1
|
Mushtaq A, Iqbal MZ, Tang J, Sun W. The wonders of X-PDT: an advance route to cancer theranostics. J Nanobiotechnology 2024; 22:655. [PMID: 39456085 PMCID: PMC11520131 DOI: 10.1186/s12951-024-02931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Global mortality data indicates cancer as the second-leading cause of death worldwide. Therefore, there's a pressing need to innovate effective treatments to address this significant medical and societal challenge. In recent years, X-ray-induced photodynamic therapy (X-PDT) has emerged as a promising advancement, revolutionizing traditional photodynamic therapy (PDT) for deeply entrenched malignancies by harnessing penetrating X-rays as external stimuli. Recent developments in X-ray photodynamic therapy have shown a trend toward minimizing radiation doses to remarkably low levels after the proof-of-concept demonstration. Early detection and real-time monitoring are crucial aspects of effective cancer treatment. Sophisticated X-ray imaging techniques have been enhanced by the introduction of X-ray luminescence nano-agents, alongside contrast nanomaterials based on X-ray attenuation. X-ray luminescence-based in vivo imaging offers excellent detection sensitivity and superior image quality in deep tissues at a reasonable cost, due to unhindered penetration and unimpeded auto-fluorescence of X-rays. This review emphasizes the significance of X-ray responsive theranostics, exploring their mechanism of action, feasibility, biocompatibility, and promising prospects in imaging-guided therapy for deep-seated tumors. Additionally, it discusses promising applications of X-PDT in treating breast cancer, liver cancer, lung cancer, skin cancer, and colorectal cancer.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianbin Tang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310007, China
| | - Wenjing Sun
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
2
|
Ye W, Yong Z, Go M, Kowal D, Maddalena F, Tjahjana L, Wang H, Arramel A, Dujardin C, Birowosuto MD, Wong LJ. The Nanoplasmonic Purcell Effect in Ultrafast and High-Light-Yield Perovskite Scintillators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309410. [PMID: 38235521 DOI: 10.1002/adma.202309410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/14/2024] [Indexed: 01/19/2024]
Abstract
The development of X-ray scintillators with ultrahigh light yields and ultrafast response times is a long sought-after goal. In this work, a fundamental mechanism that pushes the frontiers of ultrafast X-ray scintillator performance is theoretically predicted and experimentally demonstrated: the use of nanoscale-confined surface plasmon polariton modes to tailor the scintillator response time via the Purcell effect. By incorporating nanoplasmonic materials in scintillator devices, this work predicts over tenfold enhancement in decay rate and 38% reduction in time resolution even with only a simple planar design. The nanoplasmonic Purcell effect is experimentally demonstrated using perovskite scintillators, enhancing the light yield by over 120% to 88 ± 11 ph/keV, and the decay rate by over 60% to 2.0 ± 0.2 ns for the average decay time, and 0.7 ± 0.1 ns for the ultrafast decay component, in good agreement with the predictions of our theoretical framework. Proof-of-concept X-ray imaging experiments are performed using nanoplasmonic scintillators, demonstrating 182% enhancement in the modulation transfer function at four line pairs per millimeter spatial frequency. This work highlights the enormous potential of nanoplasmonics in optimizing ultrafast scintillator devices for applications including time-of-flight X-ray imaging and photon-counting computed tomography.
Collapse
Affiliation(s)
- Wenzheng Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Zhihua Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Michael Go
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Dominik Kowal
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Francesco Maddalena
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Liliana Tjahjana
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Hong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia
| | - Christophe Dujardin
- Universite Claude Bernard Lyon 1, Institut Lumière Matière, UMR 5306 CNRS, Villeurbanne, F-69622, France
- Institut Universitaire de France, 1 Rue Descartes, Paris, Île-de-France, 75005, Paris, France
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Liang Jie Wong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| |
Collapse
|
3
|
Wei J, Liu M, Shi X, Pan D. A Room-Temperature Strategy to Synthesize Ce/Tb-Codoped NaYF 4 Nanoparticles with a Photoluminescence Quantum Yield Exceeding 50. Inorg Chem 2024; 63:6408-6417. [PMID: 38533895 DOI: 10.1021/acs.inorgchem.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
NaYF4:Ce3+,Tb3+ down-conversion nanoparticles with a photoluminescence quantum yield (PLQY) of 54.8% are synthesized by using a ligand-assisted coprecipitation method in this study. The reaction is completed within 1 min at room temperature, and short-chain hexanoic acid and hexylamine serve as the binary ligands, which enable us to synthesize highly luminescent NaYF4:Ce3+,Tb3+ nanoparticles at room temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize the as-prepared nanocrystals. The results reveal that the NaYF4:Ce3+,Tb3+ nanocrystals exhibit excellent dispersion and have a particle size of 2.7 nm. Our NaYF4:Ce3+,Tb3+ nanocrystals possess the advantages of room-temperature preparation, high PLQY, and ultrasmall particle size. These results reveal that the NaYF4:Ce3+,Tb3+ nanocrystals might have a high potential in the applications of lighting, display devices, and bioimaging.
Collapse
Affiliation(s)
- Jinjian Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Mengxin Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xinan Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Daocheng Pan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Cuau L, Akl P, Gautheron A, Houmeau A, Chaput F, Yaromina A, Dubois L, Lambin P, Karpati S, Parola S, Rezaeifar B, Langlois JB, Si-Mohamed SA, Montcel B, Douek P, Lerouge F. Surface modification effect on contrast agent efficiency for X-ray based spectral photon-counting scanner/luminescence imaging: from fundamental study to in vivo proof of concept. NANOSCALE 2024; 16:2931-2944. [PMID: 38230699 DOI: 10.1039/d3nr03710j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
X-Ray imaging techniques are among the most widely used modalities in medical imaging and their constant evolution has led to the emergence of new technologies. The new generation of computed tomography (CT) systems - spectral photonic counting CT (SPCCT) and X-ray luminescence optical imaging - are examples of such powerful techniques. With these new technologies the rising demand for new contrast agents has led to extensive research in the field of nanoparticles and the possibility to merge the modalities appears to be highly attractive. In this work, we propose the design of lanthanide-based nanocrystals as a multimodal contrast agent with the two aforementioned technologies, allowing SPCCT and optical imaging at the same time. We present a systematic study on the effect of the Tb3+ doping level and surface modification on the generation of contrast with SPCCT and the luminescence properties of GdF3:Tb3+ nanocrystals (NCs), comparing different surface grafting with organic ligands and coatings with silica to make these NCs bio-compatible. A comparison of the luminescence properties of these NCs with UV revealed that the best results were obtained for the Gd0.9Tb0.1F3 composition. This property was confirmed under X-ray excitation in microCT and with SPCCT. Moreover, we could demonstrate that the intensity of the luminescence and the excited state lifetime are strongly affected by the surface modification. Furthermore, whatever the chemical nature of the ligand, the contrast with SPCCT did not change. Finally, the successful proof of concept of multimodal imaging was performed in vivo with nude mice in the SPCCT taking advantage of the so-called color K-edge imaging method.
Collapse
Affiliation(s)
- Loic Cuau
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| | - Pia Akl
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - A Gautheron
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
- Université Jean Monnet Saint-Etienne, CNRS, Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, Saint-Etienne, France
| | - Angèle Houmeau
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Frédéric Chaput
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands
| | - Ludwig Dubois
- Department of Precision Medicine, The M-Lab, GROW - School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands
| | - Szilvia Karpati
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| | - Stephane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| | - B Rezaeifar
- Department of Precision Medicine, The M-Lab, GROW - School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands
- Research group NuTeC, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Salim A Si-Mohamed
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - Bruno Montcel
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Philippe Douek
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - Frederic Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| |
Collapse
|
5
|
Wu Q, Zheng Q, He Y, Chen Q, Yang H. Emerging Nanoagents for Medical X-ray Imaging. Anal Chem 2023; 95:33-48. [PMID: 36625104 DOI: 10.1021/acs.analchem.2c04602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qinxia Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qianyu Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
6
|
Hong Z, Chen Z, Chen Q, Yang H. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics. Acc Chem Res 2023; 56:37-51. [PMID: 36533853 DOI: 10.1021/acs.accounts.2c00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
X-ray luminescence is an optical phenomenon in which chemical compounds known as scintillators can emit short-wavelength light upon the excitation of X-ray photons. Since X-rays exhibit well-recognized advantages of deep penetration toward tissues and a minimal autofluorescence background in biological samples, X-ray luminescence has been increasingly becoming a promising optical tool for tackling the challenges in the fields of imaging, biosensing, and theragnostics. In recent years, the emergence of nanocrystal scintillators have further expanded the application scenarios of X-ray luminescence, such as high-resolution X-ray imaging, autofluorescence-free detection of biomarkers, and noninvasive phototherapy in deep tissues. Meanwhile, X-ray luminescence holds great promise in breaking the depth dependency of deep-seated lesion treatment and achieving synergistic radiotherapy with phototherapy.In this Account, we provide an overview of recent advances in developing advanced X-ray luminescence for applications in imaging, biosensing, theragnostics, and optogenetics neuromodulation. We first introduce solution-processed lead halide all-inorganic perovskite nanocrystal scintillators that are able to convert X-ray photons to multicolor X-ray luminescence. We have developed a perovskite nanoscintillator-based X-ray detector for high-resolution X-ray imaging of the internal structure of electronic circuits and biological samples. We further advanced the development of flexible X-ray luminescence imaging using solution-processable lanthanide-doped nanoscintillators featuring long-lived X-ray luminescence to image three-dimensional irregularly shaped objects. We also outline the general principles of high-contrast in vivo X-ray luminescence imaging which combines nanoscintillators with functional biomolecules such as aptamers, peptides, and antibodies. High-quality X-ray luminescence nanoprobes were engineered to achieve the high-sensitivity detection of various biomarkers, which enabled the avoidance of interference from the biological matrix autofluorescence and photon scattering. By marrying X-ray luminescence probes with stimuli-responsive materials, multifunctional theragnostic nanosystems were constructed for on-demand synergistic gas radiotherapy with excellent therapeutic effects. By taking advantage of the capability of X-rays to penetrate the skull, we also demonstrated the development of controllable, wireless optogenetic neuromodulation using X-ray luminescence probes while obviating damage from traditional optical fibers. Furthermore, we discussed in detail some challenges and future development of X-ray luminescence in terms of scintillator synthesis and surface modification, mechanism studies, and their other potential applications to provide useful guidance for further advancing the development of X-ray luminescence.
Collapse
Affiliation(s)
- Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
7
|
Maiti D, Yu H, Kim BS, Naito M, Yamashita S, Kim HJ, Miyata K. Rose Bengal Decorated NaYF 4:Tb Nanoparticles for Low Dose X-ray-Induced Photodynamic Therapy in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:5477-5486. [PMID: 36318743 DOI: 10.1021/acsabm.2c00801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of scintillating nanoparticles (ScNPs) in X-ray-induced photodynamic therapy (X-PDT) is a technique for deep tissue-localized tumor therapy with few side effects. ScNPs transfer X-ray-induced energy to photosensitizers, which generate massive amounts of reactive oxygen species (ROS) and kill cancer cells. Here we fabricated rose bengal (RB)-installed, Tb3+-rich NaYF4 nanocrystals (NaYF4:Tb@RB), in which optically inert Y3+ enables highly efficient energy transfer via high amounts of Tb3+ doping. NaYF4:Tb was prepared via solvothermal synthesis to have an average size of 7.6 nm, followed by coating with poly(maleic anhydride-alt-1-octedecene)-poly(ethylene glycol) with a molecular weight of 2000 (C18PMH-PEG2k). Further, RB was covalently conjugated to carboxyl groups generated from PMH on NaYF4:Tb using an ethylenediamine linker. NaYF4:Tb@RB exhibited a hydrodynamic diameter of ∼75 nm with a ζ-potential of -12 mV. NaYF4:Tb@RB efficiently generated ROS in cultured luciferase-expressing murine epithelial breast cancer (4T1-luc) cells under low dose X-ray irradiation (0.5 Gy). The ROS generation amounts of NaYF4:Tb@RB were 1.5-2-fold higher than those of NaGdF4:Tb@RB, in which host nanocrystals were prepared with optically active Gd3+. Flow cytometric and confocal microscopic analyses showed higher intracellular ROS production of NaYF4:Tb@RB, compared to NaYF4:Tb and RB, resulting in higher X-ray-induced DNA damage in cultured 4T1-luc cells. Ultimately, NaYF4:Tb@RB elicited significant cytotoxicity after X-ray irradiation (0.5 Gy), while inducing marginal cytotoxicity without X-ray irradiation. Altogether, this research proposes a promising ScNP design for efficient X-PDT agents that make the better use of incident X-ray energy while causing the fewest side effects.
Collapse
Affiliation(s)
- Debabrata Maiti
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hao Yu
- Nuclear Professional School, Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan
| | - Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinichi Yamashita
- Nuclear Professional School, Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.,Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat Commun 2022; 13:5739. [PMID: 36180442 PMCID: PMC9525643 DOI: 10.1038/s41467-022-33489-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
External manipulation of emission colour is of significance for scientific research and applications, however, the general stimulus-responsive colour modulation method requires both stringent control of microstructures and continously adjustment of particular stimuli conditions. Here, we introduce pathways to manipulate the kinetics of time evolution of both intensity and spectral characteristics of X-ray excited afterglow (XEA) by regioselective doping of lanthanide activators in core-shell nanostructures. Our work reported here reveals the following phenomena: 1. The XEA intensities of multiple lanthanide activators are significantly enhanced via incorporating interstitial Na+ ions inside the nanocrystal structure. 2. The XEA intensities of activators exhibit diverse decay rates in the core and the shell and can largely be tuned separately, which enables us to realize a series of core@shell NPs featuring distinct time-dependent afterglow colour evolution. 3. A core/multi-shell NP structure can be designed to simultaneously generate afterglow, upconversion and downshifting to realize multimode time-dependent multicolour evolutions. These findings can promote the development of superior XEA and plentiful spectral manipulation, opening up a broad range of applications ranging from multiplexed biosensing, to high-capacity information encryption, to multidimensional displays and to multifunctional optoelectronic devices. X-ray activated afterglow nanomaterials are desirable components for advanced optoelectronic applications. Here, the authors present pathways to modulate the stimulus-responsive color emissions in lanthanide-doped fluoride core-shell nanoparticles.
Collapse
|
9
|
Mell S, Jones HW, Bandera YP, Foulger SH. Radioluminescent Photonic Bandgap Hydrogels: Mechanochromic Tunable Emissions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10089-10097. [PMID: 35944156 DOI: 10.1021/acs.langmuir.2c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fully organic, radioluminescent crystalline colloidal arrays (CCAs) with covalently incorporated emitters were synthesized by using up to three organic fluorophores that were Förster resonance energy transfer (FRET) pairs with each other. The emitters were covalently incorporated into monodisperse poly(styrene-co-propargyl acrylate) nanoparticles in various combinations, resulting in blue-, green-, and red-emitting CCAs when excited with an X-ray source. The negatively charged surfaces of the monodisperse nanoparticles caused self-assembly into a crystal-like structure, which resulted in a partial photonic bandgap (i.e., rejection wavelength) within the near-visible and visible light spectrum. When the rejection wavelength of the CCA overlapped its radioluminescence, the spontaneous emission was inhibited and the emission intensity decreased. A poly(ethylene glycol) methacrylate-based hydrogel network was used to encapsulate the CCAs and stabilize their crystal-like structure. Within the hydrogel, coupling the photonic bandgap with the radioluminescence of the CCA films led to robust optical systems with tunable emissions. These fully organic, hydrogel-stabilized, radioluminescent CCAs possess mechanochromic tunable optical characteristics with future applications as potentially less toxic X-ray bioimaging materials.
Collapse
Affiliation(s)
- Sarah Mell
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Haley W Jones
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Yuriy P Bandera
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen H Foulger
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
10
|
Wang M, Meng Y, Zhu Y, Song J, Yang J, Liu C, Zhu H, Yan D, Xu C, Liu Y. Afterglow-Suppressed Lu 2O 3:Eu 3+ Nanoscintillators for High-Resolution and Dynamic Digital Radiographic Imaging. Inorg Chem 2022; 61:11293-11305. [PMID: 35820030 DOI: 10.1021/acs.inorgchem.2c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lu2(1-x)Eu2xO3 nanoscintillators (x = 0.005, 0.01, 0.03, 0.05, 0.07, and 0.10) with red emission were synthesized by a coprecipitation method. It is found that their photo- and radioluminescence intensities increase with increasing Eu3+ concentration until x = 0.05. According to their concentration-dependent luminescence intensity ratios (I610(C2)/I582(S6)), the existing energy transfer from Eu3+(S6) (occupying S6 sites) to Eu3+(C2) (occupying C2 sites) can be confirmed. Based on the spectral data and density functional theory (DFT) calculations, the origin of Lu2O3:Eu3+ persistent luminescence at low concentration might be related to the tunneling processes between Eu3+ (occupying C2 and S6 sites) and oxygen interstitials (Oi×). After dispersing afterglow-suppressed Lu2O3:Eu3+ nanoscintillators into polymethyl methacrylate (PMMA) polymer-acetone solution, flexible PMMA-Lu2O3:Eu3+ composite films with high thermal stability and radiation resistance were fabricated by a doctor blade method. As the flexible composite film was used as an imaging plate, static X-ray images with high spatial resolution (5.5 lp/mm) under an extremely low dose of ∼1.1 μGyair can be acquired. When a watch with a moving second hand was used as an object, the dynamic X-ray imaging can be realized under a dose rate of 55 μGyair·s-1. Our results demonstrate that Lu2O3:Eu3+ nanoscintillators can be regarded as candidate materials for dynamic digital radiographic imaging.
Collapse
Affiliation(s)
- Mingwei Wang
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yangqi Meng
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yaqi Zhu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jia Song
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jian Yang
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Chunguang Liu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hancheng Zhu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Duanting Yan
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Changshan Xu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yuxue Liu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
11
|
Hu F, Gong H, Wei R, Guo H. Reproducible X-ray excited luminescence performance with transparent Tb3+-doped NaGd2F7 scintillating glass ceramics. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Wang B, Wang Z, Mao P, Wang Y. A multi-color persistent luminescent phosphor β-NaYF 4:RE 3+ (RE = Sm, Tb, Dy, Pr) for dynamic anti-counterfeiting. RSC Adv 2022; 12:11534-11542. [PMID: 35425058 PMCID: PMC9006351 DOI: 10.1039/d2ra01425d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Conventional luminescent materials generally exhibit uni-color and transient emission under UV excitation, which makes them mediocre in the field of anti-counterfeiting. The high-level anti-counterfeiting techniques are always becoming more complicated and in need of multi-color and persistent luminescent materials. Herein, we report a series of β-NaYF4:RE3+ (RE = Sm, Tb, Dy, Pr) persistent luminescent phosphors with multi-color emitting and ultra-long persistent luminescence under the irradiation of X-rays. The effects of doping concentrations of RE3+ on the size, morphology, radioluminescence and afterglow performance of the products are investigated in detail. Hexagonal structured rod-like β-NaYF4:Tb3+ crystals show super strong X-ray response and the afterglow signal lasts for up to seven days after X-rays are turned off. Upon X-rays irradiation, some of the F− ions are expected to escape from the crystal lattice by elastic collisions, leading to the generation of Frenkel defects: the F vacancies and interstitials , which capture electrons and release them slowly to achieve different afterglow emission times. Taking advantages of the extraordinary radioluminescence performance of the β-NaYF4:RE3+ persistent luminescent phosphors, the dynamic anti-counterfeiting patterns that containing rich time-resolved information were successfully designed. A dynamic anti-counterfeiting pattern was successfully designed by using the excellent luminescence characteristics of long afterglow materials under X-ray excitation.![]()
Collapse
Affiliation(s)
- Bohan Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 China
| | - Zhihao Wang
- Research and Develop Center, Shenzhen Huake Chuangzhi Technology Co., Ltd. Shenzhen 518116 China
| | - Peng Mao
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 China
| | - Yu Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 China
| |
Collapse
|
14
|
Ma J, Zhu W, Lei L, Deng D, Hua Y, Yang YM, Xu S, Prasad PN. Highly Efficient NaGdF 4:Ce/Tb Nanoscintillator with Reduced Afterglow and Light Scattering for High-Resolution X-ray Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44596-44603. [PMID: 34516086 DOI: 10.1021/acsami.1c14503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Scintillation-based X-ray excited optical luminescence (XEOL) imaging shows great potential applications in the fields of industrial security inspection and medical diagnosis. It is still a great challenge to achieve scintillators simultaneously with low toxicity, high stability, strong XEOL intensity, and weak afterglow as well as simple device processibility with weak light scattering. Herein, we introduce ethylenediaminetetraacetate (EDTA)-capped NaGdF4:10Ce/18Tb nanoparticles (NPs) as a highly sensitive nanoscintillator, which meets all of the abovementioned challenges. These NPs show comparable XEOL intensity to the commercial CsI (Tl) single crystal in the green region. We propose a mechanism that involves a new electron-captured path by Ce3+ ions and the promotion of energy migration from a trap center to surface quenchers via a Gd3+ sublattice, which greatly reduces the population in traps to produce significant reduction of afterglow. Moreover, by employing an ultrathin transparent NaGdF4:10Ce/18Tb film (0.045 mm) as a nanoscintillator screen for XEOL imaging, a high spatial resolution of 18.6 lp mm-1 is realized owing to the greatly limited optical scattering, which is superior to the commercial CsI (TI) scintillator and most reported lead halide perovskites. We demonstrate that doping Ce3+ ions can greatly limit X-ray-activated afterglow, enabling to use an ultrathin transparent fluoride NP-based nanoscintillator screen for high-quality XEOL imaging of various objects such as an electronics chip and biological tissue.
Collapse
Affiliation(s)
- Jinjing Ma
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wenjuan Zhu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310018, China
| | - Lei Lei
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Degang Deng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Youjie Hua
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yang Michael Yang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310018, China
| | - Shiqing Xu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
15
|
Ranasinghe M, Arifuzzaman M, Rajamanthrilage AC, Willoughby WR, Dickey A, McMillen C, Kolis JW, Bolding M, Anker JN. X-ray excited luminescence spectroscopy and imaging with NaGdF 4:Eu and Tb. RSC Adv 2021; 11:31717-31726. [PMID: 35496840 PMCID: PMC9041542 DOI: 10.1039/d1ra05451a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
X-ray excited optical luminescence from nanophosphors can be used to selectively generate light in tissue for imaging and stimulating light-responsive materials and cells. Herein, we synthesized X-ray scintillating NaGdF4:Eu and Tb nanophosphors via co-precipitate and hydrothermal methods, encapsulated with silica, functionalized with biotin, and characterized by X-ray excited optical luminescence spectroscopy and imaging. The nanophosphors synthesized by co-precipitate method were ∼90 and ∼106 nm in diameter, respectively, with hydrothermally synthesized particles showing the highest luminescence intensity. More importantly, we investigated the effect of thermal annealing/calcination on the X-ray excited luminescence spectra and intensity. At above 1000 °C, the luminescence intensity increased, but particles fused together. Coating with a 15 nm thick silica shell prevented particle fusion and enabled silane-based chemical functionalization, although luminescence decreased largely due to the increased mass of non-luminescent material. We observed an increase in luminesce intensity with temperature until at 400 °C. At above 600 °C, NaGdF4:Eu@SiO2 converts to NaGd9Si6O26:Eu, an X-ray scintillator brighter than annealed NPs at 400 °C and dimmer than NPs synthesized using the hydrothermal method. The particles generate light through tissue and can be selectively excited using a focused X-ray source for imaging and light generation applications. The particles also act as MRI contrast agents for multi-modal localization.
Collapse
Affiliation(s)
- Meenakshi Ranasinghe
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Md Arifuzzaman
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Apeksha C Rajamanthrilage
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - W R Willoughby
- Department of Radiology, University of Alabama at Birmingham School of Medicine Birmingham AL USA
| | - Ashley Dickey
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Colin McMillen
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Joseph W Kolis
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham School of Medicine Birmingham AL USA
| | - Jeffrey N Anker
- Department of Chemistry, Center for Optical Materials Engineering and Technology (COMSET), Clemson University Clemson SC USA
| |
Collapse
|
16
|
Jiang M, Deng Z, Zeng S, Hao J. Recent progress on lanthanide scintillators for soft X‐ray‐triggered bioimaging and deep‐tissue theranostics. VIEW 2021. [DOI: 10.1002/viw.20200122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mingyang Jiang
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Zhiming Deng
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Jianhua Hao
- Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong P. R. China
| |
Collapse
|
17
|
Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, Soldatov AV. Nanomaterials for Deep Tumor Treatment. Mini Rev Med Chem 2021; 21:677-688. [PMID: 33176645 DOI: 10.2174/1389557520666201111161705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
According to statistics, cancer is the second leading cause of death in the world. Thus, it is important to solve this medical and social problem by developing new effective methods for cancer treatment. An alternative to more well-known approaches, such as radiotherapy and chemotherapy, is photodynamic therapy (PDT), which is limited to the shallow tissue penetration (< 1 cm) of visible light. Since the PDT process can be initiated in deep tissues by X-ray irradiation (X-ray induced PDT, or XPDT), it has a great potential to treat tumors in internal organs. The article discusses the principles of therapies. The main focus is on various nanoparticles used with or without photosensitizers, which allow the conversion of X-ray irradiation into UV-visible light. Much attention is given to the synthesis of nanoparticles and analysis of their characteristics, such as size and spectral features. The results of in vitro and in vivo experiments are also discussed.
Collapse
Affiliation(s)
- Daria Yu Kirsanova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| | - Zaira M Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| | - Aleksey Yu Maksimov
- National Medical Research Centre for Oncology, 14 liniya str. 63, 344037, Rostov-on-Don, Russian Federation
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| |
Collapse
|
18
|
Li Y, Jiang M, Deng Z, Zeng S, Hao J. Low Dose Soft X-Ray Remotely Triggered Lanthanide Nanovaccine for Deep Tissue CO Gas Release and Activation of Systemic Anti-Tumor Immunoresponse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004391. [PMID: 34165903 PMCID: PMC8224418 DOI: 10.1002/advs.202004391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Indexed: 05/08/2023]
Abstract
Gas-based therapy has emerged as a new green therapy strategy for anti-tumor treatment. However, the therapeutic efficacy is still restricted by the deep tissue controlled release, poor lymphocytic infiltration, and inherent immunosuppressive tumor microenvironment (TME). Herein, a new type of nanovaccine is designed by integrating low dose soft X-ray-triggered CO releasing lanthanide scintillator nanoparticles (ScNPs: NaLuF4 :Gd,Tb@NaLuF4 ) with photo-responsive CO releasing moiety (PhotoCORM) for synergistic CO gas/immuno-therapy of tumors. The designed nanovaccine presents significantly boosted radioluminescence and enables deep tissue CO generation at unprecedented tissue depths of 5 cm under soft X-ray irradiation. Intriguingly, CO as a superior immunogenic cell death (ICD) inducer further reverses the deep tissue immunosuppressive TME and concurrently activates adaptive anti-tumor immunity through efficient reactive oxygen species (ROS) generation. More importantly, the designed nanovaccine presents efficient growth inhibition of both local and distant tumors via a soft X-ray activated systemic anti-tumor immunoresponse. This work provides a new strategy of designing anti-tumor nanovaccines for synergistic deep tissue gas-therapy and remote soft X-ray photoactivation of the immune response.
Collapse
Affiliation(s)
- Youbin Li
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and ElectronicsHunan Normal UniversityChangsha410081P. R. China
| | - Mingyang Jiang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and ElectronicsHunan Normal UniversityChangsha410081P. R. China
| | - Zhiming Deng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and ElectronicsHunan Normal UniversityChangsha410081P. R. China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and ElectronicsHunan Normal UniversityChangsha410081P. R. China
| | - Jianhua Hao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong999077P. R. China
| |
Collapse
|
19
|
Daouk J, Iltis M, Dhaini B, Béchet D, Arnoux P, Rocchi P, Delconte A, Habermeyer B, Lux F, Frochot C, Tillement O, Barberi-Heyob M, Schohn H. Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14050396. [PMID: 33922073 PMCID: PMC8143523 DOI: 10.3390/ph14050396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023] Open
Abstract
X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a nanoscintillator and 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenyl porphyrin (P1) as a photosensitizer (AGuIX@Tb-P1). The synthesis was based on the AGuIX@ platform design. AGuIX@Tb-P1 was characterised for its photo-physical and physico-chemical properties. The effect of the nanoparticles was studied using human glioblastoma U-251 MG cells and was compared to treatment with AGuIX@ nanoparticles doped with Gadolinium (Gd) and P1 (AGuIX@Gd-P1). We demonstrated that the AGuIX@Tb-P1 design was consistent with X-ray photon energy transfer from Terbium to P1. Both nanoparticles had similar dark cytotoxicity and they were absorbed in a similar rate within the cells. Pre-treated cells exposure to X-rays was related to reactive species production. Using clonogenic assays, establishment of survival curves allowed discrimination of the impact of radiation treatment from X-ray-induced photodynamic effect. We showed that cell growth arrest was increased (35%-increase) when cells were treated with AGuIX@Tb-P1 compared to the nanoparticle doped with Gd.
Collapse
Affiliation(s)
- Joël Daouk
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Mathilde Iltis
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Batoul Dhaini
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Denise Béchet
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Philippe Arnoux
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Paul Rocchi
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Alain Delconte
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | | | - François Lux
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Olivier Tillement
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Muriel Barberi-Heyob
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
- Correspondence: ; Tel.: +33-(0)3-72-74-61-14
| | - Hervé Schohn
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| |
Collapse
|
20
|
Fritzen DL, Giordano L, Rodrigues LCV, Monteiro JHSK. Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2015. [PMID: 33066063 PMCID: PMC7600618 DOI: 10.3390/nano10102015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The use of luminescence in biological systems allows us to diagnose diseases and understand cellular processes. Persistent luminescent materials have emerged as an attractive system for application in luminescence imaging of biological systems; the afterglow emission grants background-free luminescence imaging, there is no need for continuous excitation to avoid tissue and cell damage due to the continuous light exposure, and they also circumvent the depth penetration issue caused by excitation in the UV-Vis. This review aims to provide a background in luminescence imaging of biological systems, persistent luminescence, and synthetic methods for obtaining persistent luminescent materials, and discuss selected examples of recent literature on the applications of persistent luminescent materials in luminescence imaging of biological systems and photodynamic therapy. Finally, the challenges and future directions, pointing to the development of compounds capable of executing multiple functions and light in regions where tissues and cells have low absorption, will be discussed.
Collapse
Affiliation(s)
- Douglas L. Fritzen
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Luidgi Giordano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Lucas C. V. Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | | |
Collapse
|
21
|
Belanova A, Chmykhalo V, Beseda D, Belousova M, Butova V, Soldatov A, Makarenko Y, Zolotukhin P. A mini-review of X-ray photodynamic therapy (XPDT) nonoagent constituents' safety and relevant design considerations. Photochem Photobiol Sci 2020; 19:1134-1144. [PMID: 32776036 DOI: 10.1039/c9pp00456d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional photodynamic therapy (PDT) has proved effective in the management of primary tumors and individual metastases. However, most cancer mortality arises from wide-spread multiple metastases. The latter has thus become the principal target in oncology, and X-ray induced photodynamic therapy (XPDT or PDTX) offers a great solution for adapting the PDT principle to deep tumors and scattered metastases. Developing agents capable of being excited by X-rays and emitting visible light to excite photosensitizers is based on challenging physical and chemical technologies, but there are fundamental biological limitations that are to be accounted for as well. In the present review, we have established eight major groups of safety determinants of NPs encompassing 22 parameters of clinical applicability of XPDT nanoparticulate formulations. Most, if not all, of these parameters can be accounted for and optimized during the design and development of novel XPDT nanoparticles.
Collapse
Affiliation(s)
- A Belanova
- Biomedical Innovations LLC, Russian Federation
| | - V Chmykhalo
- Southern Federal University, Russian Federation
| | - D Beseda
- Biomedical Innovations LLC, Russian Federation
| | - M Belousova
- Southern Federal University, Russian Federation
| | - V Butova
- Southern Federal University, Russian Federation
| | - A Soldatov
- Southern Federal University, Russian Federation
| | - Y Makarenko
- Rostov-on-Don Pathological-anatomical bureau No. 1, Russian Federation
| | - P Zolotukhin
- Southern Federal University, Russian Federation.
| |
Collapse
|
22
|
Gupta SK, Mao Y. Recent advances, challenges, and opportunities of inorganic nanoscintillators. FRONTIERS OF OPTOELECTRONICS 2020; 13:156-187. [PMID: 36641550 PMCID: PMC9743955 DOI: 10.1007/s12200-020-1003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/19/2020] [Indexed: 05/11/2023]
Abstract
This review article highlights the exploration of inorganic nanoscintillators for various scientific and technological applications in the fields of radiation detection, bioimaging, and medical theranostics. Various aspects of nanoscintillators pertaining to their fundamental principles, mechanism, structure, applications are briefly discussed. The mechanisms of inorganic nanoscintillators are explained based on the fundamental principles, instrumentation involved, and associated physical and chemical phenomena, etc. Subsequently, the promise of nanoscintillators over the existing single-crystal scintillators and other types of scintillators is presented, enabling their development for multifunctional applications. The processes governing the scintillation mechanisms in nanodomains, such as surface, structure, quantum, and dielectric confinement, are explained to reveal the underlying nanoscale scintillation phenomena. Additionally, suitable examples are provided to explain these processes based on the published data. Furthermore, we attempt to explain the different types of inorganic nanoscintillators in terms of the powder nanoparticles, thin films, nanoceramics, and glasses to ensure that the effect of nanoscience in different nanoscintillator domains can be appreciated. The limitations of nanoscintillators are also highlighted in this review article. The advantages of nanostructured scintillators, including their property-driven applications, are also explained. This review article presents the considerable application potential of nanostructured scintillators with respect to important aspects as well as their physical and application significance in a concise manner.
Collapse
Affiliation(s)
- Santosh K Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
23
|
Wu S, Li Y, Ding W, Xu L, Ma Y, Zhang L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. NANO-MICRO LETTERS 2020; 12:70. [PMID: 34138268 PMCID: PMC7770784 DOI: 10.1007/s40820-020-0404-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation. In the past decade, persistent luminescence nanoparticles (PLNPs) with intriguing optical properties have attracted a wide range of attention in various areas. Especially in recent years, the development and applications in biomedical fields have been widely explored. Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission, many researches have focused on the manipulation of PLNPs in biosensing, cell tracking, bioimaging and cancer therapy. These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions. In this review, we summarize the works on synthesis methods, bioapplications, biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing, imaging and imaging-guided therapy. We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Weihang Ding
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Letong Xu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuan Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
24
|
Li X, Jiang M, Li Y, Xue Z, Zeng S, Liu H. 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:260-268. [DOI: 10.1016/j.msec.2019.02.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
|
25
|
Burdette MK, Bandera YP, Zhang E, Trofimov A, Dickey A, Foulger I, Kolis JW, Cannon KE, Bartley AF, Dobrunz LE, Bolding MS, McMahon L, Foulger SH. Organic Fluorophore Coated Polycrystalline Ceramic LSO:Ce Scintillators for X-ray Bioimaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:171-182. [PMID: 30518207 DOI: 10.1021/acs.langmuir.8b03129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The current effort demonstrates that lutetium oxyorthosilicate doped with 1-10% cerium (Lu2SiO5:Ce, LSO:Ce) radioluminescent particles can be coated with a single dye or multiple dyes and generate an effective energy transfer between the core and dye(s) when excited via X-rays. LSO:Ce particles were surface modified with an alkyne modified naphthalimide (6-piperidin-1-yl-2-prop-2-yn-1-yl-1 H-benzo[ de]isoquinoline-1,3-(2 H)-dione, AlNap) and alkyne modified rhodamine B ( N-(6-diethylamino)-9-{2-[(prop-2-yn-1-yloxy)carbonyl]phenyl}-3 H-xanthen-3-ylidene)- N-ethylethanaminium, AlRhod) derivatives to tune the X-ray excited optical luminescence from blue to green to red using Förster Resonance Energy Transfer (FRET). As X-rays penetrate tissue much more effectively than UV/visible light, the fluorophore modified phosphors may have applications as bioimaging agents. To that end, the phosphors were incubated with rat cortical neurons and imaged after 24 h. The LSO:Ce surface modified with AlNap was able to be successfully imaged in vitro with a low-output X-ray tube. To use the LSO:Ce fluorophore modified particles as imaging agents, they must not induce cytotoxicity. Neither LSO:Ce nor LSO:Ce modified with AlNap showed any cytotoxicity toward normal human dermal fibroblast cells or mouse cortical neurons, respectively.
Collapse
Affiliation(s)
- Mary K Burdette
- Department of Materials Science and Engineering , Clemson University , Clemson , South Carolina 29634 , United States
- Center for Optical Materials Science and Engineering Technologies , Clemson University , Anderson , South Carolina 29625 , United States
| | - Yuriy P Bandera
- Department of Materials Science and Engineering , Clemson University , Clemson , South Carolina 29634 , United States
- Center for Optical Materials Science and Engineering Technologies , Clemson University , Anderson , South Carolina 29625 , United States
| | - Eric Zhang
- Department of Materials Science and Engineering , Clemson University , Clemson , South Carolina 29634 , United States
- Center for Optical Materials Science and Engineering Technologies , Clemson University , Anderson , South Carolina 29625 , United States
| | - Artem Trofimov
- Department of Materials Science and Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - Ashley Dickey
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Isabell Foulger
- Department of Bioengineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - Joseph W Kolis
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Kelli E Cannon
- Department of Vision Science , University of Alabama at Birmingham , Birmingham , Alabama 35294 , United States
| | - Aundrea F Bartley
- Department of Neurobiology, Evelyn F. McKnight Brain Institute & Civitan International Research Center , University of Alabama at Birmingham , Birmingham , Alabama 35294 , United States
| | - Lynn E Dobrunz
- Department of Neurobiology, Evelyn F. McKnight Brain Institute & Civitan International Research Center , University of Alabama at Birmingham , Birmingham , Alabama 35294 , United States
| | - Mark S Bolding
- Department of Radiology , University of Alabama at Birmingham , Birmingham , Alabama 35294 , United States
| | - Lori McMahon
- Department of Cell, Developmental, and Integrative Biology , University of Alabama at Birmingham , Birmingham , Alabama 35294 , United States
| | - Stephen H Foulger
- Center for Optical Materials Science and Engineering Technologies , Clemson University , Anderson , South Carolina 29625 , United States
- Department of Bioengineering , Clemson University , Clemson , South Carolina 29634 , United States
- Department of Materials Science and Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| |
Collapse
|
26
|
Chen X, Song J, Chen X, Yang H. X-ray-activated nanosystems for theranostic applications. Chem Soc Rev 2019; 48:3073-3101. [PMID: 31106315 DOI: 10.1039/c8cs00921j] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
Collapse
Affiliation(s)
- Xiaofeng Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | | | | | | |
Collapse
|
27
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|