1
|
Jiao Z, Kuang L, Komori M, Hirono M, Komuro R, Wang Y, Hasebe Y. Glucose oxidase, horseradish peroxidase and phenothiazine dyes-co-adsorbed carbon felt-based amperometric flow-biosensor for glucose. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5883-5895. [PMID: 39157883 DOI: 10.1039/d4ay01028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
To develop an amperometric flow-biosensor for glucose, the stabilizing effect of methylene blue (MB) toward adsorbed glucose oxidase (GOx) on carbon felt (CF) was successfully applied to prepare the GOx-modified CF-based enzyme reactor combined with a horseradish peroxidase (HRP)-modified CF-based H2O2 detector. Upon mixing MB in the GOx-adsorption solution, the O2-dependent GOx-activity was significantly increased with increasing concentration of MB in the GOx-adsorption solution. The GOx-immobilization protocol on CF is very straightforward [i.e., adsorption of the GOx/MB mixed aqueous solution for 5 min under ultrasound (US)-irradiation]. Under the optimized operational conditions (i.e., applied potential, 0 vs. Ag/AgCl; carrier pH, 5.0; carrier flow rate, 4.0 mL min-1), the resulting GOx/MB-CF-reactor and HRP/TN-CF-detector combined amperometric flow-biosensor exhibited sensitive, selective, reproducible and stable cathodic peak current responses to glucose with the following analytical performances: sensitivity, 6.22 μA mM-1; linear range, 0.01 to 1 mM; limit of detection, 9.6 μM (S/N = 3, noise level, 20 nA); sample throughput, 46-96 samples per h for 10-0.1 mM glucose. The developed amperometric flow-biosensor allowed the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by conventional spectrophotometry.
Collapse
Affiliation(s)
- Zeting Jiao
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Lichuan Kuang
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Masahito Komori
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Masaki Hirono
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| | - Ryota Komuro
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology LiaoNing, Anshan, LiaoNing 114501, China
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| |
Collapse
|
2
|
Fergani S, Zazoua H, Saadi A, Touati S, Boudjemaa A, Bachari K. Activation of peroxymonosulfate by Co2SnO4/Co3O4/SnO2 material for the effective degradation of diclofenac. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Molla Nadali Pishnamaz H, Farimaniraad H, Baghdadi M, Aminzadeh Goharrizi B, Mahpishanian S. Application of nickel foam cathode modified by single-wall carbon nanotube in electro-Fenton process coupled with anodic oxidation: Enhancing organic pollutants removal. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Li M, Qin X, Gao M, Li T, Lv Y. Enhanced in-situ electrosynthesis of hydrogen peroxide on a modified active carbon fiber prepared through response surface methodology. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Liu J, Jia J, Yu H, Zhang J, Li J, Ge H, Zhao Y. Graphite felt modified by nanoporous carbon as a novel cathode material for the EF process. NEW J CHEM 2022. [DOI: 10.1039/d2nj01679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanoporous carbon prepared by carbonizing ZIF-8@MWCNTs can greatly improve the performance of graphite felt as an electro-Fenton cathode.
Collapse
Affiliation(s)
- Jiaman Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiping Jia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaqiang Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
6
|
Electrochemical catalytic mechanism of N-doped electrode for in-situ generation of OH in metal-free EAOPs to degrade organic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Co-catalysis of metal sulfides accelerating Fe2+/Fe3+ cycling for the removal of tetracycline in heterogeneous electro-Fenton using an novel rolled NPC/CB cathodes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Nair KM, Kumaravel V, Pillai SC. Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. CHEMOSPHERE 2021; 269:129325. [PMID: 33385665 DOI: 10.1016/j.chemosphere.2020.129325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Electro-Fenton (EF) technique has gained significant attention in recent years owing to its high efficiency and environmental compatibility for the degradation of organic pollutants and contaminants of emerging concern (CECs). The efficiency of an EF reaction relies primarily on the formation of hydrogen peroxide (H2O2) via 2e─ oxygen reduction reaction (ORR) and the generation of hydroxyl radicals (●OH). This could be achieved through an efficient cathode material which operates over a wide pH range (pH 3-9). Herein, the current progresses on the advancements of carbonaceous cathode materials for EF reactions are comprehensively reviewed. The insights of various materials such as, activated carbon fibres (ACFs), carbon/graphite felt (CF/GF), carbon nanotubes (CNTs), graphene, carbon aerogels (CAs), ordered mesoporous carbon (OMCs), etc. are discussed inclusively. Transition metals and hetero atoms were used as dopants to enhance the efficiency of homogeneous and heterogeneous EF reactions. Iron-functionalized cathodes widened the working pH window (pH 1-9) and limited the energy consumption. The mechanism, reactor configuration, and kinetic models, are explained. Techno economic analysis of the EF reaction revealed that the anode and the raw materials contributed significantly to the overall cost. It is concluded that most reactions follow pseudo-first order kinetics and rotating cathodes provide the best H2O2 production efficiency in lab scale. The challenges, future prospects and commercialization of EF reaction for wastewater treatment are also discussed.
Collapse
Affiliation(s)
- Keerthi M Nair
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Vignesh Kumaravel
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Suresh C Pillai
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland.
| |
Collapse
|
9
|
Electrocatalytic activities of engineered carbonaceous cathodes for generation of hydrogen peroxide and oxidation of recalcitrant reactive dye. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Yu F, Wang Y, Ma H, Zhou M. Hydrothermal synthesis of FeS2 as a highly efficient heterogeneous electro-Fenton catalyst to degrade diclofenac via molecular oxygen effects for Fe(II)/Fe(III) cycle. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117022] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Kong J, Huang W, Yang S, He H, Sun C, Xian Q, Jiang D. Photoelectro-Fenton system including electromagnetic induction electrodeless lamp and black carbon poly tetra fluoro ethylene air-diffusion cathode: Degradation kinetics, intermediates and pathway for azo dye. CHEMOSPHERE 2020; 253:126708. [PMID: 32298912 DOI: 10.1016/j.chemosphere.2020.126708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The role of illumination and cathode is important to improve the efficiency of photoelectro-Fenton (PEF) system. In this study, cathodes with black carbon-poly tetra fluoro ethylene (BC-PTFE) for increase the concentration of hydrogen peroxide in PEF. A new PEF system using EIEL and BC-PTFE air-diffusion cathode was established. The electrode performance was tested and the influence factors, degradation kinetics, intermediates, pathway and mechanism of the model compound methyl orange (MO) were studied. The capacities of concentration decays and total organic carbon (TOC) removals were compared between different electrochemical advanced oxidation processes. The experimental conditions were optimized for a current density of 20 mA cm-2 with 0.5 mM Fe2+ and 100 mg L-1 MO at 20 °C and pH 3.0 in an 8 L reservoir. The higher MO concentration was, the smaller pseudo-first-order kinetic constants of concentration decays and TOC removals were. Intermediate products were identified by gas chromatography-mass spectrometry and ion-exclusion high performance liquid chromatograph in EIEL-PEF. Combined with frontier electron density, the degradation pathway was deduced as follows: destruction of azo bond, substitution of •OH, dehydrogenation and oxidation, opening-ring and mineralization. In EIEL-PEF, the concentration of oxalic acid and oxamic acid reached the maximum value 9.2 and 1.5 mg L-1 at 60 and 90 min, respectively. The photolysis of N-intermediates produced NH4+-N was released in more proportion than NO3--N and oxamic acid-N. The study indicated that PEF system has the potential to remove organic pollutants in aquatic environments.
Collapse
Affiliation(s)
- Jijie Kong
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Wen Huang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Dong Jiang
- Changzhou Lannuo Photoelectric Technology Co., Ltd., Changzhou, Jiangsu, 213000, PR China
| |
Collapse
|
12
|
Yu F, Chen Y, Pan Y, Yang Y, Ma H. A cost-effective production of hydrogen peroxide via improved mass transfer of oxygen for electro-Fenton process using the vertical flow reactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116695] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Pan G, Sun X, Sun Z. Fabrication of multi-walled carbon nanotubes and carbon black co-modified graphite felt cathode for amoxicillin removal by electrochemical advanced oxidation processes under mild pH condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8231-8247. [PMID: 31900780 DOI: 10.1007/s11356-019-07358-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen peroxide (H2O2) electrogenerated via two-electron oxygen reduction reaction at cathode plays an important role in electrochemical advanced oxidation processes for organic pollutants removal from wastewater. Herein, multi-walled carbon nanotubes and carbon black co-modified graphite felt electrode (MWCNTs-CB/GF) was prepared as an efficient cathode for H2O2 electrogeneration and amoxicillin removal by anodic oxidation with hydrogen peroxide (AO-H2O2) and electro-Fenton (EF) under mild pH condition. Besides, the physicochemical and electrochemical properties of MWCNTs-CB/GF were characterized by scanning electron microscopy, N2 adsorption and desorption experiment, contact angle measurement, X-ray photoelectron spectroscopy, and linear sweep voltammetry. Compared with GF, MWCNTs-CB/GF showed a higher H2O2 generation of 309.0 mg L-1 with a current efficiency of 60.9% (after 120 min) and more effective amoxicillin removal efficiencies of 97.5% (after 120 min) and 98.7% (after 30 min) in AO-H2O2 and EF (with 0.5 mM Fe2+) processes, under the condition of current density 12 mA cm-2 and initial pH 5.5. Meanwhile, the TOC removal efficiency was 45.2% during EF process after 120 min. Anodic oxidation, H2O2 oxidation, and methanol capture indicated that ∙OH generated via electro-activation reaction at MWCNTs-CB/GF and Fenton reaction in solution played the dominant role in amoxicillin removal. Moreover, the TOC removal was associated with ∙OH generated during Fenton reaction in the solution. The major intermediates of AMX degradation by EF process were identified using LC-MS and the possible degradation pathways were proposed containing of β-lactam ring opening, hydroxylation reaction, decarboxylation reaction, methyl groups in the thiazolidine ring oxidation reaction, bond cleavage, and rearrangement processes. All of the above results proved that MWCNTs-CB/GF was an excellent cathode for AMX degradation under mild pH condition.
Collapse
Affiliation(s)
- Guifang Pan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xiuping Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| |
Collapse
|
14
|
Tao L, Yang Y, Yu F. Highly efficient electro-generation of H 2O 2by a nitrogen porous carbon modified carbonaceous cathode during the oxygen reduction reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj02360d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, active carbon fibers (ACFs) were modified with nitrogen-doped porous carbon (NPC) and carbon nanotubes (CNTs) to prepare a novel modified electrode as a cathode.
Collapse
Affiliation(s)
- Ling Tao
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Yang Yang
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Fangke Yu
- School of Environmental Science and Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| |
Collapse
|
15
|
Dip-coating prepared nickel-foam composite cathodes with hydrophobic layer for atenolol elimination in electro-Fenton system. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Yu F, Tao L, Cao T. High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen-doped porous carbon carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113119. [PMID: 31546080 DOI: 10.1016/j.envpol.2019.113119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/18/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to develop a new modified graphite felt (GF) as carbonaceous cathode for electro-Fenton (EF) application loaded with nitrogen-doped porous carbon (NPC) carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as carbon precursor. At initial pH 7, the highest generation rate of H2O2 was 0.74 mg h-1 cm-2 by applying 12.5 mA cm-2 by modified cathode, but in the same condition, the GF only had 0.067 mg h-1 cm-2. The production efficiency increased 10 times. Additionally, phenol (50 mg L-1) could be largely removed by NPC modified cathode, the mineralization ratio and TOC reached 100% and 82.61% at 120 min of optimization condition, respectively. The NPC cathode kept its stability after 5 cycles. The materials were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and linear sweep voltammetry (LSV). The results demonstrated that a homogenous NPC covered the carbon-based material GF. The existing graphitic-N and sp2 carbon of NPC promoted the electron transfer between carbon surface and oxygen molecules, as well as accelerated the oxygen reduction reaction (ORR) and the modified graphite felt had much higher electrocatalytic activity. In this work, several manufacturing parameters like the current, pH and load of NPC were optimized. The optimized design could improve the efficiency of new cathode with in situ electro-chemical production of H2O2 and significantly offer a potential material for degradation of organic pollutants.
Collapse
Affiliation(s)
- Fangke Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Ling Tao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianyi Cao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
17
|
Irandost M, Akbarzadeh R, Pirsaheb M, Asadi A, Mohammadi P, Sillanpää M. Fabrication of highly visible active N, S co-doped TiO2@MoS2 heterojunction with synergistic effect for photocatalytic degradation of diclofenac: Mechanisms, modeling and degradation pathway. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111342] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zhang YN, Niu Q, Gu X, Yang N, Zhao G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. NANOSCALE 2019; 11:11992-12014. [PMID: 31140537 DOI: 10.1039/c9nr02935d] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rapid global industrialization and explosive population growth have resulted in an increase in the discharge of harmful and toxic compounds. These toxic inorganic gases, volatile organic compounds, heavy metals, personal care products, endocrine-disrupting chemicals, dyes, and pharmaceuticals are destroying the balance in the Earth and increasing environmental toxicity at an alarming rate. Thus, their detection, adsorption and removal are of great significance. Various carbon nanomaterials including carbon nanotubes, graphene, mesoporous carbon, carbon dots, and boron-doped diamond have been extensively utilized and further proven to be ideal candidates for resolving environmental problems, emerging as adsorbents, electrochemical sensors and electrodes. Herein, we review the recent advances, progress and achievements in the design and properties of carbon nanomaterials and their applications for the electrochemical detection and removal of environmental pollutants.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Qiongyan Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Xiaotong Gu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen 57076, Germany
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
19
|
Yu F, Wang Y, Ma H. Enhancing the yield of H2O2 from oxygen reduction reaction performance by hierarchically porous carbon modified active carbon fiber as an effective cathode used in electro-Fenton. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Long Y, Feng Y, Li X, Suo N, Chen H, Wang Z, Yu Y. Removal of diclofenac by three-dimensional electro-Fenton-persulfate (3D electro-Fenton-PS). CHEMOSPHERE 2019; 219:1024-1031. [PMID: 30682759 DOI: 10.1016/j.chemosphere.2018.12.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Diclofenac (DIC) is a new type of contaminant that has been widely detected in the water environment, posing threats to the ecological environment and human health. However, the conventional wastewater treatment process has a very limited ability to reduce DIC. In this research, persulfate is added to electro-Fenton with the three-dimensional particle electrode (TDE) process whose particle electrodes were formed from manganese slag with loaded active substance (Cu: Fe = 1:1) to construct a three-dimensional electro-Fenton-persulfate (3D electro-Fenton-PS) process to investigate the removal rate of DIC under the optimum working conditions. The effects of different persulfate addition, activator addition and different activators on the removal rate of DIC were researched, respectively. The removal rate of DIC reached 96.3% when the persulfate and the Fe0 addition were 1.50 mM and 3.00 mM, respectively. The results showed that and OH existed simultaneously in the reaction system, and the removal of DIC was the result of the two free radicals. Moreover, degradation pathways and mechanism of DIC were also discussed. The study may provide a new theoretical basis and technical support for the treatment of DIC in municipal wastewater.
Collapse
Affiliation(s)
- Yingying Long
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Xue Li
- China Urban Construction and Research Institute Shenzhen Branch, Shenzhen, 518133, China
| | - Ning Suo
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Hao Chen
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Zhongwei Wang
- Everbright Water (Jinan) Co., Ltd, Jinan, 250022, China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan, 250022, China
| |
Collapse
|
21
|
McDonnell-Worth CJ, MacFarlane DR. Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept. Aust J Chem 2018. [DOI: 10.1071/ch18328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review introduces the concept of direct H2O2 fuel cells and discusses the merits of these systems in comparison with other ‘clean-energy’ fuels. Through electrochemical methods, H2O2 fuel can be generated from environmentally benign energy sources such as wind and solar. It also produces only water and oxygen when it is utilised in a direct H2O2 fuel cell, making it a fully reversible system. The electrochemical methods for H2O2 production are discussed here as well as the recent research aimed at increasing the efficiency and power of direct H2O2 fuel cells.
Collapse
|