation and viability. Our data highlighted the critical contributions of MT2A-BARD1/BRCA1 in Oxaliplatin resistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Zhicheng Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guojing Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
24
|
Rieber M. Cancer Pro-oxidant Therapy Through Copper Redox Cycling: Repurposing Disulfiram and Tetrathiomolybdate. Curr Pharm Des 2020; 26:4461-4466. [DOI: 10.2174/1381612826666200628022113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Background:
Copper (Cu) is a transition metal active in Fenton redox cycling from reduced Cu+ and
H2O2, to oxidized Cu2+ and the hydroxyl radical (·OH) highly reactive oxygen species (ROS). At homeostatic Cu
levels, ROS promote cell proliferation, migration, angiogenesis, and wound repair. To limit ROS toxicity, cells
use Cu-dependent chaperone proteins, Cu-binding ceruloplasmin, and Cu-modulated enzymes like superoxide
dismutases (SOD) like SOD1 and SOD3 to scavenge excess superoxide anions which favour Cu+ reduction, and
mitochondrial cytochrome c oxidase, important in aerobic energy production. Because Cu helps drive tumor cell
proliferation by promoting growth factor-independent receptor tyrosine kinase signaling, and Cu-dependent
MEK1 involved in oncogenic BRAF-V600E signaling, further augmenting bioavailable Cu may promote ROS overproduction,
cancer progression and eventually tumor cell death. For these reasons, the following clinically approved
copper chelators are being repurposed as anti-cancer agents: a) ammonium tetrathiomolybdate (TTM)
used to treat Wilson’s disease (copper overload) and Menkes disease (copper deficiency); b) Disulfiram (DSF),
used against alcoholism, since it inhibits Aldehyde Dehydrogenase (ALDH1) enzyme, important in ethanol detoxification,
and a key target against cancer stem cells. Moreover, TTM and DSF are also relevant in cancer clinical
trials, because they increase the uptake of both Cu and Platinum (Pt)-containing anti-cancer drugs, since Pt
and Cu share the same CTR1 copper transporter.
Purpose:
The majority of reports on Cu chelators dealt separately with either TTM, DSF or others. Here, we
compare in parallel, the anti-cancer efficacy of low doses of TTM and DSF, asking whether they can be synergistic
or antagonistic. The relevance of their unequal ROS inducing abilities and their different behavior as ionophores
is also addressed.
Significance:
The potential of Cu chelators as repurposed anti-cancer drugs, should be greater in patients with
higher endogenous Cu levels. Since platinum and Cu share uptake receptors, the synergism by drugs containing
these metals should not be under-estimated. The potential of disulfiram or its metabolically active Cu-containing
form, to inhibit ALDH1-positive tumor cells is therapeutically very important.
Collapse
Affiliation(s)
- Manuel Rieber
- IVIC, Cancer Cell Biology Laboratory, CMBC, Caracas 1020A, Venezuela
| |
Collapse
|
25
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
26
|
Marker SC, King AP, Swanda RV, Vaughn B, Boros E, Qian SB, Wilson JJ. Exploring Ovarian Cancer Cell Resistance to Rhenium Anticancer Complexes. Angew Chem Int Ed Engl 2020; 59:13391-13400. [PMID: 32396709 PMCID: PMC7482417 DOI: 10.1002/anie.202004883] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Indexed: 11/09/2022]
Abstract
Rhenium tricarbonyl complexes have been recently investigated as novel anticancer agents. However, little is understood about their mechanisms of action, as well as the means by which cancer cells respond to chronic exposure to these compounds. To gain a deeper mechanistic insight into these rhenium anticancer agents, we developed and characterized an ovarian cancer cell line that is resistant to a previously studied compound [Re(CO)3 (dmphen)(ptolICN)]+ , where dmphen=2,9-dimethyl-1,10-phenanthroline and ptolICN=para-tolyl isonitrile, called TRIP. This TRIP-resistant ovarian cancer cell line, A2780TR, was found to be 9 times less sensitive to TRIP compared to the wild-type A2780 ovarian cancer cell line. Furthermore, the cytotoxicities of established drugs and other rhenium anticancer agents in the TRIP-resistant cell line were determined. Notably, the drug taxol was found to exhibit a 184-fold decrease in activity in the A2780TR cell line, suggesting that mechanisms of resistance towards TRIP and this drug are similar. Accordingly, expression levels of the ATP-binding cassette transporter P-glycoprotein, an efflux transporter known to detoxify taxol, were found to be elevated in the A2780TR cell line. Additionally, a gene expression analysis using the National Cancer Institute 60 cell line panel identified the MT1E gene to be overexpressed in cells that are less sensitive to TRIP. Because this gene encodes for metallothioneins, this result suggests that detoxification by this class of proteins is another mechanism for resistance to TRIP. The importance of this gene in the A2780TR cell line was assessed, confirming that its expression is elevated in this cell line as well. As the first study to investigate and identify the cancer cell resistance pathways in response to a rhenium complex, this report highlights important similarities and differences in the resistance responses of ovarian cancer cells to TRIP and conventional drugs.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert V. Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Marker SC, King AP, Swanda RV, Vaughn B, Boros E, Qian SB, Wilson JJ. Exploring ovarian cancer cell resistance to rhenium anticancer complexes. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:13493-13502. [PMID: 34366495 PMCID: PMC8340908 DOI: 10.1002/ange.202004883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/29/2022]
Abstract
Rhenium tricarbonyl complexes have been recently investigated as novel anticancer agents. However, little is understood about their mechanisms of action, as well as the means by which cancer cells respond to chronic exposure to these compounds. To gain a deeper mechanistic insight into these rhenium anticancer agents, we developed and characterized an ovarian cancer cell line that is resistant to a previously studied compound [Re(CO)3(dmphen)(ptolICN)]+, where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, called TRIP. This TRIP-resistant ovarian cancer cell line, A2780TR, was found to be 9 times less sensitive to TRIP compared to the wild-type A2780 ovarian cancer cell line. Furthermore, the cytotoxicities of established drugs and other rhenium anticancer agents in the TRIP-resistant cell line were determined. Notably, the drug taxol was found to exhibit a 184-fold decrease in activity in the A2780TR cell line, suggesting that mechanisms of resistance towards TRIP and this drug are similar. Accordingly, expression levels of the ATP-binding cassette transporter P-glycoprotein, an efflux transporter known to detoxify taxol, were found to be elevated in the A2780TR cell line. Additionally, a gene expression analysis using the National Cancer Institute 60 cell line panel identified the MT1E gene to be overexpressed in cells that are less sensitive to TRIP. Because this gene encodes for metallothioneins, this result suggests that detoxification by this class of proteins is another mechanism for resistance to TRIP. The importance of this gene in the A2780TR cell line was assessed, confirming that its expression is elevated in this cell line as well. As the first study to investigate and identify the cancer cell resistance pathways in response to a rhenium complex, this report high-lights important similarities and differences in the resistance responses of ovarian cancer cells to TRIP and conventional drugs.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert V. Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
The Temperature-Dependent Effectiveness of Platinum-Based Drugs Mitomycin-C and 5-FU during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Colorectal Cancer Cell Lines. Cells 2020; 9:cells9081775. [PMID: 32722384 PMCID: PMC7464333 DOI: 10.3390/cells9081775] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment with curative intent for peritoneal metastasis of colorectal cancer (CRC). Currently, there is no standardized HIPEC protocol: choice of drug, perfusate temperature, and duration of treatment vary per institute. We investigated the temperature-dependent effectiveness of drugs often used in HIPEC. METHODS The effect of temperature on drug uptake, DNA damage, apoptosis, cell cycle distribution, and cell growth were assessed using the temperature-dependent IC50 and Thermal Enhancement Ratio (TER) values of the chemotherapeutic drugs cisplatin, oxaliplatin, carboplatin, mitomycin-C (MMC), and 5-fluorouracil (5-FU) on 2D and 3D CRC cell cultures at clinically relevant hyperthermic conditions (38-43 °C/60 min). RESULTS Hyperthermia alone decreased cell viability and clonogenicity of all cell lines. Treatment with platinum-based drugs and MMC resulted in G2-arrest. Platinum-based drugs display a temperature-dependent synergy with heat, with increased drug uptake, DNA damage, and apoptosis at elevated temperatures. Apoptotic levels increased after treatment with MMC or 5-FU, without a synergy with heat. CONCLUSION Our in vitro results demonstrate that a 60-min exposure of platinum-based drugs and MMC are effective in treating 2D and 3D CRC cell cultures, where platinum-based drugs require hyperthermia (>41 °C) to augment effectivity, suggesting that they are, in principle, suitable for HIPEC.
Collapse
|
29
|
Woods JJ, Lovett J, Lai B, Harris HH, Wilson JJ. Redox Stability Controls the Cellular Uptake and Activity of Ruthenium‐Based Inhibitors of the Mitochondrial Calcium Uniporter (MCU). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
| | - James Lovett
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Barry Lai
- Advanced Photon Source X-ray Science Division Argonne National Laboratory Argonne IL 60439 USA
| | - Hugh H. Harris
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
30
|
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front Pharmacol 2020; 11:343. [PMID: 32265714 PMCID: PMC7100275 DOI: 10.3389/fphar.2020.00343] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Platinum-based anticancer drugs, including cisplatin, carboplatin, oxaliplatin, nedaplatin, and lobaplatin, are heavily applied in chemotherapy regimens. However, the intrinsic or acquired resistance severely limit the clinical application of platinum-based treatment. The underlying mechanisms are incredibly complicated. Multiple transporters participate in the active transport of platinum-based antitumor agents, and the altered expression level, localization, or activity may severely decrease the cellular platinum accumulation. Detoxification components, which are commonly increasing in resistant tumor cells, can efficiently bind to platinum agents and prevent the formation of platinum–DNA adducts, but the adducts production is the determinant step for the cytotoxicity of platinum-based antitumor agents. Even if adequate adducts have formed, tumor cells still manage to survive through increased DNA repair processes or elevated apoptosis threshold. In addition, autophagy has a profound influence on platinum resistance. This review summarizes the critical participators of platinum resistance mechanisms mentioned above and highlights the most potential therapeutic targets or predicted markers. With a deeper understanding of the underlying resistance mechanisms, new solutions would be produced to extend the clinical application of platinum-based antitumor agents largely.
Collapse
Affiliation(s)
- Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Woods JJ, Lovett J, Lai B, Harris HH, Wilson JJ. Redox Stability Controls the Cellular Uptake and Activity of Ruthenium‐Based Inhibitors of the Mitochondrial Calcium Uniporter (MCU). Angew Chem Int Ed Engl 2020; 59:6482-6491. [DOI: 10.1002/anie.202000247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
| | - James Lovett
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Barry Lai
- Advanced Photon Source X-ray Science Division Argonne National Laboratory Argonne IL 60439 USA
| | - Hugh H. Harris
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
32
|
Noordhuis P, Laan AC, van de Born K, Honeywell RJ, Peters GJ. Coexisting Molecular Determinants of Acquired Oxaliplatin Resistance in Human Colorectal and Ovarian Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20153619. [PMID: 31344863 PMCID: PMC6696456 DOI: 10.3390/ijms20153619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Oxaliplatin (OHP) treatment of colorectal cancer (CRC) frequently leads to resistance. OHP resistance was induced in CRC cell lines LoVo-92 and LoVo-Li and a platinum-sensitive ovarian cancer cell line, A2780, and related to cellular platinum accumulation, platinum-DNA adducts, transporter expression, DNA repair genes, gene expression arrays, and array-CGH profiling. Pulse (4 h, 4OHP) and continuous exposure (72 h, cOHP) resulted in 4.0 to 7.9-fold and 5.0 to 11.8-fold drug resistance, respectively. Cellular oxaliplatin accumulation and DNA-adduct formation were decreased and related to OCT1-3 and ATP7A expression. Gene expression profiling and pathway analysis showed significantly altered p53 signaling, xenobiotic metabolism, role of BRCA1 in DNA damage response, and aryl hydrocarbon receptor signaling pathways, were related to decreased ALDH1L2, Bax, and BBC3 (PUMA) and increased aldo-keto reductases C1 and C3. The array-CGH profiles showed focal aberrations. In conclusion, OHP resistance was correlated with total platinum accumulation and OCT1-3 expression, decreased proapoptotic, and increased anti-apoptosis and homologous repair genes.
Collapse
Affiliation(s)
- Paul Noordhuis
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Adrianus C Laan
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kasper van de Born
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Richard J Honeywell
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Wei W, Xi Y, Jiamin X, Jing Z, Shuwen H. Screening of molecular targets and construction of a ceRNA network for oxaliplatin resistance in colorectal cancer. RSC Adv 2019; 9:31413-31424. [PMID: 35527927 PMCID: PMC9073375 DOI: 10.1039/c9ra06146k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Oxaliplatin resistance reduces the efficacy of chemotherapy for colorectal cancer (CRC). This study aimed to screen molecular targets of oxaliplatin resistance in CRC to construct a ceRNA network. The differentially expressed mRNA and lncRNA between the oxaliplatin-resistant and oxaliplatin-sensitive colon cancer cell lines was determined using RNA sequencing data (no. GSE42387) from the NCBI GEO database. Gene Ontology BP (biological process) and KEGG pathway enrichment analyses were used to analyze the function and pathway enrichment of the differentially expressed mRNA and lncRNA. The lnCeDB and starBase v2.0 were used to predict miRNA, and Cytoscape software was used to build a ceRNA network. The top 5 mRNA, miRNAs, and lncRNAs with high degrees of connectivity in the ceRNA network were validated by qPCR. TCGA colon cancer clinical data was used to perform a survival analysis of patients with differential mRNA and lncRNA expression. Between the two groups, 2515 mRNAs and 23 lncRNAs were differentially expressed. We constructed a ceRNA network containing 503 lncRNA–miRNA–mRNA regulatory pairs, 210 lncRNA–miRNA pairs, 382 miRNA–mRNA pairs, and 212 mRNA co-expression pairs. The differentially expressed lncRNA, miRNA and mRNA were verified by qPCR. One lncRNA (HOTAIR) and 14 mRNAs significantly correlated with patient prognosis. The discovery of differentially expressed genes and the construction of ceRNA networks will provide important resources for the search for therapeutic targets of oxaliplatin resistance. Moreover, this resource will aid the discovery of the mechanisms behind this type of drug resistance. Oxaliplatin resistance reduces the efficacy of chemotherapy for colorectal cancer (CRC).![]()
Collapse
Affiliation(s)
- Wu Wei
- Department of Gastroenterology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Yang Xi
- Department of Oncology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Xu Jiamin
- Graduate School of Nursing
- Huzhou University
- Huzhou
- China
| | - Zhuang Jing
- Graduate School of Nursing
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| | - Han Shuwen
- Department of Oncology
- Huzhou Cent Hosp
- Affiliated Cent Hops HuZhou University
- Huzhou
- China
| |
Collapse
|
34
|
Lai YH, Kuo C, Kuo MT, Chen HHW. Modulating Chemosensitivity of Tumors to Platinum-Based Antitumor Drugs by Transcriptional Regulation of Copper Homeostasis. Int J Mol Sci 2018; 19:ijms19051486. [PMID: 29772714 PMCID: PMC5983780 DOI: 10.3390/ijms19051486] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022] Open
Abstract
Platinum (Pt)-based antitumor agents have been effective in treating many human malignancies. Drug importing, intracellular shuffling, and exporting—carried out by the high-affinity copper (Cu) transporter (hCtr1), Cu chaperone (Ato x1), and Cu exporters (ATP7A and ATP7B), respectively—cumulatively contribute to the chemosensitivity of Pt drugs including cisplatin and carboplatin, but not oxaliplatin. This entire system can also handle Pt drugs via interactions between Pt and the thiol-containing amino acid residues in these proteins; the interactions are strongly influenced by cellular redox regulators such as glutathione. hCtr1 expression is induced by acute Cu deprivation, and the induction is regulated by the transcription factor specific protein 1 (Sp1) which by itself is also regulated by Cu concentration variations. Copper displaces zinc (Zn) coordination at the zinc finger (ZF) domains of Sp1 and inactivates its DNA binding, whereas Cu deprivation enhances Sp1-DNA interactions and increases Sp1 expression, which in turn upregulates hCtr1. Because of the shared transport system, chemosensitivity of Pt drugs can be modulated by targeting Cu transporters. A Cu-lowering agent (trientine) in combination with a Pt drug (carboplatin) has been used in clinical studies for overcoming Pt-resistance. Future research should aim at further developing effective Pt drug retention strategies for improving the treatment efficacy.
Collapse
Affiliation(s)
- Yu-Hsuan Lai
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Chin Kuo
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Helen H W Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|