1
|
Kamal El-Deen A, Abdallah N, Elmansi H, Belal F, Magdy G. Applications of deep eutectic solvents in microextraction and chromatographic separation techniques: Latest developments, challenges, and prospects. Talanta 2023; 265:124813. [PMID: 37321162 DOI: 10.1016/j.talanta.2023.124813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Deep eutectic solvents (DESs) have recently sparked considerable attention in a variety of scientific and technological fields. The unique properties of DESs include biodegradability, easy preparation, low cost, and tuneability, rendering them a new and prospective alternative to hazardous solvents. Analytical chemistry is one of the most appealing fields where DESs proved to be applicable in either sample preparation or chromatographic separation. This review summarizes the new horizons dedicated to the application of DESs in microextraction and chromatographic separation. The utilization of DESs in microextraction, in chromatography as mobile phase additives, and in chromatographic material preparation processes is outlined. The enhancements in chromatographic performance achieved using DESs and any potential explanations deduced from the experimental findings were primarily discussed. An additional brief discussion on DESs preparation, characterization, and properties is addressed in this work. Finally, current challenges and future trends are also presented, supplying evidence for distinct possibilities regarding new research approaches involving DESs. This review can represent a guide and stimulate further research in this field.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Nora Abdallah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Galal Magdy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt
| |
Collapse
|
2
|
Monem A, Habibi D, Goudarzi H. An acid-based DES as a novel catalyst for the synthesis of pyranopyrimidines. Sci Rep 2023; 13:18009. [PMID: 37865671 PMCID: PMC10590378 DOI: 10.1038/s41598-023-45352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Deep eutectic solvents have countless advantages over normal solvents, and in addition to complying with the principles of green chemistry, depending on their nature, they can also act as catalysts. The use of deep eutectic solvents as acid catalysts has several advantages such as non-toxicity, a catalytic effect similar to or higher than the acid itself, and the possibility of recovery and reuse without significant loss of activity. In this project, A novel deep eutectic solvent (MTPPBr-PCAT-DES) was prepared from a one-to-one mole ratio of methyltriphenyl-phosphonium bromide (MTPPBr) and 3,4-dihydroxybenzoic acid (PCAT = protocatechuic acid) and characterized by various techniques such as FT-IR, TGA/DTA, densitometer, eutectic point, 1H NMR, 13C NMR and 31P NMR. Then, it was used as a novel and capable catalyst for the synthesis of pyranopyrimidines from the multicomponent condensation reaction of barbituric acid, 4-hydroxycoumarin, and aromatic aldehydes in mild conditions, short reaction times, and high yields.
Collapse
Affiliation(s)
- Arezo Monem
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Hadis Goudarzi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
3
|
Ocaña-González JA, Aranda-Merino N, Pérez-Bernal JL, Ramos-Payán M. Solid supports and supported liquid membranes for different liquid phase microextraction and electromembrane extraction configurations. A review. J Chromatogr A 2023; 1691:463825. [PMID: 36731330 DOI: 10.1016/j.chroma.2023.463825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Liquid phase microextraction (LPME) and electromembrane microextraction (EME) can be considered as two of the most popular techniques in sample treatment today. Both techniques can be configurated as membrane-assisted techniques to carry out the extraction. These supports provide the required geometry and stability on the contact surface between two phases (donor and acceptor) and improve the reproducibility of sample treatment techniques. These solid support pore space, once is filled with organic solvents, act as a selective barrier acting as a supported liquid membrane (SLM). The SLM nature is a fundamental parameter, and its selection is critical to carry out successful extractions. There are numerous SLMs that have been successfully employed in a wide variety of application fields. The latter is due to the specificity of the selected organic solvents, which allows the extraction of compounds of a very different nature. In the last decade, solid supports and SLM have evolved towards "green" and environmentally friendly materials and solvents. In this review, solid supports implemented in LPME and EME will be discussed and summarized, as well as their applications. Moreover, the advances and modifications of the solid supports and the SLMs to improve the extraction efficiencies, recoveries and enrichment factors are discussed. Hollow fiber and flat membranes, including microfluidic systems, will be considered depending on the technique, configuration, or device used.
Collapse
Affiliation(s)
- Juan Antonio Ocaña-González
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - Noemí Aranda-Merino
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - Juan Luis Pérez-Bernal
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain.
| |
Collapse
|
4
|
Chaikhan P, Udnan Y, Ampiah-Bonney RJ, Chaiyasith WC. Deep eutectic solvent-based electromembrane hollow fiber liquid phase microextraction for determining Pb in water and food samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022). Part A: Liquid phase microextraction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Andruch V, Varfalvyová A, Halko R, Jatkowska N, Płotka-Wasylka J. Application of deep eutectic solvents in bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Andruch V, Halko R, Tuček J, Płotka-Wasylka J. Application of deep eutectic solvents in atomic absorption spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Pletnev IV, Smirnova SV, Sharov AV, Zolotov YA. New generation extraction solvents: from ionic liquids and aqueous biphasic systems to deep eutectic solvents. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Li L, Zhang D, Wang Y, Liu F, Xu Y, Bao H. Effective Extraction of Palmatine and Berberine from Coptis chinensis by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:9970338. [PMID: 34422435 PMCID: PMC8378955 DOI: 10.1155/2021/9970338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The effective components of Coptis chinensis were extracted by ultrasound-assisted technology, and the contents of palmatine and berberine were used as indexes by using Coptis chinensis as raw material and eutectic solvent as extractant. In addition, the effects of hydrogen bond donor type, molar ratio of hydrogen bond donor to acceptor, material-liquid ratio, water content of eutectic solvent system, sonication time, power, and ultrasonic temperature on the extraction rate of palmatine and berberine were studied. The optimum extraction technology of palmatine and berberine from Coptis chinensis was determined by single-factor experiment and response surface optimization test. As a result, it showed that the eutectic solvent system was constructed with choline chloride as hydrogen bond acceptor and phenol as hydrogen bond donor, with a molar ratio of 1 : 3. In addition, water content of the eutectic solvent system was 30%, ratio of material to liquid was 30 g/mL, ultrasonic time was 30 min, ultrasonic power was 200 W, and ultrasonic temperature was 60°C. At this time, the contents of palmatine and berberine in Coptis chinensis were 16.7145 mg/g and 57.4013 mg/g, respectively, which were predicted to be the same as the value, and the extraction effect was better than that of traditional extraction solvent method.
Collapse
Affiliation(s)
- Lijing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dong Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuejie Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Fangxin Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Xu
- College of Pharmacy, Baicheng Medical College, Baicheng 137000, China
| | - Huiwei Bao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
10
|
Tavakoli M, Jamali MR, Nezhadali A. Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction (DLLME) Based on Solidification of Floating Organic Drop Using a Deep Eutectic Solvent for Simultaneous Preconcentration and Determination of Nickel and Cobalt in Food and Water Samples. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1897990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maedeh Tavakoli
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | | |
Collapse
|
11
|
Tang W, An Y, Row KH. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116187] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Plastiras OE, Andreasidou E, Samanidou V. Microextraction Techniques with Deep Eutectic Solvents. Molecules 2020; 25:E6026. [PMID: 33352701 PMCID: PMC7767243 DOI: 10.3390/molecules25246026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023] Open
Abstract
In this review, the ever-increasing use of deep eutectic solvents (DES) in microextraction techniques will be discussed, focusing on the reasons needed to replace conventional extraction techniques with greener approaches that follow the principles of green analytical chemistry. The properties of DES will be discussed, pinpointing their exceptional performance and analytical parameters, justifying their current extensive scientific interest. Finally, a variety of applications for commonly used microextraction techniques will be reported.
Collapse
Affiliation(s)
| | | | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (O.-E.P.); (E.A.)
| |
Collapse
|
13
|
Habila MA, AlMasoud N, Alomar TS, AlOthman ZA, Yilmaz E, Soylak M. Deep Eutectic Solvent-Based Microextraction of Lead(II) Traces from Water and Aqueous Extracts before FAAS Measurements. Molecules 2020; 25:molecules25204794. [PMID: 33086622 PMCID: PMC7587555 DOI: 10.3390/molecules25204794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
Microextraction procedures for the separation of Pb(II) from water and food samples extracts were developed. A deep eutectic solvent composed of α-benzoin oxime and iron(III) chloride dissolved in phenol was applied as a phase separator support. In addition, this deep eutectic mixture worked as an efficient extractor of Pb(II). The developed microextraction process showed a high ability to tolerate the common coexisting ions in the real samples. The optimum conditions for quantitative recoveries of Pb(II) from aqueous extracts were at pH 2.0, conducted by adding 150 µL from the deep eutectic solvent. The quantitative recoveries were obtained with various initial sample volumes up to 30 mL. Limits of detection and limits of quantification of 0.008 and 0.025 µg L-1 were achieved with a relative standard deviation (RSD%) of 2.9, which indicates the accuracy and sensitivity of the developed procedure. Recoveries from the reference materials, including TMDA 64.2, TMDA 53.3, and NCSDC-73349, were 100%, 97%, and 102%, respectively. Real samples, such as tap, lake, and river water, as well as food samples, including salted peanuts, chickpeas, roasted yellow corn, pistachios, and almonds, were successfully applied for Pb(II) analysis by atomic absorption spectroscopy (AAS) after applying the developed deep eutectic solvent-based microextraction procedures.
Collapse
Affiliation(s)
- Mohamed A Habila
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Zeid A AlOthman
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Nanotechnology Research and Application Center (ERNAM), Erciyes University, 38039 Kayseri, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
14
|
Khan WA, Arain MB, Yamini Y, Shah N, Kazi TG, Pedersen-Bjergaard S, Tajik M. Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. J Pharm Anal 2020; 10:109-122. [PMID: 32373384 PMCID: PMC7192972 DOI: 10.1016/j.jpha.2019.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hollow-fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) are miniaturized extraction techniques, and have been coupled with various analytical instruments for trace analysis of heavy metals, drugs and other organic compounds, in recent years. HF-LPME and EME provide high selectivity, efficient sample cleanup and enrichment, and reduce the consumption of organic solvents to a few micro-liters per sample. HF-LPME and EME are compatible with different analytical instruments for chromatography, electrophoresis, atomic spectroscopy, mass spectrometry, and electrochemical detection. HF-LPME and EME have gained significant popularity during the recent years. This review focuses on hollow fiber based techniques (especially HF-LPME and EME) of heavy metals and pharmaceuticals (published 2017 to May 2019), and their combinations with atomic spectroscopy, UV-VIS spectrophotometry, high performance liquid chromatography, gas chromatography, capillary electrophoresis, and voltammetry.
Collapse
Affiliation(s)
- Wajid Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
| | - Muhammad Balal Arain
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
| | - Tasneem Gul Kazi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan
| | | | - Mohammad Tajik
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
15
|
Norouzi P, Rezaei Akmal M, Mofidi Z, Larijani B, Ganjali MR, Ebrahimi M. Low-voltage online stimulated microextraction of Glibenclamide from whole blood. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Xue J, Wang R, Chen X, Hu S, Bai X. Three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase for extraction and preconcentration of main active compounds in a traditional Chinese medicinal formula. J Sep Sci 2019; 42:2239-2246. [DOI: 10.1002/jssc.201900184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Jiao Xue
- School of PharmacyShanxi Medical University Taiyuan P. R. China
| | - Run‐qin Wang
- School of PharmacyShanxi Medical University Taiyuan P. R. China
| | - Xuan Chen
- School of PharmacyShanxi Medical University Taiyuan P. R. China
| | - Shuang Hu
- School of PharmacyShanxi Medical University Taiyuan P. R. China
| | - Xiao‐hong Bai
- School of PharmacyShanxi Medical University Taiyuan P. R. China
| |
Collapse
|
17
|
Seidi S, Alavi L. Novel and Rapid Deep Eutectic Solvent (DES) Homogeneous Liquid–Liquid Microextraction (HLLME) with Flame Atomic Absorption Spectrometry (FAAS) Detection for the Determination of Copper in Vegetables. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1598425] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shahram Seidi
- Department of Analytical Chemistry Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Leila Alavi
- Department of Analytical Chemistry Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
18
|
Seidi S, Alavi L, Jabbari A. Dispersed Solidified Fine Droplets Based on Sonication of a Low Melting Point Deep Eutectic Solvent: a Novel Concept for Fast and Efficient Determination of Cr(VI) in Urine Samples. Biol Trace Elem Res 2019; 188:353-362. [PMID: 30043285 DOI: 10.1007/s12011-018-1438-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022]
Abstract
Cr(VI) has carcinogenic effects, so determination of trace amount of chromium in human body such as urine has a great deal of importance. In this work, a novel microextraction method was developed based on solidification of dispersed fine droplets (SDFD) of a low melting point deep eutectic solvent (DES), produced with the aid of sonication, for fast and efficient determination of Cr(VI) in urine samples. Cr(VI) contents of the human urine samples were first complexed using 1,5-diphenylcarbazone at pH ≈ 2.0 and then extracted by the method. A cloudy solution was achieved by the sonication of a microliter volume of a new water-immiscible DES consisting of benzyltriphenylphosphonium bromide (BTPPB) and phenol. Low freezing point of DES makes it possible to use simple, precise, and fast collection of the extraction phase by solidification and the subsequent centrifugation. Finally, the sedimented phase was diluted with methanol and analyzed by electrothermal atomic absorption spectrometry (ETAAS). The influences of the main factors on the efficiency of the procedure were investigated by a four-factor central composite design (CCD). Under the optimum conditions, the calibration curve was linear within the range of 10-1000 ng L-1. The intra- and inter-day RSD% values of 2.6 and 4.7% were obtained at the concentration of 50.0 ng L-1, respectively. The limits of detection (LOD) and quantification (LOQ) were calculated as 2.0 and 7.0 ng L-1, respectively. Moreover, compared to the other approaches, the proposed method presented better or comparable analytical performance and provided accurate, precise, and reliable results for trace analysis of Cr(VI) in urine samples.
Collapse
Affiliation(s)
- Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.
| | - Leila Alavi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Ali Jabbari
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| |
Collapse
|
19
|
Three-phase carrier-mediated hollow fiber microextraction based on deep eutectic solvent followed by HPLC–UV for determination of raloxifene and ethinylestradiol in pharmaceutical wastewater treatment plants. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-01572-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Dindarloo Inaloo I, Majnooni S. Carbon dioxide utilization in the efficient synthesis of carbamates by deep eutectic solvents (DES) as green and attractive solvent/catalyst systems. NEW J CHEM 2019. [DOI: 10.1039/c9nj02810b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents as a green solvent/catalyst system for directly synthesizing carbamates from amines, CO2 and alkyl halides.
Collapse
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry
- University of Isfahan
- Isfahan 81746-73441
- Iran
| |
Collapse
|
21
|
Switchable solvent based liquid phase microextraction of trace lead and cadmium from environmental and biological samples prior to graphite furnace atomic absorption spectrometry detection. Microchem J 2018. [DOI: 10.1016/j.microc.2018.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Seidi S, Alavi L, Jabbari A. Trace determination of cadmium in rice samples using solidified floating organic drop microextraction based on vesicular supramolecular solvent followed by flow-injection analysis–flame atomic absorption spectrometry. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1401-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Nedaei M, Zarei AR, Ghorbanian SA. Development of a new emulsification microextraction method based on solidification of settled organic drop: application of a novel ultra-hydrophobic tailor-made deep eutectic solvent. NEW J CHEM 2018. [DOI: 10.1039/c8nj02219d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, a new microextraction method based on the solidification of settled organic drop (SSOD) was developed by coupling a novel tailor-made ultra-hydrophobic deep eutectic solvent (DES) with effervescence assisted emulsification microextraction.
Collapse
Affiliation(s)
- Maryam Nedaei
- Department of Chemistry
- Faculty of Chemistry and Chemical Engineering
- Malek Ashtar University of Technology
- Tehran
- Iran
| | - Ali Reza Zarei
- Department of Chemistry
- Faculty of Chemistry and Chemical Engineering
- Malek Ashtar University of Technology
- Tehran
- Iran
| | | |
Collapse
|