1
|
Piludu M, Pichiri G, Coni P, Piras M, Congiu T, Faa G, Lachowicz JI. Cell starvation increases uptake of extracellular Thymosin β4 and its complexes with calcium. Int Immunopharmacol 2023; 116:109743. [PMID: 36706591 DOI: 10.1016/j.intimp.2023.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Cell metastasis is the main cause of cancer mortality. Inhibiting early events during cell metastasis and invasion could significantly improve cancer prognosis, but the initial mechanisms of cell transition and migration are barely known. Calcium regulates cell migration, whilst Thymosin β4 is a G-actin and iron binding peptide associated with tumor metastasis and ferroptosis. Under normal cell growth conditions, intracellular free calcium ions and Thymosin β4 concentrations are strictly regulated, and are not influenced by extracellular supplementation. However, cell starvation decreases intracellular Thymosin β4 and increases extracellular peptide uptake above the normal range. Unexpectedly, cell starvation significantly increases internalization of extracellular Ca2+/Thymosin β4 complexes. Elucidating the role of Ca2+/Thymosin β4 in the early events of metastasis will likely be important in the future to develop therapies targeting metastasis.
Collapse
Affiliation(s)
- Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppina Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
2
|
Atzori L, Ferreli C, Agosta D, Mou M, Coni P, Lachowicz JI, Pilloni L. Generalized scleroderma-like induration associated with D-penicillamine elastosis perforans serpiginosa in Wilson's disease. Int J Dermatol 2023; 62:246-249. [PMID: 35968714 DOI: 10.1111/ijd.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Laura Atzori
- Unit of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Caterina Ferreli
- Unit of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Agosta
- Unit of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Pierpaolo Coni
- Unit of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Joanna Izabela Lachowicz
- Unit of Occupational Medicine, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Luca Pilloni
- Unit of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Aaseth JO, Nurchi VM. Chelation Combination-A Strategy to Mitigate the Neurotoxicity of Manganese, Iron, and Copper? Biomolecules 2022; 12:1713. [PMID: 36421727 PMCID: PMC9687779 DOI: 10.3390/biom12111713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 01/19/2024] Open
Abstract
The chelating thiol dimercaptosuccinate (DMSA) and the traditional agent D-penicillamine (PSH) are effective in enhancing the urinary excretion of copper (Cu) and lead (Pb) in poisoned individuals. However, DMSA, PSH, EDTA (ethylenediamine tetraacetate), and deferoxamine (DFOA) are water-soluble agents with limited access to the central nervous system (CNS). Strategies for mobilization of metals such as manganese (Mn), iron (Fe), and Cu from brain deposits may require the combined use of two agents: one water-soluble agent to remove circulating metal into urine, in addition to an adjuvant shuttler to facilitate the brain-to-blood mobilization. The present review discusses the chemical basis of metal chelation and the ligand exchange of metal ions. To obtain increased excretion of Mn, Cu, and Fe, early experiences showed promising results for CaEDTA, PSH, and DFOA, respectively. Recent experiments have indicated that p-amino salicylate (PAS) plus CaEDTA may be a useful combination to remove Mn from binding sites in CNS, while the deferasirox-DFOA and the tetrathiomolybdate-DMSA combinations may be preferable to promote mobilization of Fe and Cu, respectively, from the CNS. Further research is requested to explore benefits of chelator combinations.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 104, N-2418 Elverum, Norway
| | - Valeria M. Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| |
Collapse
|
4
|
Lachowicz JI, Lecca LI, Meloni F, Campagna M. Metals and Metal-Nanoparticles in Human Pathologies: From Exposure to Therapy. Molecules 2021; 26:6639. [PMID: 34771058 PMCID: PMC8587420 DOI: 10.3390/molecules26216639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/13/2023] Open
Abstract
An increasing number of pathologies correlates with both toxic and essential metal ions dyshomeostasis. Next to known genetic disorders (e.g., Wilson's Disease and β-Thalassemia) other pathological states such as neurodegeneration and diabetes are characterized by an imbalance of essential metal ions. Metal ions can enter the human body from the surrounding environment in the form of free metal ions or metal-nanoparticles, and successively translocate to different tissues, where they are accumulated and develop distinct pathologies. There are no characteristic symptoms of metal intoxication, and the exact diagnosis is still difficult. In this review, we present metal-related pathologies with the most common onsets, biomarkers of metal intoxication, and proper techniques of metal qualitative and quantitative analysis. We discuss the possible role of drugs with metal-chelating ability in metal dyshomeostasis, and present recent advances in therapies of metal-related diseases.
Collapse
Affiliation(s)
| | | | | | - Marcello Campagna
- Division of Occupational Medicine, Department of Medical Sciences and Public Health, University of Cagliari, 09048 Monserrato, CA, Italy; (J.I.L.); (L.I.L.); (F.M.)
| |
Collapse
|
5
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|
6
|
Luigi Zanonato P, Di Bernardo P, Melchior A, Busato M, Tolazzi M. Lanthanides(III) and Silver(I) complex formation with triamines in DMSO: The effect of ligand cyclization. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Peana M, Gumienna-Kontecka E, Piras F, Ostrowska M, Piasta K, Krzywoszynska K, Medici S, Zoroddu MA. Exploring the Specificity of Rationally Designed Peptides Reconstituted from the Cell-Free Extract of Deinococcus radiodurans toward Mn(II) and Cu(II). Inorg Chem 2020; 59:4661-4684. [PMID: 32212645 PMCID: PMC7467671 DOI: 10.1021/acs.inorgchem.9b03737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
A series of five
rationally designed decapeptides [DEHGTAVMLK (DP1), THMVLAKGED (DP2),
GTAVMLKDEH (Term-DEH), TMVLDEHAKG (Mid-DEH), and DEHGGGGDEH (Bis-DEH)]
have been studied for their interactions with Cu(II) and Mn(II) ions.
The peptides, constructed including the most prevalent amino acid
content found in the cell-free extract of Deinococcus radiodurans (DR), play a fundamental role in the antioxidant mechanism related
to its exceptional radioresistance. Mn(II) ions, in complex with these
peptides, are found to be an essential ingredient for the DR protection
kit. In this work, a detailed characterization of Cu(II) systems was
included, because Cu(II)–peptide complexes have also shown
remarkable antioxidant properties. All peptides studied contain in
their sequence coordinating residues that can bind effectively Mn(II)
or Cu(II) ions with high affinity, such as Asp, Glu, and His. Using
potentiometric techniques, NMR, EPR, UV–vis, and CD spectroscopies,
ESI-MS spectrometry, and molecular model calculations, we explored
the binding properties and coordination modes of all peptides toward
the two metal ions, were able to make a metal affinity comparison
for each metal system, and built a structural molecular model for
the most stable Cu(II) and Mn(II) complexes in agreement with experimental
evidence. Five rationally designed decapeptides
reconstituted from the cell-free extract of Deinococcus radiodurans have been precisely analyzed in terms of their coordination properties
toward Mn(II) and Cu(II). The results provide new insight to enhance
our understanding of the impact of metal complexes in the protection
of the bacterium from various damaging agents such as ionizing radiation,
ultraviolet radiation, and oxidative stress and novel information
useful for exploiting this extraordinary ability in future biotechnological
applications.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | | - Francesca Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Malgorzata Ostrowska
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Karolina Piasta
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | |
Collapse
|
8
|
Kaliyamoorthi K, Maniraj S, Govindaraj TS, Ramasamy S, Paulraj MS, Enoch IV, Melchior A. Unusual Fluorescence Quenching-Based Al 3+ Sensing by an Imidazolylpiperazine Derivative. β-Cyclodextrin Encapsulation-Assisted Augmented Sensing. J Fluoresc 2020; 30:445-453. [PMID: 32125570 DOI: 10.1007/s10895-020-02511-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
We report in this paper an unusual β-cyclodextrin mediated-aluminum (III) ion sensing based on augmented quenching of fluorescence. The fluorescent sensing of metal ions by a new ligand prepared (L = 4-[{4-(1H-imidazol-1-yl)phenyl]imino}methyl]piperazine-1-carboxaldehyde) has been investigated as well as the effect of the supramolecular complex formation with β-CD. In aqueous solution, L shows an increase of fluorescence due to the interaction with β-cyclodextrin with a formation constant of 77 (± 12) M-1. The ROESY NMR spectrum clearly indicates that L is encapsulated by β-CD. Theoretical calculations show the possible structure both of the L-β-CD adduct and of the coordination mode of Al3+ ion to L. In the presence of β-CD, the piperazine adopts a distorted conformation. It leads to an enhanced Al3+ sensing by the compound in its supramolecular complexed form. The lower limit of detection of Al3+ ions is 6.00 × 10-8 mol L-1. This detection limit slightly expands for L in the presence of β-CD.
Collapse
Affiliation(s)
- Kiruthiga Kaliyamoorthi
- Department of Chemistry, Hindustan Institute of Technology & Science (Deemed-to-be University), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Sumithra Maniraj
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, 641114, India
| | - Tamil Selvan Govindaraj
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, 641114, India
| | - Sivaraj Ramasamy
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, 641114, India
| | | | - Israel Vmv Enoch
- Centre for Nanoscience & Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, 641114, India.
| | - Andrea Melchior
- Polytechnic Department of Engineering, Chemistry Laboratories, University of Udine, via del Cotonificio 108, 33100, Udine, Italy.
| |
Collapse
|
9
|
Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. J Inorg Biochem 2019; 199:110717. [DOI: 10.1016/j.jinorgbio.2019.110717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
|
10
|
Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J Inorg Biochem 2019; 195:120-129. [PMID: 30939379 DOI: 10.1016/j.jinorgbio.2019.03.013] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
The human body needs about 20 essential elements in order to function properly and among them, for certain, 10 are metal elements, though for every metal we do need, there is another one in our body we could do without it. Until about 1950 poor attention was given to the so-called "inorganic elements" and while researches on "organic elements" (C, N, O and H) and organic compounds were given high priority, studies on essential inorganic elements were left aside. Base on current knowledge it is ascertained today that metals such as Na, K, Mg, Ca, Fe, Mn, Co, Cu, Zn and Mo are essential elements for life and our body must have appropriate amounts of them. Here a brief overview to highlight their importance and current knowledge about their essentiality.
Collapse
Affiliation(s)
| | - Jan Aaseth
- Research Department, Innlandet Hospital, Brumunddal, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| | - Guido Crisponi
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | | |
Collapse
|