1
|
Stepanov GO, Penkov NV, Rodionova NN, Petrova AO, Kozachenko AE, Kovalchuk AL, Tarasov SA, Tverdislov VA, Uvarov AV. The heterogeneity of aqueous solutions: the current situation in the context of experiment and theory. Front Chem 2024; 12:1456533. [PMID: 39391834 PMCID: PMC11464478 DOI: 10.3389/fchem.2024.1456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The advancement of experimental methods has provided new information about the structure and structural fluctuations of water. Despite the appearance of numerous models, which aim to describe a wide range of thermodynamic and electrical characteristics of water, there is a deficit in systemic understanding of structuring in aqueous solutions. A particular challenge is the fact that even pure water is a heterogeneous, multicomponent system composed of molecular and supramolecular structures. The possibility of the existence of such structures and their nature are of fundamental importance for various fields of science. However, great difficulties arise in modeling relatively large supramolecular structures (e.g. extended hydration shells), where the bonds between molecules are characterized by low energy. Generally, such structures may be non-equilibrium but relatively long-lived. Evidently, the short times of water microstructure exchanges do not mean short lifetimes of macrostructures, just as the instability of individual parts does not mean the instability of the entire structure. To explain this paradox, we review the data from experimental and theoretical research. Today, only some of the experimental results on the lifetime of water structures have been confirmed by modeling, so there is not a complete theoretical picture of the structure of water yet. We propose a new hierarchical water macrostructure model to resolve the issue of the stability of water structures. In this model, the structure of water is presented as consisting of many hierarchically related levels (the stratification model). The stratification mechanism is associated with symmetry breaking at the formation of the next level, even with minimal changes in the properties of the previous level. Such a hierarchical relationship can determine the unique physico-chemical properties of water systems and, in the future, provide a complete description of them.
Collapse
Affiliation(s)
- German O. Stepanov
- Department of General and Medical biophysics, Medical Biological Faculty, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Natalia N. Rodionova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Anastasia O. Petrova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | | | | | - Sergey A. Tarasov
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Vsevolod A. Tverdislov
- Department of Biophysics Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V. Uvarov
- Department of Molecular Processes and Extreme States of Matter, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Sharma A, Nirmalkar N. Bulk Nanobubbles through Gas Supersaturation Originated by Hot and Cold Solvent Mixing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12729-12743. [PMID: 38845184 DOI: 10.1021/acs.langmuir.4c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The nucleation mechanism of bulk nanobubbles remains unclear despite the considerable attention they have received in recent years. We propose two hypotheses: (i) The gas supersaturation in the bulk liquid is the primary factor for nanobubble nucleation, and (ii) the mixing of the same solvent at varying gas solubilities should produce nanobubbles, provided that the first hypothesis is correct. To test this hypothesis, we performed extensive experiments on nanobubble nucleation in both water and organic solvents. The temperature difference between hot and cold samples ranged from 10 to 80 °C in pure solvents such as water, methanol, ethanol, propanol, and butanol prepared and mixed in equal proportions. To the best of our knowledge, we report bulk nanobubble nucleation by mixing hot and cold solvents for the first time. The refractive index value calculations using Mie scattering theory confirmed the existence of nanobubbles. When surface tension dominates over surface charge, the critical work for nanobubble formation is ΔFc ∝ 1/ξ2, and when surface charge dominates over surface tension, the critical work is ΔFc ∝ ξ1/4. Our experimental results verify such dependency by measuring nanobubbles nucleated with varying degrees of gas supersaturation.
Collapse
Affiliation(s)
- Aakriti Sharma
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Shah R, Phatak N, Choudhary A, Gadewar S, Ajazuddin, Bhattacharya S. Exploring the Theranostic Applications and Prospects of Nanobubbles. Curr Pharm Biotechnol 2024; 25:1167-1181. [PMID: 37861011 DOI: 10.2174/0113892010248189231010085827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
Anticancer medications as well as additional therapeutic compounds, have poor clinical effectiveness due to their diverse distribution, non-selectivity for malignant cells, and undesirable off-target side effects. As a result, ultrasound-based targeted delivery of therapeutic compounds carried in sophisticated nanocarriers has grown in favor of cancer therapy and control. Nanobubbles are nanoscale bubbles that exhibit unique physiochemical properties in both their inner core and outer shell. Manufacturing nanobubbles primarily aims to enhance therapeutic agents' bioavailability, stability, and targeted delivery. The small size of nanobubbles allows for their extravasation from blood vessels into surrounding tissues and site-specific release through ultrasound targeting. Ultrasound technology is widely utilized for therapy due to its speed, safety, and cost-effectiveness, and micro/nanobubbles, as ultrasound contrast agents, have numerous potential applications in disease treatment. Thus, combining ultrasound applications with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side effects on other non-cancerous tissues. This paper provides a brief overview of the production processes for nanobubbles, along with their key characteristics and potential therapeutic uses.
Collapse
Affiliation(s)
- Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Niraj Phatak
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ashok Choudhary
- Department of Quality Assurance, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sakshi Gadewar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
4
|
Zhang R, Gao Y, Chen L, Li D, Ge G. Tunable Gas-Gas Reactions through Nanobubble Pathway. Chemphyschem 2023; 24:e202300429. [PMID: 37534533 DOI: 10.1002/cphc.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Combustible gas-gas reactions usually do not occur spontaneously upon mixing without ignition or other triggers to lower the activation energy barrier. Nanobubbles, however, could provide such a possibility in solution under ambient conditions due to high inner pressure and catalytic radicals within their boundary layers. Herein, a tunable gas-gas reaction strategy via bulk nanobubble pathway is developed by tuning the interface charge of one type of bulk nanobubble and promoting its fusion and reaction with another, where the reaction-accompanied size and number concentration change of the bulk nanobubbles and the corresponding thermal effect clearly confirm the occurrence of the nanobubble-based H2 /O2 combustion. In addition, abundant radicals can be detected during the reaction, which is considered to be critical to ignite the gas reaction during the fusion of nanobubbles in water at room temperature. Therefore, the nanobubble-based gas-gas reactions provide a safe and efficient pathway to produce energy and synthesize new matter inaccessible under mild or ambient conditions.
Collapse
Affiliation(s)
- Ruiyi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Dixit AK, Das AK. Molecular Approach for Understanding the Stability, Collision, and Coalescence of Bulk Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16122-16133. [PMID: 36516486 DOI: 10.1021/acs.langmuir.2c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Though long-lived nanobubbles (NBs) have been reported by multiple researchers, the underlying reason behind their stability is still obscure. Some of the conjectured reasons include diffusive shielding, the presence of surface charges, and stability due to contamination. Still, the stability of NBs against coalescence and Ostwald ripening is not confirmed. Using molecular dynamics simulations, the present study aims to understand the stabilization effects due to diffusive shielding and the presence of an electrical double layer at the surface of NBs. Accumulation of charges on NBs for different concentrations of ions is discussed. Also, the collision of equal-sized NBs with different approach velocities and offset distances is simulated. A regime map is predicted on the basis of initial approach velocity and offset distance. The transition in regime obtained upon increasing the offset distance is discussed, which differs from the collision characteristics of macroscopic bubbles and drops. The merging of NBs is initiated through the bridge formation, for which the temporal evolution rate along with the scaling argument is presented. The stress terms involved and the corresponding regimes are predicted based on the fluid properties. For all the cases where merging is observed, the estimated probability is observed to be low, which suggests the stability of NBs against coalescence.
Collapse
Affiliation(s)
- Ayush K Dixit
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Arup K Das
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee247667, India
| |
Collapse
|
6
|
Uvarov IV, Svetovoy VB. Nanoreactors in action for a durable microactuator using spontaneous combustion of gases in nanobubbles. Sci Rep 2022; 12:20895. [PMID: 36463383 PMCID: PMC9719487 DOI: 10.1038/s41598-022-25267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
A number of recent studies report enhancement of chemical reactions on water microdroplets or inside nanobubbles in water. This finding promises exciting applications, although the mechanism of the reaction acceleration is still not clear. Specifically, the spontaneous combustion of hydrogen and oxygen in nanobubbles opens the way to fabricate truly microscopic engines. An example is an electrochemical membrane actuator with all three dimensions in the micrometer range. The actuator is driven by short voltage pulses of alternating polarity, which generate only nanobubbles. The device operation is, however, restricted by a fast degradation of the electrodes related to a high current density. Here it is demonstrated that the actuator with ruthenium electrodes does not show signs of degradation in the long-term operation. It is the only material able to withstand the extreme conditions of the alternating polarity electrolysis. This property is due to combination of a high mechanical hardness and metallic conductivity of ruthenium oxide. The actuator combines two features considered impossible: on-water catalysis and combustion in a microscopic volume. It provides an exceptional opportunity to drive autonomous microdevices especially for medical or biological applications.
Collapse
Affiliation(s)
- Ilia V Uvarov
- Valiev Institute of Physics and Technology, Yaroslavl Branch, Russian Academy of Sciences, Universitetskaya 21, Yaroslavl, 150007, Russia
| | - Vitaly B Svetovoy
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31 bld. 4, Moscow, 119071, Russia.
| |
Collapse
|
7
|
Fundamentals and applications of nanobubbles: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Wang J, Guo Y, Jiao Z, Tan J, Zhang M, Zhang Q, Gu N. Generation of micro-nano bubbles by magneto induced internal heat for protecting cells from intermittent hypoxic damage. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Babu KS, Amamcharla JK. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective. Crit Rev Food Sci Nutr 2022; 63:9262-9281. [PMID: 35467989 DOI: 10.1080/10408398.2022.2067119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanobubble (NB) technologies have received considerable attention for various applications due to their low cost, eco-friendliness, scale-up potential, process control, and unique physical characteristics. NB stands for nanoscopic gaseous cavities, typically <1 μm in diameter. NBs can exist on surfaces (surface or interfacial NBs) and be dispersed in a bulk liquid phase (bulk NBs). Compared to the microbubbles, NBs exhibit high specific surface area, negative surface charge, and better adsorption. Bulk NBs can be generated by hydrodynamic/acoustic cavitation, electrolysis, water-solvent mixing, nano-membrane filtration, and so on. NBs exhibit extraordinary longevity compared to microbubbles, prompting the interest of the scientific community aiming for potential applications including medicine, agriculture, food, wastewater treatment, surface cleaning, and so on. Based on the limited amount of research work available regarding the influence of NBs on food matrices, further research, however, needs to be done to provide more insights into its applications in food industries. This review provides an overview of the generation methods for NBs, techniques to evaluate them, and a discussion of their stability and several applications in various fields of science were discussed. However, recent studies have revealed that, despite the many benefits of NB technologies, several NB generating approaches are still limited in their application in specific agro-food industries. Further study should focus on process optimization, integrating various NB generation techniques/combining with other emerging technologies in order to achieve rapid technical progress and industrialization of NB-based technologies.HighlightsNanobubbles (NBs) are stable spherical entities of gas within liquid and are operationally defined as having diameters less than 1 µm.Currently, various reported theories still lack the ability to explain the evidence and stability of NBs in water, numerous NB applications have emerged due to the unique properties of NBs.NB technologies can be applied to various food and dairy products (e.g. yogurt and ice cream) and other potential applications, including agriculture (e.g. seed germination and plant growth), wastewater treatment, surface cleaning, and so on.
Collapse
Affiliation(s)
- Karthik S Babu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, Kansas, USA
| | - Jayendra K Amamcharla
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Fast Electrochemical Actuator with Ti Electrodes in the Current Stabilization Regime. MICROMACHINES 2022; 13:mi13020283. [PMID: 35208407 PMCID: PMC8877286 DOI: 10.3390/mi13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
The actuators needed for autonomous microfluidic devices have to be compact, low-power-consuming, and compatible with microtechnology. The electrochemical actuators could be good candidates, but they suffer from a long response time due to slow gas termination. An actuator in which the gas is terminated orders of magnitude faster has been demonstrated recently. It uses water electrolysis performed by short voltage pulses of alternating polarity (AP). However, oxidation of Ti electrodes leads to a rapid decrease in the performance. In this paper, we demonstrate a special driving regime of the actuator, which is able to support a constant stroke for at least 105 cycles. The result is achieved using a new driving regime when a series of AP pulses are interspersed with a series of single-polarity (SP) pulses. The new regime is realized by a special pulse generator that automatically adjusts the amplitude of the SP pulses to keep the current flowing through the electrodes at a fixed level. The SP pulses increase the power consumption by 15–60% compared to the normal AP operation and make the membrane oscillate in a slightly lifted position.
Collapse
|
11
|
Zhang ZH, Wang S, Cheng L, Ma H, Gao X, Brennan CS, Yan JK. Micro-nano-bubble technology and its applications in food industry: A critical review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shaomeng Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lina Cheng
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
12
|
Selihin NM, Tay MG. A review on future wastewater treatment technologies: micro-nanobubbles, hybrid electro-Fenton processes, photocatalytic fuel cells, and microbial fuel cells. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:319-341. [PMID: 35050886 DOI: 10.2166/wst.2021.618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The future prospect in wastewater treatment technologies mostly emphasizes processing efficiency and the economic benefits. Undeniably, the use of advanced oxidation processes in physical and chemical treatments has played a vital role in helping the technologies to remove the organic pollutants efficiently and reduce the energy consumption or even harvesting the electrons movements in the oxidation process to produce electrical energy. In the present paper, we review several types of wastewater treatment technologies, namely micro-nanobubbles, hybrid electro-Fenton processes, photocatalytic fuel cells, and microbial fuel cells. The aims are to explore the interaction of hydroxyl radicals with pollutants using these wastewater technologies, including their removal efficiencies, optimal conditions, reactor setup, and energy generation. Despite these technologies recording high removal efficiency of organic pollutants, the selection of the technologies is dependent on the characteristics of the wastewater and the daily production volume. Hence the review paper also provides comparisons between technologies as the guidance in technology selection.
Collapse
Affiliation(s)
- Nurhafizah Mohd Selihin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Meng Guan Tay
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia E-mail:
| |
Collapse
|
13
|
Paknahad AA, Kerr L, Wong DA, Kolios MC, Tsai SSH. Biomedical nanobubbles and opportunities for microfluidics. RSC Adv 2021; 11:32750-32774. [PMID: 35493576 PMCID: PMC9042222 DOI: 10.1039/d1ra04890b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022] Open
Abstract
The use of bulk nanobubbles in biomedicine is increasing in recent years, which is attributable to the array of therapeutic and diagnostic tools promised by developing bulk nanobubble technologies. From cancer drug delivery and ultrasound contrast enhancement to malaria detection and the diagnosis of acute donor tissue rejection, the potential applications of bulk nanobubbles are broad and diverse. Developing these technologies to the point of clinical use may significantly impact the quality of patient care. This review compiles and summarizes a representative collection of the current applications, fabrication techniques, and characterization methods of bulk nanobubbles in biomedicine. Current state-of-the-art generation methods are not designed to create nanobubbles of high concentration and low polydispersity, both characteristics of which are important for several bulk nanobubble applications. To date, microfluidics has not been widely considered as a tool for generating nanobubbles, even though the small-scale precision and real-time control offered by microfluidics may overcome the challenges mentioned above. We suggest possible uses of microfluidics for improving the quality of bulk nanobubble populations and propose ways of leveraging existing microfluidic technologies, such as organ-on-a-chip platforms, to expand the experimental toolbox of researchers working to develop biomedical nanobubbles. The use of bulk nanobubbles in biomedicine is increasing in recent years. This translates into new opportunities for microfluidics, which may enable the generation of higher quality nanobubbles that lead to advances in diagnostics and therapeutics.![]()
Collapse
Affiliation(s)
- Ali A Paknahad
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada
| | - Liam Kerr
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada
| | - Daniel A Wong
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Department of Electrical, Computer, and Biomedical Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Department of Physics, Ryerson University Toronto Ontario M5B 2K3 Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Graduate Program in Biomedical Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| |
Collapse
|
14
|
|
15
|
|
16
|
Zhou L, Wang S, Zhang L, Hu J. Generation and stability of bulk nanobubbles: A review and perspective. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101439] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Impact of Process Parameters on the Diameter of Nanobubbles Generated by Electrolysis on Platinum-Coated Titanium Electrodes Using Box–Behnken Experimental Design. ENERGIES 2021. [DOI: 10.3390/en14092542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) The generation of nanobubbles by electrolysis is an interesting method of using electrical energy to form bubble nuclei, effectively creating a multiphase system. For every process, the effectiveness of nanobubble generation by electrolysis depends on various process parameters that impact should be determined. (2) In this work, the electrolytic generation of hydrogen and oxygen bubbles was performed in a self-built setup, in which a Nafion membrane separated two chambers. The generation of bubbles of both gases was investigated using Box–Behnken experimental design. Three independent variables were salt concentration, current density, and electrolysis time, while the dependent variables were Sauter diameters of generated bubbles. An ANOVA analysis and multivariate regression were carried out to propose a statistical and power model of nanobubble size as a process parameter function. (3) The generation of bubbles of hydrogen and oxygen by electrolysis showed that different factors or their combinations determine their size. The results presented in this work proved to be complementary to previous works reported in the literature. (4) The Sauter diameter of bubbles increases with salt concentration and stays constant with increasing current density in investigated range. The proposed correlations allow the Sauter diameters of nanobubbles generated during electrolysis to be predicted.
Collapse
|
18
|
Svetovoy VB. Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
A Peristaltic Micropump Based on the Fast Electrochemical Actuator: Design, Fabrication, and Preliminary Testing. ACTUATORS 2021. [DOI: 10.3390/act10030062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microfluidic devices providing an accurate delivery of fluids at required rates are of considerable interest, especially for the biomedical field. The progress is limited by the lack of micropumps, which are compact, have high performance, and are compatible with standard microfabrication. This paper describes a micropump based on a new driving principle. The pump contains three membrane actuators operating peristaltically. The actuators are driven by nanobubbles of hydrogen and oxygen, which are generated in the chamber by a series of short voltage pulses of alternating polarity applied to the electrodes. This process guaranties the response time of the actuators to be much shorter than that of any other electrochemical device. The main part of the pump has a size of about 3 mm, which is an order of magnitude smaller in comparison with conventional micropumps. The pump is fabricated in glass and silicon wafers using standard cleanroom processes. The channels are formed in SU-8 photoresist and the membrane is made of SiNx. The channels are sealed by two processes of bonding between SU-8 and SiNx. Functionality of the channels and membranes is demonstrated. A defect of electrodes related to the lift-off fabrication procedure did not allow a demonstration of the pumping process although a flow rate of 1.5 µL/min and dosage accuracy of 0.25 nL are expected. The working characteristics of the pump make it attractive for the use in portable drug delivery systems, but the fabrication technology must be improved.
Collapse
|
20
|
Ji Y, Guo Z, Tan T, Wang Y, Zhang L, Hu J, Zhang Y. Generating Bulk Nanobubbles in Alcohol Systems. ACS OMEGA 2021; 6:2873-2881. [PMID: 33553905 PMCID: PMC7860054 DOI: 10.1021/acsomega.0c05222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Bulk nanobubbles (NBs) have attracted wide attention due to their peculiar physicochemical properties and great potential in applications in various fields. However, so far there are no reports on bulk NBs generated in pure organic systems, which we think is very important as NBs would largely improve the efficiency of gas-liquid mass transfer and facilitate chemical reactions to take place. In this paper, we verified that air and N2 NBs could be generated in a series of alcohol solutions by using various methods including acoustical cavitation, pressurization-depressurization, and vibration. The experiments proved that NBs existed in alcohol solutions, with a highest density of 5.8 × 107 bubble/mL in propanol. Our results also indicated that bulk NBs could stably exist for at least hours in alcohol systems. The parameters in generating NBs in alcohols were optimized. Our findings open up an opportunity for improving gas-liquid mass transfer efficiency in the field of the chemical industry.
Collapse
Affiliation(s)
- Yuwen Ji
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Guo
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyuan Tan
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao Wang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Zhangjiang
Lab, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Jun Hu
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Zhangjiang
Lab, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Zhang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Zhangjiang
Lab, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
21
|
Uvarov IV, Shlepakov PS, Postnikov AV, Svetovoy VB. Highly energetic impact of H 2 and O 2 nanobubbles on Pt surface. J Colloid Interface Sci 2021; 582:167-176. [PMID: 32818712 DOI: 10.1016/j.jcis.2020.07.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
Abstract
Hypothesis Water electrolysis performed by short (≲5μs) voltage pulses of alternating polarity generates a dense cloud of H2 and O2 nanobubbles. Platinum electrodes turn black in this process, while they behave differently when the polarity is not altered. We prove that the modification of Pt is associated with highly energetic impact of nanobubbles rather than with any electrochemical process. Experiments Nanobubbles are generated by planar Pt or Ti microelectrodes. The process is driven by a series of alternating or single polarity pulses. In the case of Ti electrodes a Pt plate is separated by a gap from the electrodes. Nanoparticles on the surface of platinum are investigated with a scanning electron microscope and elemental composition is analysed using an energy-dispersive X-ray spectrometer. Findings Vigorous formation of Pt nanoparticles with a size of 10 nm is observed when the process is driven by the alternating polarity pulses. The effects of Pt corrosion have different character and cannot explain the phenomenon. Similar nanoparticles are observed when the Pt plate is exposed to a stream of nanobubbles. The process is explained by spontaneous combustion of hydrogen and oxygen nanobubbles on Pt surface. The phenomenon can be used to remove strongly adhered particles from solids.
Collapse
Affiliation(s)
- Ilia V Uvarov
- Valiev Institute of Physics and Technology of Russian Academy of Sciences, Yaroslavl Branch, Universitetskaya 21, 150007 Yaroslavl, Russia
| | - Pavel S Shlepakov
- Valiev Institute of Physics and Technology of Russian Academy of Sciences, Yaroslavl Branch, Universitetskaya 21, 150007 Yaroslavl, Russia
| | - Alexander V Postnikov
- Valiev Institute of Physics and Technology of Russian Academy of Sciences, Yaroslavl Branch, Universitetskaya 21, 150007 Yaroslavl, Russia
| | - Vitaly B Svetovoy
- Department of Robotics and Mechatronics, University of Twente, PO 217, 7500 AE Enschede, the Netherlands; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciencies, Leninsky prospect 31 bld. 4, 119071 Moscow, Russia.
| |
Collapse
|
22
|
Explosion of Microbubbles Generated by the Alternating Polarity Water Electrolysis. ENERGIES 2019. [DOI: 10.3390/en13010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water electrolysis with a fast change of polarity generates a high concentration of bulk nanobubbles containing H 2 and O 2 gases. When this concentration reaches a critical value, a microbubble pops up, which is terminated quickly in an explosion process. In this paper, we provide experimental information on the phenomenon concentrating on the dynamics of exploding microbubble observed from the top and from the side. An initial bubble with a size of 150 μ m expands to a maximum size of 1200 μ m for 150 μ s and then shrinks in the cavitation process. The sound produced by the event is coming from two sources separated in time: exploding bubble and cavitating bubble. The observed dynamics supports expansion of the bubble with steam but not with H 2 and O 2 mixture. A qualitative model of this puzzling phenomenon proposed earlier is refined. It is demonstrated that the pressure and temperature in the initial bubble can be evaluated using only the energy conservation law for which the driving energy is the energy of the combusted gas. The temperature in the bubble reaches 200 ∘ C that shows that the process cannot be ignited by standard combustion, but the surface-assisted spontaneous combustion agrees well with the observations and theoretical estimates. The pressure in the microbubble varies with the size of the merging nanobubbles and is evaluated as 10–20 bar. Large pressure difference between the bubble and liquid drives the bubble expansion, and is the source of the sound produced by the process. Exploding microbubbles are a promising principle to drive fast and strong micropumps for microfluidic and other applications.
Collapse
|
23
|
Generation and Stability of Size-Adjustable Bulk Nanobubbles Based on Periodic Pressure Change. Sci Rep 2019; 9:1118. [PMID: 30718777 PMCID: PMC6362149 DOI: 10.1038/s41598-018-38066-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023] Open
Abstract
Recently, bulk nanobubbles have attracted intensive attention due to the unique physicochemical properties and important potential applications in various fields. In this study, periodic pressure change was introduced to generate bulk nanobubbles. N2 nanobubbles with bimodal distribution and excellent stabilization were fabricated in nitrogen-saturated water solution. O2 and CO2 nanobubbles have also been created using this method and both have good stability. The influence of the action time of periodic pressure change on the generated N2 nanobubbles size was studied. It was interestingly found that, the size of the formed nanobubbles decreases with the increase of action time under constant frequency, which could be explained by the difference in the shrinkage and growth rate under different pressure conditions, thereby size-adjustable nanobubbles can be formed by regulating operating time. This study might provide valuable methodology for further investigations about properties and performances of bulk nanobubbles.
Collapse
|
24
|
Xiao W, Wang X, Zhou L, Zhou W, Wang J, Qin W, Qiu G, Hu J, Zhang L. Influence of Mixing and Nanosolids on the Formation of Nanobubbles. J Phys Chem B 2018; 123:317-323. [DOI: 10.1021/acs.jpcb.8b11385] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201204, China
- Key Laboratory of Interfacial Physics and Technology, Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| | - Xingxing Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201204, China
- Key Laboratory of Interfacial Physics and Technology, Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Weiguang Zhou
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| | - Wenqing Qin
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| | - Jun Hu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201204, China
- Key Laboratory of Interfacial Physics and Technology, Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201204, China
- Key Laboratory of Interfacial Physics and Technology, Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|