1
|
Zhou X, Liu H, Yu Z, Yu H, Meng D, Zhu L, Li H. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery. J Colloid Interface Sci 2024; 670:1-11. [PMID: 38749378 DOI: 10.1016/j.jcis.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Hydrogel microneedle patches have emerged as promising platforms for painless, minimally invasive, safe, and portable transdermal drug administration. However, the conventional mold-based fabrication processes and inherent single-functionality of such microneedles present significant hurdles to broader implementation. Herein, we have developed a novel approach utilizing a precursor solution of robust nanocomposite hydrogels to formulate photo-printable inks suitable for the direct 3D printing of high-precision, triple-responsive hydrogel microneedle patches through digital light processing (DLP) technology. The ink formulation comprises four functionally diverse monomers including 2-(dimethylamino)ethyl methacrylate, N-isopropylacrylamide, acrylic acid, and acrylamide, which were crosslinked by aluminum hydroxide nanoparticles (AH NPs) acting as both reinforcing agents and crosslinking centers. This results in the formation of a nanocomposite hydrogel characterized by exceptional mechanical strength, an essential attribute for the 3D printing of hydrogel microneeedle patches. Furthermore, this innovative 3D printing strategy facilitates facile customization of microneedle geometry and patch dimensions. As a proof-of-concept, we employed the fabricated hydrogel microneedles for transdermal delivery of bovine serum albumin (BSA). Importantly, these hydrogel microneedles displayed no cytotoxic effects and exhibited triple sensitivity to pH, temperature and glucose levels, thereby enabling more precise on-demand drug delivery. This study provides a universal method for the rapid fabrication of hydrogel microneedles with smart responsiveness for transdermal drug delivery applications.
Collapse
Affiliation(s)
- Xinmeng Zhou
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zilian Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hao Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huanjun Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
2
|
Hu J, Zhang D, Li W, Li Y, Shan G, Zuo M, Song Y, Wu Z, Ma L, Zheng Q, Du M. Construction of a Soft Antifouling PAA/PSBMA Hydrogel Coating with High Toughness and Low Swelling through the Dynamic Coordination Bonding Provided by Al(OH) 3 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6433-6446. [PMID: 38289030 DOI: 10.1021/acsami.3c17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Marine biofouling, resulting from the adhesion of marine organisms to ship surfaces, has long been a significant issue in the maritime industry. In this paper, we focused on utilizing soft and hydrophilic hydrogels as a potential approach for antifouling (AF) coatings. Acrylic acid (AA) with a polyelectrolyte effect and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) with an antipolyelectrolyte effect were selected as monomers. By adjusting the monomer ratio, we were able to create hydrogel coatings that exhibited low swelling ratio in both fresh water and seawater. The Al(OH)3 nanoparticle, as a physical cross-linker, provided better mechanical properties (higher tensile strength and larger elongation at break) than the chemical cross-linker through the dynamic coordination bonds and plentiful hydrogen bonds. Additionally, we incorporated trehalose into the hydrogel, enabling the repair of the hydrogel network through covalent-like hydrogen bonding. The zwitterion compound SBMA endowed the hydrogel with excellent AF performance. It was found that the highest SBMA content did not lead to the best antibacterial performance, as bacterial adhesion quantity was also influenced by the charge of the hydrogel. The hydrogel with appropriate SBMA content being close to electrical neutrality exhibits the strongest zwitterionic property of PSBMA chains, resulting in the best antibacterial adhesion performance. Furthermore, the pronounced hydrophilicity of SBMA enhanced the lubrication of the hydrogel surface, thereby reducing the friction resistance when applied to the hull surface during ship navigation.
Collapse
Affiliation(s)
- Jinpeng Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dezhi Zhang
- Hangzhou Applied Acoustics Research Institute, Hangzhou 310023, China
| | - Wenbao Li
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guorong Shan
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Min Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| |
Collapse
|
3
|
Wang C, Sun J, Long Y, Huang H, Song J, Wang R, Qu Y, Yang Z. A Self-Healing Gel with an Organic-Inorganic Network Structure for Mitigating Circulation Loss. Gels 2024; 10:93. [PMID: 38391423 PMCID: PMC10887993 DOI: 10.3390/gels10020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Lost circulation control remains a challenge in drilling operations. Self-healing gels, capable of self-healing in fractures and forming entire gel block, exhibit excellent resilience and erosion resistance, thus finding extensive studies in lost circulation control. In this study, layered double hydroxide, Acrylic acid, 2-Acrylamido-2-methylpropane sulfonic acid, and CaCl2 were employed to synthesize organic-inorganic nanocomposite gel with self-healing properties. The chemical properties of nanocomposite gels were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy and thermogravimetric analysis. layered double hydroxide could be dispersed and exfoliated in the mixed solution of Acrylic acid and 2-Acrylamido-2-methylpropane sulfonic acid, and the swelling behavior, self-healing time, rheological properties, and mechanical performance of the nanocomposite gels were influenced by the addition of layered double hydroxide and Ca2+. Optimized nanocomposite gel AC6L3, at 90 °C, exhibits only a self-healing time of 3.5 h in bentonite mud, with a storage modulus of 4176 Pa, tensile strength of 6.02 kPa, and adhesive strength of 1.94 kPa. In comparison to conventional gel, the nanocomposite gel with self-healing capabilities demonstrated superior pressure-bearing capacity. Based on these characteristics, the nanocomposite gel proposed in this work hold promise as a candidate lost circulation material.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
- CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China
| | - Jinsheng Sun
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
- CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China
| | - Yifu Long
- CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China
| | - Hongjun Huang
- CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China
| | - Juye Song
- CNPC Great Wall Drilling Engineering Co., Ltd., Beijing 102206, China
| | - Ren Wang
- CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China
| | - Yuanzhi Qu
- CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China
| | - Zexing Yang
- CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China
| |
Collapse
|
4
|
Jiang H, Hao Z, Zhang J, Tang J, Li H. Bioinspired Swelling Enhanced Hydrogels for Underwater Sensing. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Du H, Yuan T, Zhao R, Hirsch M, Kessler M, Amstad E. Reinforcing hydrogels with in situ formed amorphous CaCO 3. Biomater Sci 2022; 10:4949-4958. [PMID: 35861615 DOI: 10.1039/d2bm00322h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels are often employed for tissue engineering and moistening applications. However, they are rarely used for load-bearing purposes because of their limited stiffness and the stiffness-toughness compromise inherent to them. By contrast, nature uses hydrogel-based materials as scaffolds for load-bearing and protecting materials by mineralizing them. Inspired by nature, the stiffness or toughness of synthetic hydrogels has been increased by forming minerals, such as CaCO3, within them. However, the degree of hydrogel reinforcement achieved with CaCO3 remains limited. To address this limitation, we form CaCO3 biominerals in situ within a model hydrogel, poly(acrylamide) (PAM), and systematically investigate the influence of the size, structure, and morphology of the reinforcing CaCO3 on the mechanical properties of the resulting hydrogels. We demonstrate that especially the structure of CaCO3 and its affinity to the hydrogel matrix strongly influence the mechanical properties of mineralized hydrogels. For example, while the fracture energy of PAM hydrogels is increased 3-fold if reinforced with individual micro-sized CaCO3 crystals, it increases by a factor of 13 if reinforced with a percolating amorphous calcium carbonate (ACC) nano-structure that forms in the presence of a sufficient quantity of Mg2+. If PAM is further functionalized with acrylic acid (AA) that possesses a high affinity towards ACC, the stiffness of the hydrogel increases by a factor 50. These fundamental insights on the structure-mechanical property relationship of hydrogels that have been functionalized with in situ formed minerals has the potential to enable tuning the mechanical properties of mineralized hydrogels over a much wider range than what is currently possible.
Collapse
Affiliation(s)
- Huachuan Du
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tianyu Yuan
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Ran Zhao
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Matteo Hirsch
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Michael Kessler
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Adv Colloid Interface Sci 2022; 305:102705. [PMID: 35640315 DOI: 10.1016/j.cis.2022.102705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/28/2022]
Abstract
In today's world, the progress of wearable tools has gained increasing momentum. Notably, the demand for stretchable strain sensors has considerably increased owing to various potential and emerging applications like human motion monitoring, soft robotics, prosthetics, and electronic skin. Hydrogels possess excellent biocompatibility, flexibility, and stretchability that render them ideal candidates for flexible/wearable substrates. Among them, enormous efforts were focused on the progress of polyvinyl alcohol (PVA) hydrogels to realize multifunctional wearable sensing through using additives/nanofillers/functional groups to modify the hydrogel network. Herein, this review offers an up-to-date and comprehensive summary of the research progress of PVA hydrogel-based wearable sensors in view of their properties, strain sensory efficiency, and potential applications, followed by specifically highlighting their probes using metallic/non-metallic, liquid metal (LM), 2D materials, bio-nanomaterials, and polymer nanofillers. Indeed, flexible electrodes and strain/pressure sensing performance of designed PVA hydrogels for their effective sensing are described. The representative cases are carefully selected and discussed regarding the construction, merits and demerits, respectively. Finally, the necessity and requirements for future advances of conductive and stretchable hydrogels engaged in the wearable strain sensors are also presented, followed by opportunities and challenges.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
8
|
Li S, Zhou H, Li Y, Jin X, Liu H, Lai J, Wu Y, Chen W, Ma A. Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors. J Colloid Interface Sci 2021; 607:431-439. [PMID: 34509117 DOI: 10.1016/j.jcis.2021.08.205] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
Polydopamine (PDA)-based self-adhesive hydrogel sensors are extensively explored but it is still a challenge to construct PDA-based hydrogels by free radical polymerization. Herein, a new approach to construct self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase is developed. The following two-phase polymerization processes account for the formation of the self-adhesive hydrogels. The first one is the polymerization of acrylamide (AM) and dopamine (DA) in aqueous phase to form adhesive component PAM-PDA (PAM, polyacrylamide; PDA, polydopamine). The second one is the polymerization of hydrophobic monomer 2-methoxyethyl acrylate (MEA) in micelles of an amphiphilic block copolymer Pluronic F127 diacrylate (F127DA). The poly(2-methoxyethyl acrylate) (PMEA) networks help to maintain the high robustness of the hydrogel. Because PMEA and PDA form in relatively separated phases, the inhibition effect of PDA on the free radical polymerization process of PMEA is weakened. Based on this mechanism, mechanically strong and adhesive hydrogels are achieved. The introduced ions during preparation process, such as Na+, OH- and K+, endow the resulting hydrogels ionic conductivity. Resistive strain sensor of the hydrogel achieves a high gauge factor (GF) of 5.26, a response time of 0.25 s and high sensing stability. Because of the adhesiveness, such hydrogel sensor can be applied as wearable sensors in monitoring various human motions. To further address the freezing and drying problems of the hydrogels, organohydrogels are constructed in glycerol-water mixed solvent. The organohydrogels exhibit outstanding anti-freezing property and moisture retention ability, and their adhesiveness is well maintained in subzero conditions. Capacitive pressure sensors of the organohydrogels possessing a GF of 2.05 kPa-1, high sensing stability and reversibility, are demonstrated and explored in monitoring diverse human motions.
Collapse
Affiliation(s)
- Shuangli Li
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Yongfei Li
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xilang Jin
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Hanbin Liu
- Shaanxi Provincal Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Jialiang Lai
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Yuanpeng Wu
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University 610500, China.
| | - Weixing Chen
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Aijie Ma
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| |
Collapse
|
9
|
Rungrod A, Kapanya A, Punyodom W, Molloy R, Meerak J, Somsunan R. Synthesis of Poly(ε-caprolactone) Diacrylate for Micelle-Cross-Linked Sodium AMPS Hydrogel for Use as Controlled Drug Delivery Wound Dressing. Biomacromolecules 2021; 22:3839-3859. [PMID: 34378381 DOI: 10.1021/acs.biomac.1c00683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study focuses on the synthesis of poly(ε-caprolactone) diacrylate (PCLDA) for the fabrication of micelle-cross-linked sodium AMPS wound dressing hydrogels. The novel synthetic approach of PCLDA is functionalizing a PCL diol with acrylic acid. The influences of varying the PCL diol/AA molar ratio and temperature on the suitable conditions for the synthesis of PCLDA are discussed. The hydrogel was synthesized through micellar copolymerization of sodium 2-acrylamido-2-methylpropane sulfonate (Na-AMPS) as a basic monomer and PCLDA as a hydrophobic association monomer. In this study, an attempt was made to develop new hydrogel wound dressings meant for the release of antibacterial drugs (ciprofloxacin and silver sulfadiazine). The chemical structures, morphology, porosity, and water interaction of the hydrogels were characterized. The hydrogels' swelling ratio and water vapor transmission rate (WVTR) showed a high swelling capacity (4688-10753%) and good WVTR (approximately 2000 g·m-2·day-1), which can be controlled through variation of the PCLDA concentration. The mechanical property results confirmed that PCLDA improved the mechanical properties of the hydrogel; the stress increased from 37 to 68 kPa, and the strain increased from 198 to 360% with increasing PCLDA (0-30% wt of Na-AMPS). These hydrogels presented no cytotoxicity based on over 70% cell viability responses (L929 fibroblasts) using an in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, the drug release mechanism, kinetic models, and antibacterial activity were determined. The results demonstrated that antibiotics were released from the hydrogel with a Fickian diffusion mechanism and antibacterial activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). Based on the results obtained, and bearing in mind that further progress still needs to be made, the fabricated hydrogels show considerable potential for meeting the stringent property requirements of hydrogel wound dressings.
Collapse
Affiliation(s)
- Amlika Rungrod
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichaya Kapanya
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.,Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Ghazy O, Hamed MG, Breky M, Borai EH. Synthesis of magnetic nanoparticles-containing nanocomposite hydrogel and its potential application for simulated radioactive wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Robust and rapid responsive organic-inorganic hybrid bilayer hydrogel actuators with silicon nanoparticles as the cross-linker. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Liu B, Li F, Niu P, Li H. Tough Adhesion of Freezing- and Drying-Tolerant Transparent Nanocomposite Organohydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21822-21830. [PMID: 33913687 DOI: 10.1021/acsami.1c04758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tough hydrogels with strong wet adhesion have drawn extensive attention for various applications. However, it is still challenging to achieve both excellent wet adhesion and freezing- and drying-tolerance in hydrogels. In this study, we present tough transparent nanocomposite organohydrogels based on the glycerol-water binary solvent system in the presence of Al(OH)3 nanoparticles as a cross-linker. The resultant organohydrogels exhibited excellent tensile strength (∼0.9 MPa), high transparency (97%), superior anti-drying and anti-freezing properties, and good ionic conductivity. In particular, polyacrylic acid (PAA) was chosen as the bridging polymer to endow the organohydrogels with strong wet adhesion. The interfacial adhesion energy exceeded 2200 J m-2, which was ascribed to the synergy of ionic coordination and hydrogen bonds between the nanoparticles and carboxyl groups in PAA chains. Interestingly, based on the strong wet adhesion, the transparent organohydrogels can be assembled into hydraulically driven soft variable-focus lenses with long-term ambient stability. This work will provide a new insight into controlled wet adhesion ̵of hydrogel and have great potential for hydrogel-based functional devices with long-term ambient stability.
Collapse
Affiliation(s)
- Beibei Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feibo Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengying Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Huanjun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
13
|
Tang L, Wu S, Qu J, Gong L, Tang J. A Review of Conductive Hydrogel Used in Flexible Strain Sensor. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3947. [PMID: 32906652 PMCID: PMC7560041 DOI: 10.3390/ma13183947] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Hydrogels, as classic soft materials, are important materials for tissue engineering and biosensing with unique properties, such as good biocompatibility, high stretchability, strong adhesion, excellent self-healing, and self-recovery. Conductive hydrogels possess the additional property of conductivity, which endows them with advanced applications in actuating devices, biomedicine, and sensing. In this review, we provide an overview of the recent development of conductive hydrogels in the field of strain sensors, with particular focus on the types of conductive fillers, including ionic conductors, conducting nanomaterials, and conductive polymers. The synthetic methods of such conductive hydrogel materials and their physical and chemical properties are highlighted. At last, challenges and future perspectives of conductive hydrogels applied in flexible strain sensors are discussed.
Collapse
Affiliation(s)
- Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.T.); (S.W.); (J.Q.)
| | - Shaoji Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.T.); (S.W.); (J.Q.)
| | - Jie Qu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.T.); (S.W.); (J.Q.)
| | - Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.T.); (S.W.); (J.Q.)
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (L.T.); (S.W.); (J.Q.)
| |
Collapse
|
14
|
Li H, Cheng F, Wei X, Yi X, Tang S, Wang Z, Zhang YS, He J, Huang Y. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111324. [PMID: 33254961 DOI: 10.1016/j.msec.2020.111324] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Biodegradable and injectable hydrogels derived from natural polysaccharides have attracted extensive attention in biomedical applications due to their minimal invasiveness and ability to accommodate the irregular wound surfaces. In this work, we report the development of an in-situ-injectable, self-healing, antibacterial, hemostatic, and biocompatible hydrogel derived from the hybrid of N,O-carboxymethyl chitosan (N,O-CMC) and oxidized chondroitin sulfate (OCS), which did not require any chemical crosslinking. The N,O-CMC/OCS hydrogel could be readily produced under physiological conditions by varying the N,O-CMC-to-OCS ratio, relying on the Schiff base reaction between the -NH- functional groups of N,O-CMC and the -CHO functional groups of OCS. The results showed that the N,O-CMC2/OCS1 hydrogel had relatively long gelation time (133 s) and stable performances. The viability of NIH/3T3 cells and endothelial cells cultured with the N,O-CMC2/OCS1 hydrogel extract was roughly 85%, which demonstrated its low cell toxicity. Besides, the N,O-CMC2/OCS1 hydrogel revealed excellent antibacterial properties due to the inherent antibacterial ability of N,O-CMC. Importantly, the hydrogel tightly adhered to the biological tissue and demonstrated excellent in vivo hemostatic performance. Our work describing an injectable, self-healing, antibacterial, and hemostatic hydrogel derived from polysaccharides will likely hold good potential in serving as an enabling wound dressing material.
Collapse
Affiliation(s)
- Hongbin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Feng Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xinjing Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaotong Yi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shize Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongyan Wang
- The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
15
|
Cha GD, Lee WH, Lim C, Choi MK, Kim DH. Materials engineering, processing, and device application of hydrogel nanocomposites. NANOSCALE 2020; 12:10456-10473. [PMID: 32388540 DOI: 10.1039/d0nr01456g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogels are widely implemented as key materials in various biomedical applications owing to their soft, flexible, hydrophilic, and quasi-solid nature. Recently, however, new material properties over those of bare hydrogels have been sought for novel applications. Accordingly, hydrogel nanocomposites, i.e., hydrogels converged with nanomaterials, have been proposed for the functional transformation of conventional hydrogels. The incorporation of suitable nanomaterials into the hydrogel matrix allows the hydrogel nanocomposite to exhibit multi-functionality in addition to the biocompatible feature of the original hydrogel. Therefore, various hydrogel composites with nanomaterials, including nanoparticles, nanowires, and nanosheets, have been developed for diverse purposes, such as catalysis, environmental purification, bio-imaging, sensing, and controlled drug delivery. Furthermore, novel technologies for the patterning of such hydrogel nanocomposites into desired shapes have been developed. The combination of such material engineering and processing technologies has enabled the hydrogel nanocomposite to become a key soft component of electronic, electrochemical, and biomedical devices. We herein review the recent research trend in the field of hydrogel nanocomposites, particularly focusing on materials engineering, processing, and device applications. Furthermore, the conclusions are presented with the scope of future research outlook, which also includes the current technical limitations.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Wang Hee Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Chanhyuk Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Moon Kee Choi
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Yu Y, Mu Z, Jin B, Liu Z, Tang R. Organic–Inorganic Copolymerization for a Homogenous Composite without an Interphase Boundary. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yadong Yu
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Zhao Mu
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Biao Jin
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Zhaoming Liu
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
- State Key Laboratory for Silicon MaterialsZhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
17
|
Yu Y, Mu Z, Jin B, Liu Z, Tang R. Organic-Inorganic Copolymerization for a Homogenous Composite without an Interphase Boundary. Angew Chem Int Ed Engl 2019; 59:2071-2075. [PMID: 31777138 DOI: 10.1002/anie.201913828] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Ionic oligomers and their crosslinking implies a possibility to produce novel organic-inorganic composites by copolymerization. Using organic acrylamide monomers and inorganic calcium phosphate oligomers as precursors, uniformly structured polyacrylamide (PAM)-calcium phosphate copolymer is prepared by an organic-inorganic copolymerization. In contrast to the previous PAM-based composites by mixing inorganic components into polymers, the copolymerized material has no interphase boundary owing to the homogenous incorporation of the organic and inorganic units at molecular level, resulting in a complete and continuous hybrid network. The participation of the ionic binding effect in the crosslinking process can substantially improve the mechanical strength; the copolymer can reach a modulus and hardness of 35.14±1.91 GPa and 1.34±0.09 GPa, respectively, which are far superior to any other PAM-based composites.
Collapse
Affiliation(s)
- Yadong Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhao Mu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Biao Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
18
|
Phuong PTM, Jhon H, In I, Park SY. Photothermal-modulated reversible volume transition of wireless hydrogels embedded with redox-responsive carbon dots. Biomater Sci 2019; 7:4800-4812. [PMID: 31528924 DOI: 10.1039/c9bm00734b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reversible volume transition of redox-responsive hydrogels by near-infrared (NIR) irradiation has recently attracted significant attention as a novel therapy matrix for tracking and treating cancer via stimuli-responsive fluorescence on/off with controllable volume transition via a wireless sensing system. Herein, a NIR-induced redox-sensitive hydrogel was synthesized by blending a hydrogel with IR825-loaded carbon dots (CD) to achieve enhanced mobility of nanoparticles inside a gel network, and reversible volume phase transitions remotely controlled by a smartphone application via the induction of different redox environments. The presence of CD-IR825 in the thermosensitive poly(N-isopropylacrylamide) hydrogel network imparted fluorescence, electronic and photothermal properties to the hydrogels, which resulted in volume shrinkage behavior of the hydrogel upon exposure to NIR laser irradiation due to the redox-sensitive CDs. Under the NIR on/off cycles, the photothermal temperature, fluorescence, and porous structure were reversed after turning off the NIR laser. The hydrogel responsiveness under GSH and NIR light was studied using a wireless device based on the changes in the resistance graph on a smartphone application, generating a fast and simple method for the investigation of hydrogel properties. The in vitro cell viabilities of the MDA-MB cancer cells incubated with the composite hydrogel in the presence of external GSH exhibited a higher photothermal temperature, and the cancer cells were effectively killed after the NIR irradiation. Therefore, the NIR-induced redox-responsive nanocomposite hydrogel prepared herein has potential for use in cancer treatment and will enable the study of nanoparticle motion in hydrogel networks under multiple stimuli via a wireless device using a faster and more convenient method.
Collapse
Affiliation(s)
- Pham Thi My Phuong
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea.
| | - Heesauk Jhon
- Department of Electronics, Information and Communication Engineering, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Insik In
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea. and Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea. and Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|
19
|
Xue S, Wu Y, Guo M, Xia Y, Liu D, Zhou H, Lei W. Self-healable poly(acrylic acid-co-maleic acid)/glycerol/boron nitride nanosheet composite hydrogels at low temperature with enhanced mechanical properties and water retention. SOFT MATTER 2019; 15:3680-3688. [PMID: 30892366 DOI: 10.1039/c9sm00179d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many living tissues possess excellent mechanical properties and water retention which enable them to self-heal at room temperature even below the freezing temperature of water. To mimic the unique features of living tissue, a poly(acrylic acid-co-maleic acid) composite hydrogel with enhanced mechanical properties and remarkable water retention was fabricated under accessible conditions. The hydrogel is functionalized by amino group modified boron nitride nanosheets (BNNS-NH2)/glycerol and exhibits self-healing abilities at low temperature. The self-healing process occurs through the re-establishing of hydrogen bonds and metal coordination interactions at the damaged surfaces. Its anti-freezing abilities enable the hydrogel to self-heal at -15 °C, and the self-healing efficiency based on tensile strength reaches up to ∼70%. Moreover, glycerol also endows the hydrogel with long-lasting water retention, which remains a water content of ∼99 wt% for more than 30 days. Meanwhile, the simultaneous introduction of BNNS-NH2 and glycerol significantly improved the mechanical properties of the hydrogel, which displays great stretchability (∼474%), tensile strength (∼151.3 kPa), stiffness (Young's modulus of ∼62.75 kPa) and toughness (∼355.13 kJ m-3). It is anticipated that these novel hydrogels will develop many fields and be exploited for new applications in extensive external environments.
Collapse
Affiliation(s)
- Shishan Xue
- School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Li F, Zhang G, Wang Z, Jiang H, Yan S, Zhang L, Li H. Strong Wet Adhesion of Tough Transparent Nanocomposite Hydrogels for Fast Tunable Focus Lenses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15071-15078. [PMID: 30938504 DOI: 10.1021/acsami.9b02556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tough hydrogel adhesives that can bond strongly to wet surfaces have shown great potential in various applications. However, it still remains a challenge to develop the adhered hydrogels integrated with strong wet adhesion, high transparency, exceptional mechanical properties, and fast self-recovery. Herein, tough nanocomposite hydrogels demonstrating high tensile strength, high transparency, and fast self-recovery are reported. The strong wet adhesion between two tough hydrogel films can be realized by introducing chemical bridging across the hydrogel-hydrogel interface, while the interfacial adhesion energy and shearing adhesion strength are up to 2216 J m-2 and 385 N m-1, respectively. The strong adhesion and superior toughness of our hydrogels enable their reassembly capability to produce stretchable sealed balloons that can endure high air pressure without leakage. Most interestingly, the combination of excellent sealability and high transparency also allows our hydrogel balloons to turn into hydraulically driven fast tunable focus convex lenses, which is first reported here for hydrogel lenses. The hydrogel adhesives may open up the door to develop soft sealed containers and intelligent optical devices.
Collapse
Affiliation(s)
- Feibo Li
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Gongzheng Zhang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Zhaoshuo Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Haoyang Jiang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Shuang Yan
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Li Zhang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Huanjun Li
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
21
|
Nguyen NT, Milani AH, Jennings J, Adlam DJ, Freemont AJ, Hoyland JA, Saunders BR. Highly compressive and stretchable poly(ethylene glycol) based hydrogels synthesised using pH-responsive nanogels without free-radical chemistry. NANOSCALE 2019; 11:7921-7930. [PMID: 30964497 DOI: 10.1039/c9nr01535c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(ethylene glycol) (PEG) based hydrogels are amongst the most studied synthetic hydrogels. However, reports on PEG-based hydrogels with high mechanical strength are limited. Herein, a class of novel, well-defined PEG-based nanocomposite hydrogels with tunable mechanical strength are synthesised via ring-opening reactions of diglycidyl ethers with carboxylate ions. The pH responsive crosslinked polyacid nanogels (NG) in the dispersed phase act as high functionality crosslinkers which covalently bond to the poly(ethylene glycol) diglycidyl ethers (PEGDGE) as the continuous matrix. A series of NG-x-PEG-y-z gels are prepared where x, y and z are concentrations of NGs, PEGDGE and the PEGDGE molecular weight, respectively. The hydrogel compositions and nano-structural homogeneity of the NGs have strong impact on the enhancement of mechanical properties which enables property tuning. Based on this design, a highly compressive PEG-based nanocomposite hydrogel (NG-13-PEG-20-6000) exhibits a compressive stress of 24.2 MPa, compressive fracture strain greater than 98% and a fracture energy density as high as 1.88 MJ m-3. The tensile fracture strain is 230%. This is amongst one of the most compressive PEG-based hydrogels reported to-date. Our chemically crosslinked gels are resilient and show highly recoverable dissipative energy. The cytotoxicity test shows that human nucleus pulposus (NP) cells remained viable after 8 days of culture time. The overall results highlight their potential for applications as replacements for intervertebral discs or articular cartilages.
Collapse
Affiliation(s)
- Nam T Nguyen
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.
| | - Amir H Milani
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.
| | - James Jennings
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Daman J Adlam
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Anthony J Freemont
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK and NIHR Manchester Biomedical Research Centre, Manchester University NHS foundation Trust, Manchester Academic Health Science Centre, M13 9WL, UK
| | - Brian R Saunders
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
22
|
Jiang H, Fan L, Yan S, Li F, Li H, Tang J. Tough and electro-responsive hydrogel actuators with bidirectional bending behavior. NANOSCALE 2019; 11:2231-2237. [PMID: 30656330 DOI: 10.1039/c8nr07863g] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electro-responsive hydrogel actuators have gained much attention because of their fast response, low power consumption and easy modulation. However, such hydrogel actuators suffer from poor mechanical properties and restricted bending direction, which limit their practical applications. Herein, we report a nanocomposite hydrogel actuator with a combination of high mechanical tensile strength (2 MPa) and automatic bidirectional bending behavior in response to electric signals. The resulting hydrogel, crosslinked by aluminum hydroxide nanoparticles, shows rapid bending behavior and could be cyclically actuated up to ten times in an electric field. Furthermore, the hydrogel demonstrates bidirectional bending actuation, which was ascribed to the difference in diffusion coefficients and concentrations of cations and anions within the gel network. Moreover, the direction and magnitude of the bending behavior could be tuned by composition variation. The hydrogel actuators developed in this study may have great potential in soft robotics, artificial muscles and tissue engineering.
Collapse
Affiliation(s)
- Haoyang Jiang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Xu B, Liu Y, Yuan J, Wang P, Wang Q. Synthesis, Characterization, and Antifogging Application of Polymer/Al₂O₃ Nanocomposite Hydrogels with High Strength and Self-Healing Capacity. Polymers (Basel) 2018; 10:E1362. [PMID: 30961287 PMCID: PMC6401749 DOI: 10.3390/polym10121362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Hydrogels with outstanding mechanical performance, self-healing capacity, and special functionality are highly desirable for their practical applications. However, it remains a great challenge to achieve such hydrogels by a facile approach. Here, we report a new type of nanocomposite hydrogels by in situ copolymerization of acrylic acid (AA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) using alumina nanoparticles (Al₂O₃ NPs) as the cross-linkers. The obtained hydrogels are highly stretchable and compressible, which could sustain large-scale extension (>1700%) or compression (90%) without failure, and exhibit tensile and compressive strength up to 660 kPa and 8.3 MPa, respectively. Furthermore, this kind of hydrogel also display considerable self-healing capacity due to their noncovalent cross-linking mechanism, as well as the hydrogen-bonding interactions between polymer chains. More interestingly, it was found that the resultant gels possess a long-lasting antifogging property that could prevent the formation of fog on the glass plate above hot water for at least 90 min. It is expected that this novel type of hydrogel would show great promise for various applications, including soft robots, artificial muscles, and optical devices.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Yuwei Liu
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Jiugang Yuan
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Ping Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Qiang Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Du Q, Tang Q, Yang K, Yang H, Xu C, Zhang X. One-Step Preparation of Tough and Self-Healing Polyion Complex Hydrogels with Tunable Swelling Behaviors. Macromol Rapid Commun 2018; 40:e1800691. [DOI: 10.1002/marc.201800691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Du
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Quan Tang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Kaixiang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Chao Xu
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Xingyuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| |
Collapse
|
25
|
A novel designed high strength and thermoresponsive double network hydrogels cross-linked by starch-based microspheres. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0662-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Yang F, Ren B, Cai Y, Tang J, Li D, Wang T, Feng Z, Chang Y, Xu L, Zheng J. Mechanically tough and recoverable hydrogels via dual physical crosslinkings. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fengyu Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology Zhuzhou 412007 China
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
| | - Baiping Ren
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
| | - Yongqing Cai
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology Zhuzhou 412007 China
| | - Ding Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology Zhuzhou 412007 China
| | - Ting Wang
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
- State Key Laboratory of Bioelectronics Southeast University Nanjing 210096 China
| | - Zhangqi Feng
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing Jiangsu 210094 China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering Chung Yuan Christian University Chungli, Taoyuan 320 Taiwan
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology Zhuzhou 412007 China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
| |
Collapse
|
27
|
Xue K, Liow SS, Karim AA, Li Z, Loh XJ. A Recent Perspective on Noncovalently Formed Polymeric Hydrogels. CHEM REC 2018; 18:1517-1529. [PMID: 29791779 DOI: 10.1002/tcr.201800015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/25/2018] [Indexed: 12/28/2022]
Abstract
Chemically crosslinked covalent hydrogels form a permanent and often strong network, and have been extensively used so far in drug delivery and tissue engineering. However, it is more difficult to induce dynamic and highly tunable changes in these hydrogels. Noncovalently formed hydrogels show promise as inherently reversible systems with an ability to change in response to dynamic environments, and have garnered strong interest recently. In this Personal Account, we elucidate a few key attractive properties of noncovalent hydrogels and describe recent developments in hydrogels crosslinked using various different noncovalent interactions. These hydrogels offer huge control for modulating material properties and could be more relevant mimics for biological systems.
Collapse
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Anis Abdul Karim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|
28
|
Montheil T, Echalier C, Martinez J, Subra G, Mehdi A. Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. J Mater Chem B 2018; 6:3434-3448. [DOI: 10.1039/c8tb00456k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sol–gel process is one of the main techniques leading to hybrid hydrogels that can be used in a wide scope of applications, especially in the biomedical field.
Collapse
Affiliation(s)
- Titouan Montheil
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Cécile Echalier
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron
- Université de Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Ahmad Mehdi
- Institut Charles Gerhardt Université de Montpellier
- CNRS
- ENSCM
- Montpellier
- France
| |
Collapse
|