1
|
Romero-Muñiz I, Loukopoulos E, Xiong Y, Zamora F, Platero-Prats AE. Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks. Chem Soc Rev 2024. [PMID: 39400325 DOI: 10.1039/d4cs00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pair distribution function (PDF) is a versatile characterisation tool in materials science, capable of retrieving atom-atom distances on a continuous scale (from a few angstroms to nanometres), without being restricted to crystalline samples. Typically, total scattering experiments are performed using high-energy synchrotron X-rays, neutrons or electrons to achieve a high atomic resolution in a short time. Recently, PDF analysis provides a powerful approach to target current characterisation challenges in the field of metal- and covalent organic frameworks. By identifying molecular interactions on the pore surfaces, tracking complex structural transformations involving disorder states, and elucidating nucleation and growth mechanisms, structural analysis using PDF has provided invaluable insights into these materials. This review article highlights the significance of PDF analysis in advancing our understanding of MOFs and COFs, paving the way for innovative applications and discoveries in porous materials research.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Edward Loukopoulos
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ying Xiong
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Félix Zamora
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
3
|
Quan X, Yan B. In Situ Generated Dye@MOF/COF Heterostructure for Fluorescence Detection of Chloroquine Phosphate and Folic Acid via Different Luminescent Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54634-54642. [PMID: 37972380 DOI: 10.1021/acsami.3c11298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Metal-organic framework (MOF) and covalent-organic framework (COF) hybrid materials can combine the unique properties of MOF and COF components, and their applications in fluorescence sensing have attracted more and more attention. Herein, ZIF-90 is grown on 3D-COF by a simple in situ growing method in which the 7-amino-4-methylcoumarin (AMC) is encapsulated in ZIF-90 to construct a fluorescent sensor. Chloroquine phosphate (CQP) can coordinate with Zn2+ to decompose the ZIF-90 and release AMC. At 365 nm excitation, the ratiometric fluorescence signal AMC/3D-COF (I430/I598) increases linearly with CQP in a linear range of 4 × 10-5 to 4 × 10-4 M in urine. Under 340 nm excitation, quantitative analysis of CQP in the serum (3 × 10-6 to 4 × 10-5 M) is based on the fluorescence intensity of Zn-CQP/3D-COF (I384/I598). In addition, AMC@ZIF-90/3D-COF (1) exhibits high anti-interference and selectivity in sensing of FA with a "turn off" mode, with a correlation range of 1 × 10-5 to 1 × 10-3 M. The fluorescence color changes triggered by CQP under different excitation conditions, and the different fluorescence responses caused by CQP make it a highly secure anticounterfeiting platform. The synthesized dye@MOF/COF hybrids not only provide a new way to integrate multiple emission to design fluorescent probes for differentiation detection but also offer ideas for the design of anticounterfeiting platforms.
Collapse
Affiliation(s)
- Xueping Quan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
4
|
Liu Q, Miao Y, Villalobos LF, Li S, Chi HY, Chen C, Vahdat MT, Song S, Babu DJ, Hao J, Han Y, Tsapatsis M, Agrawal KV. Unit-cell-thick zeolitic imidazolate framework films for membrane application. NATURE MATERIALS 2023; 22:1387-1393. [PMID: 37735526 PMCID: PMC10627807 DOI: 10.1038/s41563-023-01669-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are a subset of metal-organic frameworks with more than 200 characterized crystalline and amorphous networks made of divalent transition metal centres (for example, Zn2+ and Co2+) linked by imidazolate linkers. ZIF thin films have been intensively pursued, motivated by the desire to prepare membranes for selective gas and liquid separations. To achieve membranes with high throughput, as in ångström-scale biological channels with nanometre-scale path lengths, ZIF films with the minimum possible thickness-down to just one unit cell-are highly desired. However, the state-of-the-art methods yield membranes where ZIF films have thickness exceeding 50 nm. Here we report a crystallization method from ultradilute precursor mixtures, which exploits registry with the underlying crystalline substrate, yielding (within minutes) crystalline ZIF films with thickness down to that of a single structural building unit (2 nm). The film crystallized on graphene has a rigid aperture made of a six-membered zinc imidazolate coordination ring, enabling high-permselective H2 separation performance. The method reported here will probably accelerate the development of two-dimensional metal-organic framework films for efficient membrane separation.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yurun Miao
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA
| | - Shaoxian Li
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohammad Tohidi Vahdat
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Shuqing Song
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Deepu J Babu
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jian Hao
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland.
| |
Collapse
|
5
|
Carpenter BP, Talosig AR, Rose B, Di Palma G, Patterson JP. Understanding and controlling the nucleation and growth of metal-organic frameworks. Chem Soc Rev 2023; 52:6918-6937. [PMID: 37796101 DOI: 10.1039/d3cs00312d] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception. This review provides an overview of the current theories and fundamental chemistry used to decipher MOF crystallization. We then discuss how intrinsic and extrinsic synthetic parameters can be used as tools to modulate the crystallization pathway to produce MOF crystals with finely tuned physical and chemical properties. Experimental and computational methods are provided to guide the probing of MOF crystal formation on the molecular and bulk scale. Lastly, we summarize the recent major advances in the field and our outlook on the exciting future of MOF crystallization.
Collapse
Affiliation(s)
- Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - A Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Ben Rose
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Giuseppe Di Palma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
6
|
Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat Rev Chem 2023; 7:273-286. [PMID: 37117419 DOI: 10.1038/s41570-023-00474-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Coordination polymers (CPs) and their subset, metal-organic frameworks (MOFs), can have porous structures and hybrid physicochemical properties that are useful for diverse applications. Although crystalline CPs and MOFs have received the most attention to date, their amorphous states are of growing interest as they can be directly synthesized under mild conditions. Directly synthesized amorphous CPs (aCPs) can be constructed from a wider range of metals and ligands than their crystalline and crystal-derived counterparts and demonstrate numerous unique material properties, such as higher mechanical robustness, increased stability and greater processability. This Review examines methods for the direct synthesis of aCPs and amorphous MOFs, as well as their properties and characterization routes, and offers a perspective on the opportunities for the widespread adoption of directly synthesized aCPs.
Collapse
|
7
|
Balestra SRG, Martínez-Haya B, Cruz-Hernández N, Lewis DW, Woodley SM, Semino R, Maurin G, Ruiz-Salvador AR, Hamad S. Nucleation of zeolitic imidazolate frameworks: from molecules to nanoparticles. NANOSCALE 2023; 15:3504-3519. [PMID: 36723023 DOI: 10.1039/d2nr06521e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We have studied the clusters involved in the initial stages of nucleation of Zeolitic Imidazolate Frameworks, employing a wide range of computational techniques. In the pre-nucleating solution, the prevalent cluster is the ZnIm4 cluster (formed by a zinc cation, Zn2+, and four imidazolate anions, Im-), although clusters such as ZnIm3, Zn2Im7, Zn2Im7, Zn3Im9, Zn3Im10, or Zn4Im12 have energies that are not much higher, so they would also be present in solution at appreciable quantities. All these species, except ZnIm3, have a tetrahedrally coordinated Zn2+ cation. Small ZnxImy clusters are less stable than the ZnIm4 cluster. The first cluster that is found to be more stable than ZnIm4 is the Zn41Im88 cluster, which is a disordered cluster with glassy structure. Bulk-like clusters do not begin to be more stable than glassy clusters until much larger sizes, since the larger cluster we have studied (Zn144Im288) is still less stable than the glassy Zn41Im88 cluster, suggesting that Ostwald's rule (the less stable polymorph crystallizes first) could be fulfilled, not for kinetic, but for thermodynamic reasons. Our results suggest that the first clusters formed in the nucleation process would be glassy clusters, which then undergo transformation to any of the various crystal structures possible, depending on the kinetic routes provided by the synthesis conditions. Our study helps elucidate the way in which the various species present in solution interact, leading to nucleation and crystal growth.
Collapse
Affiliation(s)
- Salvador R G Balestra
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km 1, 41013 Seville, Spain.
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Martínez-Haya
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km 1, 41013 Seville, Spain.
| | - Norge Cruz-Hernández
- Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - Dewi W Lewis
- Department of Chemistry, University College London, 20 Gordon St., London, WC1H 0AJ, UK
| | - Scott M Woodley
- Department of Chemistry, University College London, 20 Gordon St., London, WC1H 0AJ, UK
| | - Rocio Semino
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Sorbonne Université, CNRS, Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | | | - A Rabdel Ruiz-Salvador
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km 1, 41013 Seville, Spain.
| | - Said Hamad
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km 1, 41013 Seville, Spain.
| |
Collapse
|
8
|
Chen JT, Chen SS, Wang ZQ, Yu G, Mao GJ, Fei J, Li CY. Near-Infrared Fluorescent Nanoprobes for Adenosine Triphosphate-Guided Imaging in Cancer and Fatty Liver Mice. Anal Chem 2023; 95:2119-2127. [PMID: 36622664 DOI: 10.1021/acs.analchem.2c05235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adenosine triphosphate (ATP), as an indispensable biomolecule, is the main energy source of cells and is used as a marker for diseases such as cancer and fatty liver. It is of great significance to design a near-infrared fluorescent nanoprobe with excellent performance and apply it to various disease models. Here, a near-infrared fluorescent nanoprobe (ZIF-90@SiR) based on a zeolitic imidazole framework is proposed. The fluorescent nanoprobes are synthesized by encapsulating the dye (SiR) into the framework of ZIF-90. Upon the addition of ATP, the structure of the ZIF-90@SiR nanoprobe is disrupted and SiR is released to generate near-infrared fluorescence at 670 nm. In the process of ATP detection, ZIF-90@SiR shows high sensitivity and good selectivity. Moreover, the ZIF-90@SiR nanoprobe has good biocompatibility due to its low toxicity to cells. It is used for fluorescence imaging of ATP in living cells and thus distinguishing normal cells and cancer cells, as well as distinguishing fatty liver cells. Due to excellent near-infrared fluorescence properties, the ZIF-90@SiR nanoprobe can not only distinguish normal mice and tumor mice but also differentiate normal mice and fatty liver mice for the first time.
Collapse
Affiliation(s)
- Jun-Tao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Si-Si Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo Yu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
9
|
Tsymbarenko D, Grebenyuk D, Burlakova M, Zobel M. Quick and robust PDF data acquisition using a laboratory single-crystal X-ray diffractometer for study of polynuclear lanthanide complexes in solid form and in solution. J Appl Crystallogr 2022. [DOI: 10.1107/s1600576722005878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Self-assembled polynuclear lanthanide hydroxo complexes are important objects in the reticular chemistry approach to the design of various functional materials. Revealing their structure in the solid state and understanding the molecular mechanism of self-assembly in solution require a universal and reliable structural method. Pair distribution function (PDF) analysis is a powerful technique which enables structural insight for a wide range of crystalline and amorphous materials on the nanoscale, but commonly measurements are performed at synchrotron X-ray sources or on specially designed laboratory diffractometers. In the present paper, a standard Bruker D8 QUEST single-crystal X-ray diffractometer equipped with a micro-focus Mo tube and CMOS Photon III detector was adapted to measure PDF data of high quality with Q
max = 16.97 Å–1 for solid and liquid samples. An improved data collection strategy and the original data reduction software FormagiX enable calibration and azimuthal full-frame integration of 2D frames, delivering reliable PDFs up to 80 Å with instrumental parameters Q
damp = 0.018 Å−1 and Q
broad = 0.010 Å−1. The effectiveness of the developed approach was demonstrated with reference samples and real-case studies of tetranuclear lanthanide hydroxocarboxylates in solid form and in solution.
Collapse
|
10
|
Askarisarvestani G, Hoseini SJ, Bahrami M, Nabavizadeh SM, De Giglio E, Chen W. Pt@Metal-Organic Framework (ZIF-8) Thin Films Obtained at a Liquid/Liquid Interface as Anode Electrocatalysts for Methanol Fuel Cells: Different Approaches in the Synthesis. Inorg Chem 2022; 61:12219-12236. [PMID: 35880826 DOI: 10.1021/acs.inorgchem.2c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Smart membranes, nanodevices, chemical sensors, and catalytic coatings are some of the applications that make the metal-organic framework (MOF) thin films very important. Encapsulation of nanoparticles in the porous structure of MOFs can lead to the formation of effective catalysts with new unique properties and wide range of applications that may not be obtained by MOFs individually. Three main strategies, ship-in-a-bottle, bottle-around-the-ship, and in situ synthesis including the simultaneous formation of the two components, were applied for the synthesis of Pt(0)@zeolitic imidazolate framework-8 (ZIF-8) thin films at the toluene/water interface. The effects of platinum precursor transfer directions toward the interface on the properties of the films were investigated by using the [PtCl2(cod)] (where cod = cis,cis-1,5-cyclooctadiene) complex soluble in toluene as the upper phase and K2PtCl4 soluble in water as the lower phase. The six obtained films with different morphologies were applied as electrocatalysts for the methanol oxidation reaction. Considerable current density, mass activity, catalyst stability, activation energy, exchange current density, maximum power, and long-term poisoning rate are some of the advantages of the Pt(0)@ZIF-8 catalysts synthesized using the in situ strategy and K2PtCl4 as the platinum precursor. Furthermore, we report the formation of Pt@ZIF-8 nanorods at the interfaces without using any stabilizer or template. Our results suggest that the in situ strategy at the liquid/liquid interface is one of the best procedures for the synthesis of Pt(0)@ZIF-8 thin films as a suitable anode electrocatalyst for methanol fuel cells.
Collapse
Affiliation(s)
- Golandam Askarisarvestani
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - S Jafar Hoseini
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Mehrangiz Bahrami
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - S Masoud Nabavizadeh
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Elvira De Giglio
- Dipartimento di Chimica, Università Degli Studi di Bari "Aldo Moro", Bari I-70125, Italy
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
11
|
Sapnik AF, Bechis I, Bumstead AM, Johnson T, Chater PA, Keen DA, Jelfs KE, Bennett TD. Multivariate analysis of disorder in metal-organic frameworks. Nat Commun 2022; 13:2173. [PMID: 35449202 PMCID: PMC9023516 DOI: 10.1038/s41467-022-29849-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
The rational design of disordered frameworks is an appealing route to target functional materials. However, intentional realisation of such materials relies on our ability to readily characterise and quantify structural disorder. Here, we use multivariate analysis of pair distribution functions to fingerprint and quantify the disorder within a series of compositionally identical metal–organic frameworks, possessing different crystalline, disordered, and amorphous structures. We find this approach can provide powerful insight into the kinetics and mechanism of structural collapse that links these materials. Our methodology is also extended to a very different system, namely the melting of a zeolitic imidazolate framework, to demonstrate the potential generality of this approach across many areas of disordered structural chemistry. Structural disorder in materials is challenging to characterise. Here, the authors use multivariate analysis of atomic pair distribution functions to study structural collapse and melting of metal–organic frameworks, revealing powerful mechanistic and kinetic insight.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Irene Bechis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Alice M Bumstead
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - David A Keen
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| |
Collapse
|
12
|
Campos MP, De Roo J, Greenberg MW, McMurtry BM, Hendricks MP, Bennett E, Saenz N, Sfeir MY, Abécassis B, Ghose SK, Owen JS. Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals. Chem Sci 2022; 13:4555-4565. [PMID: 35656143 PMCID: PMC9019910 DOI: 10.1039/d1sc06098h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to 10-4 s-1), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (t ind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.
Collapse
Affiliation(s)
- Michael P Campos
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Jonathan De Roo
- Department of Chemistry, Columbia University New York New York 10027 USA
- Department of Chemistry, University of Basel Basel 4058 Switzerland
| | | | - Brandon M McMurtry
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Mark P Hendricks
- Department of Chemistry, Columbia University New York New York 10027 USA
- Department of Chemistry, Whitman College Walla Walla Washington 99362 USA
| | - Ellie Bennett
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Natalie Saenz
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Matthew Y Sfeir
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton New York 11973 USA
- Photonics Initiative, Advanced Science Research Center, City University of New York New York New York 10031 USA
- Department of Physics, Graduate Center, City University of New York New York New York 10016 USA
| | - Benjamin Abécassis
- ENSL, CNRS, Laboratoire de Chimie UMR 5182 46 allée d'Italie 69364 Lyon France
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides 91405 Orsay France
| | - Sanjit K Ghose
- National Synchrotron Light Source II, Brookhaven National Laboratory Brookhaven New York USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University New York New York 10027 USA
| |
Collapse
|
13
|
Wang H, Pei X, Kalmutzki MJ, Yang J, Yaghi OM. Large Cages of Zeolitic Imidazolate Frameworks. Acc Chem Res 2022; 55:707-721. [PMID: 35170938 DOI: 10.1021/acs.accounts.1c00740] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and synthesis of permanently porous materials with extended cage structures is a long-standing challenge in chemistry. In this Account, we highlight the unique role of zeolitic imidazolate frameworks (ZIFs), a class of framework materials built from tetrahedral nodes connected through imidazolate linkers, in meeting this challenge and illustrate specific features that set ZIFs apart from other porous materials. The structures of ZIFs are characteristic of a variety of large, zeolite-like cages that are covalently connected with neighboring cages and fused in three-dimensional space. In contrast to molecular cages, the fusion of cages results in extraordinary architectural and chemical stability for the passage of gases and molecules through cages and for carrying out chemical reactions within these cages while keeping the cages intact. The combination of the advantages from both cage chemistry and extended structures allows uniquely interconnected yet compartmentalized void spaces inside ZIF solids, rendering their wide range of applications in catalysis, gas storage, and gas separation.While the field of ZIFs has seen rapid development over the past decade, with hundreds of ZIF structures built from dozens of different cages of varying composition, size, and shapes reported, rational approaches to their design are largely unknown. In this Account, we summarize a vast number of cages formed in reported ZIFs and then review how the thermodynamic factors and traditional guest-templating strategies from zeolites influence the formation of cages. We highlight how the link-link interactions perform in the ZIF formation mechanism and serve as a means to target the formation of frameworks containing cages of specific sizes with structures exhibiting a level of complexity as yet unachieved in discrete coordination cages. For example, the giant ucb cage features a dimension of 46 Å and the complex moz cage is constructed from as many as 660 components.With the finding of these large and complex cages in ZIFs, we envision that the collection of cage structures will further be diversified by a mixed-linker approach utilizing a more complex combination of link-link interactions or by creating multivariant (MTV) systems that have been realized in other framework materials yet not widely employed in ZIFs. The more complicated cage structures can provide extra variations in chemical environments, and in addition to that, MTV systems can generate inhomogeneity inside each type of cage structure. The fused cages at such complexity that are difficult to be realized in solution environments will potentially enable more complex materials for smart applications.
Collapse
Affiliation(s)
- Haoze Wang
- Department of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute at UC Berkeley, Berkeley, California 94720, United States
| | - Xiaokun Pei
- Department of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute at UC Berkeley, Berkeley, California 94720, United States
| | - Markus J. Kalmutzki
- Department of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute at UC Berkeley, Berkeley, California 94720, United States
| | - Jingjing Yang
- Department of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute at UC Berkeley, Berkeley, California 94720, United States
| | - Omar M. Yaghi
- Department of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute at UC Berkeley, Berkeley, California 94720, United States
- Joint UAEU-UC Berkeley Laboratories for Materials Innovations, UAE University, P.O.
Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Chen X, Li Y, Fu Q, Qin H, Lv J, Yang K, Zhang Q, Zhang H, Wang M. An efficient modulated synthesis of zirconium metal-organic framework UiO-66. RSC Adv 2022; 12:6083-6092. [PMID: 35424546 PMCID: PMC8981973 DOI: 10.1039/d1ra07848h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
The use of large amounts of deleterious solvents in the synthesis of metal-organic frameworks (MOFs) is one of the important factors limiting their application in industry. Herein, we present a detailed study of the synthesis of UiO-66, which was conducted with hydrobromic (HBr) acid as a modulator for the first time, at a high concentration of precursor solution (ZrCl4 and H2BDC, both 0.2 mol L-1). Powder crystals with atypical cuboctahedron structure were obtained which indicated that the HBr acid modulator played roles by competitive coordination and deprotonation modulation, thereby controlling the processes of nucleation and crystal growth. The properties of the obtained materials were systematically characterized and compared with those of materials synthesized with hydrofluoric (HF) acid and hydrochloric (HCl) acid modulators. Despite the high concentration of defectivity, the UiO-66 material synthesized with the HBr acid additive has the characteristics of larger specific surface area, excellent thermal stability and higher porosity in the structure. Besides that, the present protocol has the advantages of high reaction mass efficiency (RME), and feasibility of scalable synthesis, providing a facile and sustainable route to diverse Zr-based MOFs.
Collapse
Affiliation(s)
- Xia Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Yongjie Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Hongyun Qin
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Junnan Lv
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Kun Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Qicheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Ming Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| |
Collapse
|
15
|
Terban MW, Billinge SJL. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chem Rev 2022; 122:1208-1272. [PMID: 34788012 PMCID: PMC8759070 DOI: 10.1021/acs.chemrev.1c00237] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/16/2022]
Abstract
This is a review of atomic pair distribution function (PDF) analysis as applied to the study of molecular materials. The PDF method is a powerful approach to study short- and intermediate-range order in materials on the nanoscale. It may be obtained from total scattering measurements using X-rays, neutrons, or electrons, and it provides structural details when defects, disorder, or structural ambiguities obscure their elucidation directly in reciprocal space. While its uses in the study of inorganic crystals, glasses, and nanomaterials have been recently highlighted, significant progress has also been made in its application to molecular materials such as carbons, pharmaceuticals, polymers, liquids, coordination compounds, composites, and more. Here, an overview of applications toward a wide variety of molecular compounds (organic and inorganic) and systems with molecular components is presented. We then present pedagogical descriptions and tips for further implementation. Successful utilization of the method requires an interdisciplinary consolidation of material preparation, high quality scattering experimentation, data processing, model formulation, and attentive scrutiny of the results. It is hoped that this article will provide a useful reference to practitioners for PDF applications in a wide realm of molecular sciences, and help new practitioners to get started with this technique.
Collapse
Affiliation(s)
- Maxwell W. Terban
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Simon J. L. Billinge
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
16
|
Alves SR, Calori IR, Tedesco AC. Photosensitizer-based metal-organic frameworks for highly effective photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112514. [PMID: 34857293 DOI: 10.1016/j.msec.2021.112514] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) uses a photosensitizer, molecular oxygen, and visible light as an alternative clinical protocol against located malignant tumors and other diseases. More recently, PDT has been combined to immunotherapy as a promising option to treat metastatic cancer. However, previous generations of photosensitizers (PSs) revealed clinical difficulties such as long-term skin photosensitivity (first generation), the need for drug delivery vehicles (second generation), and intracellular self-aggregation (third generation), which have generated a somewhat confusing scenario in PDT approaches and evolution. Recently, metal-organic frameworks (MOFs) with exceptionally high PS loading as a building unit of MOF framework have emerged as fourth-generation PS and presented outstanding outcomes under pre-clinical studies. For PS-based MOFs, the inorganic building unit (metal ions/clusters) plays an important role as a coadjuvant in PDT to alleviate hypoxia, to decrease antioxidant species, to yield ROS, or to act as a contrast agent for imaging-guided therapy. In this review, we intend to carry out a broad update on the recent history and the characteristics of PS-based MOFs from basic chemistry to the structure relationship with biological application in PDT. The details and variables that result in different photophysics, size, and morphology, are discussed. Also, we present an overview of the achievements on the pre-clinical assays in combination with other strategies, including alleviating hypoxia in solid tumors, chemotherapy, and the most recent immunotherapy for cancer.
Collapse
Affiliation(s)
- Samara Rodrigues Alves
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
17
|
Firth FCN, Gaultois MW, Wu Y, Stratford JM, Keeble DS, Grey CP, Cliffe MJ. Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with in Situ X-ray Pair Distribution Function Analysis. J Am Chem Soc 2021; 143:19668-19683. [PMID: 34784470 DOI: 10.1021/jacs.1c06990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structures of Zr and Hf metal-organic frameworks (MOFs) are very sensitive to small changes in synthetic conditions. One key difference affecting the structure of UiO MOF phases is the shape and nuclearity of Zr or Hf metal clusters acting as nodes in the framework; although these clusters are crucial, their evolution during MOF synthesis is not fully understood. In this paper, we explore the nature of Hf metal clusters that form in different reaction solutions, including in a mixture of DMF, formic acid, and water. We show that the choice of solvent and reaction temperature in UiO MOF syntheses determines the cluster identity and hence the MOF structure. Using in situ X-ray pair distribution function measurements, we demonstrate that the evolution of different Hf cluster species can be tracked during UiO MOF synthesis, from solution stages to the full crystalline framework, and use our understanding to propose a formation mechanism for the hcp UiO-66(Hf) MOF, in which first the metal clusters aggregate from the M6 cluster (as in fcu UiO-66) to the hcp-characteristic M12 double cluster and, following this, the crystalline hcp framework forms. These insights pave the way toward rationally designing syntheses of as-yet unknown MOF structures, via tuning the synthesis conditions to select different cluster species.
Collapse
Affiliation(s)
- Francesca C N Firth
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michael W Gaultois
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Yue Wu
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Joshua M Stratford
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Dean S Keeble
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
18
|
Nielsen IG, Sommer S, Dippel AC, Skibsted J, Iversen BB. Pair distribution function and 71Ga NMR study of aqueous Ga 3+ complexes. Chem Sci 2021; 12:14420-14431. [PMID: 34880993 PMCID: PMC8580017 DOI: 10.1039/d1sc05190c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
The atomic structures, and thereby the coordination chemistry, of metal ions in aqueous solution represent a cornerstone of chemistry, since they provide first steps in rationalizing generally observed chemical information. However, accurate structural information about metal ion solution species is often surprisingly scarce. Here, the atomic structures of Ga3+ ion complexes were determined directly in aqueous solutions across a wide range of pH, counter anions and concentrations by X-ray pair distribution function analysis and 71Ga NMR. At low pH (<2) octahedrally coordinated gallium dominates as either monomers with a high degree of solvent ordering or as Ga-dimers. At slightly higher pH (pH ≈ 2–3) a polyoxogallate structure is identified as either Ga30 or Ga32 in contradiction with the previously proposed Ga13 Keggin structures. At neutral and slightly higher pH nanosized GaOOH particles form, whereas for pH > 12 tetrahedrally coordinated gallium ions surrounded by ordered solvent are observed. The effects of varying either the concentration or counter anion were minimal. The present study provides the first comprehensive structural exploration of the aqueous chemistry of Ga3+ ions with atomic resolution, which is relevant for both semiconductor fabrication and medical applications. With changing pH four different structural regions in Ga3+ aqueous solutions are observed. In contrast the effects of different anions and concentrations are minimal.![]()
Collapse
Affiliation(s)
- Ida Gjerlevsen Nielsen
- Center for Materials Crystallography, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University 8000 Aarhus C Denmark
| | - Sanna Sommer
- Center for Materials Crystallography, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University 8000 Aarhus C Denmark
| | | | - Jørgen Skibsted
- Department of Chemistry, iNANO, Aarhus University 8000 Aarhus C Denmark
| | - Bo Brummerstedt Iversen
- Center for Materials Crystallography, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University 8000 Aarhus C Denmark
| |
Collapse
|
19
|
Nalesso S, Varlet G, Bussemaker MJ, Sear RP, Hodnett M, Monteagudo-Oliván R, Sebastián V, Coronas J, Lee J. Sonocrystallisation of ZIF-8 in water with high excess of ligand: Effects of frequency, power and sonication time. ULTRASONICS SONOCHEMISTRY 2021; 76:105616. [PMID: 34146976 PMCID: PMC8219993 DOI: 10.1016/j.ultsonch.2021.105616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 05/24/2023]
Abstract
A systematic study on the sonocrystallisation of ZIF-8 (zeolitic imidazolate framework-8) in a water-based system was investigated under different mixing speeds, ultrasound frequencies, calorimetric powers and sonication time. Regardless of the synthesis technique, pure crystals of ZIF-8 with high BET (Brunauer, Emmett and Teller) specific surface area (SSA) can be obtained in water after only 5 s. Furthermore, 5 s sonication produced even smaller crystals (~0.08 µm). The type of technique applied for producing the ZIF-8 crystals did not have any significant impact on crystallinity, purity and yield. Crystal morphology and size were affected by the use of ultrasound and mixing, obtaining nanoparticles with a more spherical shape than in silent condition (no ultrasound and mixing). However, no specific trends were observed with varying frequency, calorimetric power and mixing speed. Ultrasound and mixing may have an effect on the nucleation step, causing the fast production of nucleation centres. Furthermore, the BET SSA increased with increasing mixing speed. With ultrasound, the BET SSA is between the values obtained under silent condition and with mixing. A competition between micromixing and shockwaves has been proposed when sonication is used for ZIF-8 production. The former increases the BET SSA, while the latter could be responsible for porosity damage, causing a decrease of the surface area.
Collapse
Affiliation(s)
- Silvia Nalesso
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Gaelle Varlet
- Département Chimie IUT Besançon-Vesoul, Université de Franche-Comté, 30 Avenue de l'Observatoire, 25000 Besançon, France
| | - Madeleine J Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Richard P Sear
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Mark Hodnett
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Rebeca Monteagudo-Oliván
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain; Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Victor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain; Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER- BBN), Madrid, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain; Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Judy Lee
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
20
|
Sapnik AF, Bechis I, Collins SM, Johnstone DN, Divitini G, Smith AJ, Chater PA, Addicoat MA, Johnson T, Keen DA, Jelfs KE, Bennett TD. Mixed hierarchical local structure in a disordered metal-organic framework. Nat Commun 2021; 12:2062. [PMID: 33824324 PMCID: PMC8024318 DOI: 10.1038/s41467-021-22218-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Amorphous metal-organic frameworks (MOFs) are an emerging class of materials. However, their structural characterisation represents a significant challenge. Fe-BTC, and the commercial equivalent Basolite® F300, are MOFs with incredibly diverse catalytic ability, yet their disordered structures remain poorly understood. Here, we use advanced electron microscopy to identify a nanocomposite structure of Fe-BTC where nanocrystalline domains are embedded within an amorphous matrix, whilst synchrotron total scattering measurements reveal the extent of local atomic order within Fe-BTC. We use a polymerisation-based algorithm to generate an atomistic structure for Fe-BTC, the first example of this methodology applied to the amorphous MOF field outside the well-studied zeolitic imidazolate framework family. This demonstrates the applicability of this computational approach towards the modelling of other amorphous MOF systems with potential generality towards all MOF chemistries and connectivities. We find that the structures of Fe-BTC and Basolite® F300 can be represented by models containing a mixture of short- and medium-range order with a greater proportion of medium-range order in Basolite® F300 than in Fe-BTC. We conclude by discussing how our approach may allow for high-throughput computational discovery of functional, amorphous MOFs.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Irene Bechis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
- School of Chemical and Process Engineering & School of Chemistry, University of Leeds, Leeds, UK
| | - Duncan N Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Andrew J Smith
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, UK
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, UK
| | - David A Keen
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Abstract
Metal-organic frameworks (MOFs) are crystalline nanoporous materials with great potential for a wide range of industrial applications. Understanding the nucleation and early growth stages of these materials from a solution is critical for their design and synthesis. Despite their importance, the pathways through which MOFs nucleate are largely unknown. Using a combination of in situ liquid-phase and cryogenic transmission electron microscopy, we show that zeolitic imidazolate framework-8 MOF nanocrystals nucleate from precursor solution via three distinct steps: 1) liquid-liquid phase separation into solute-rich and solute-poor regions, followed by 2) direct condensation of the solute-rich region into an amorphous aggregate and 3) crystallization of the aggregate into a MOF. The three-step pathway for MOF nucleation shown here cannot be accounted for by conventional nucleation models and provides direct evidence for the nonclassical nucleation pathways in open-framework materials, suggesting that a solute-rich phase is a common precursor for crystallization from a solution.
Collapse
|
22
|
Buzanich AG, Kulow A, Kabelitz A, Grunewald C, Seidel R, Chapartegui-Arias A, Radtke M, Reinholz U, Emmerling F, Beyer S. Observation of early ZIF-8 crystallization stages with X-ray absorption spectroscopy. SOFT MATTER 2021; 17:331-334. [PMID: 33320159 DOI: 10.1039/d0sm01356k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study investigates early stages of ZIF-8 crystallization up to 5 minutes post mixing of precursor solutions. Dispersive X-ray Absorption Spectroscopy (DXAS) provides a refined understanding of the evolution of the coordination environment during ZIF-8 crystallization. Linear Combination Analysis (LCA) suggests tetrakis(1-methylimidazole)zinc2+ to be a suitable and stable mononuclear structure analogue for some early stage ZIF-8 intermediates. Our results pave the way for more detailed studies on physico-chemical aspects of ZIF-8 crystallization to better control tailoring ZIF-8 materials for specific applications.
Collapse
Affiliation(s)
- Ana Guilherme Buzanich
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Anicó Kulow
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Anke Kabelitz
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Christian Grunewald
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien and Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany and Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Ander Chapartegui-Arias
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany and School of Analytical Sciences Adlershof, Albert-Einstein-Straße 5, D-12489 Berlin, Germany
| | - Martin Radtke
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Uwe Reinholz
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany and Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Sebastian Beyer
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, SAR, China and Department of Biomedical Engineering, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
23
|
Terban MW, Ghose SK, Plonka AM, Troya D, Juhás P, Dinnebier RE, Mahle JJ, Gordon WO, Frenkel AI. Atomic resolution tracking of nerve-agent simulant decomposition and host metal-organic framework response in real space. Commun Chem 2021; 4:2. [PMID: 36697507 PMCID: PMC9814582 DOI: 10.1038/s42004-020-00439-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Gas capture and sequestration are valuable properties of metal-organic frameworks (MOFs) driving tremendous interest in their use as filtration materials for chemical warfare agents. Recently, the Zr-based MOF UiO-67 was shown to effectively adsorb and decompose the nerve-agent simulant, dimethyl methylphosphonate (DMMP). Understanding mechanisms of MOF-agent interaction is challenging due to the need to distinguish between the roles of the MOF framework and its particular sites for the activation and sequestration process. Here, we demonstrate the quantitative tracking of both framework and binding component structures using in situ X-ray total scattering measurements of UiO-67 under DMMP exposure, pair distribution function analysis, and theoretical calculations. The sorption and desorption of DMMP within the pores, association with linker-deficient Zr6 cores, and decomposition to irreversibly bound methyl methylphosphonate were directly observed and analyzed with atomic resolution.
Collapse
Affiliation(s)
- Maxwell W. Terban
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Sanjit K. Ghose
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Anna M. Plonka
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA
| | - Diego Troya
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Pavol Juhás
- grid.202665.50000 0001 2188 4229Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Robert E. Dinnebier
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - John J. Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Wesley O. Gordon
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Anatoly I. Frenkel
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA ,grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| |
Collapse
|
24
|
Ebrahim AM, Plonka AM, Rui N, Hwang S, Gordon WO, Balboa A, Senanayake SD, Frenkel AI. Capture and Decomposition of the Nerve Agent Simulant, DMCP, Using the Zeolitic Imidazolate Framework (ZIF-8). ACS APPLIED MATERIALS & INTERFACES 2020; 12:58326-58338. [PMID: 33327718 DOI: 10.1021/acsami.0c12985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding mechanisms of decontamination of chemical warfare agents (CWA) is an area of intense research aimed at developing new filtration materials to protect soldiers and civilians in case of state-sponsored or terrorist attack. In this study, we employed complementary structural, chemical, and dynamic probes and in situ data collection, to elucidate the complex chemistry, capture, and decomposition of the CWA simulant, dimethyl chlorophosphonate (DMCP). Our work reveals key details of the reactive adsorption of DMCP and demonstrates the versatility of zeolitic imidazolate framework (ZIF-8) as a plausible material for CWA capture and decomposition. The in situ synchrotron-based powder X-ray diffraction (PXRD) and pair distribution function (PDF) studies, combined with Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), zinc K-edge X-ray absorption near edge structure (XANES), and Raman spectroscopies, showed that the unique structure, chemical state, and topology of ZIF-8 enable accessibility, adsorption, and hydrolysis of DMCP into the pores and revealed the importance of linker chemistry and Zn2+ sites for nerve agent decomposition. DMCP decontamination and decomposition product(s) formation were observed by thermogravimetric analysis, FT-IR spectroscopy, and phosphorus (P) K-edge XANES studies. Differential PDF analysis indicated that the average structure of ZIF-8 (at the 30 Å scale) remains unchanged after DMCP dosing and provided information on the dynamics of interactions of DMCP with the ZIF-8 framework. Using in situ PXRD and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), we showed that nearly 90% regeneration of the ZIF-8 structure and complete liberation of DMCP and decomposition products occur upon heating.
Collapse
Affiliation(s)
- Amani M Ebrahim
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anna M Plonka
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Electron Microscopy Group, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Wesley O Gordon
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Alex Balboa
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Sanjaya D Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
25
|
Zhao YT, Chen XX, Jiang WL, Li Y, Fei J, Li CY. Near-Infrared Fluorescence MOF Nanoprobe for Adenosine Triphosphate-Guided Imaging in Colitis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47840-47847. [PMID: 32981314 DOI: 10.1021/acsami.0c13003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is mainly produced in mitochondria and plays an important role in lots of pathological processes such as colitis. Unfortunately, to date, few suitable fluorescence probes have been developed for monitoring the ATP level in colitis. Herein, a fluorescence nanoprobe named NIR@ZIF-90 is proposed and prepared by encapsulating a rhodamine-based near-infrared (NIR) dye into zeolitic imidazolate frameworks (ZIF-90). The nanoprobe is nonfluorescent because the emission of NIR is suppressed by the encapsulation, while in the presence of ATP, the framework of ZIF-90 is dissembled to release NIR and thus NIR fluorescence at 750 nm is observed. The nanoprobe shows high sensitivity to ATP with a 72-fold increase and excellent selectivity to ATP over other nucleotides. Moreover, with low cytotoxicity and good mitochondria-targeted ability, NIR@ZIF-90 is used to image ATP in colorectal cancer cells (HCT116). In addition, due to the NIR emission, the nanoprobe is further employed to successfully monitor the ATP level in a colitis mouse model. To the best of our knowledge, the nanoprobe is the first example to study colitis in vivo with the guidance of ATP, which will provide an efficient tool for understanding colitis.
Collapse
Affiliation(s)
- Yi-Ting Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xi-Xi Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
26
|
Sinnwell MA, Miller QRS, Palys L, Barpaga D, Liu L, Bowden ME, Han Y, Ghose S, Sushko ML, Schaef HT, Xu W, Nyman M, Thallapally PK. Molecular Intermediate in the Directed Formation of a Zeolitic Metal-Organic Framework. J Am Chem Soc 2020; 142:17598-17606. [PMID: 32957777 DOI: 10.1021/jacs.0c07862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Directed synthesis promises control over architecture and function of framework materials. In practice, however, designing such syntheses requires a detailed understanding of the multistep pathways of framework formations, which remain elusive. By identifying intermediate coordination complexes, this study provides insights into the complex role of a structure-directing agent (SDA) in the synthetic realization of a promising material. Specifically, a novel molecular intermediate was observed in the formation of an indium zeolitic metal-organic framework (ZMOF) with a sodalite topology. The role of the imidazole SDA was revealed by time-resolved in situ powder X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
| | | | - Lauren Palys
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | | | | | | - Yi Han
- Key Laboratory of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Sanjit Ghose
- National Synchrotron Light Sources II (NSLS-II) at Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | | | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | |
Collapse
|
27
|
Castillo-Blas C, Moreno JM, Romero-Muñiz I, Platero-Prats AE. Applications of pair distribution function analyses to the emerging field of non-ideal metal-organic framework materials. NANOSCALE 2020; 12:15577-15587. [PMID: 32510095 DOI: 10.1039/d0nr01673j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pair distribution function, PDF, analyses are emerging as a powerful tool to characterize non-ideal metal-organic framework (MOF) materials with compromised ordering. Although originally envisaged as crystalline porous architectures, MOFs can incorporate defects in their structures through either chemistry or mechanical stress, resulting in materials with unpredicted novel properties. Indeed, a wide variety of current non-ideal MOFs have disorder in their structures to some extent, thereby often lacking crystals. Typically, PDF experiments are performed using high-energy synchrotron X-rays or neutrons to achieve a superior high atomic resolution in short times. The PDF technique analyses both Bragg and diffuse scattering signals simultaneously, without being restricted to crystalline materials. This characteristic makes PDF analyses a powerful probe to address the structural characterization of non-ideal MOF materials both at the local and intermediate range scales, including under in situ conditions relevant to MOF synthesis, activation and catalysis.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | | | | | |
Collapse
|
28
|
Yang L, Juhás P, Terban MW, Tucker MG, Billinge SJL. Structure-mining: screening structure models by automated fitting to the atomic pair distribution function over large numbers of models. Acta Crystallogr A Found Adv 2020; 76:395-409. [PMID: 32356790 PMCID: PMC7233026 DOI: 10.1107/s2053273320002028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/12/2020] [Indexed: 11/10/2022] Open
Abstract
A new approach is presented to obtain candidate structures from atomic pair distribution function (PDF) data in a highly automated way. It fetches, from web-based structural databases, all the structures meeting the experimenter's search criteria and performs structure refinements on them without human intervention. It supports both X-ray and neutron PDFs. Tests on various material systems show the effectiveness and robustness of the algorithm in finding the correct atomic crystal structure. It works on crystalline and nanocrystalline materials including complex oxide nanoparticles and nanowires, low-symmetry and locally distorted structures, and complicated doped and magnetic materials. This approach could greatly reduce the traditional structure searching work and enable the possibility of high-throughput real-time auto-analysis PDF experiments in the future.
Collapse
Affiliation(s)
- Long Yang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Pavol Juhás
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Maxwell W. Terban
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Matthew G. Tucker
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Simon J. L. Billinge
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
29
|
Ogata AF, Rakowski AM, Carpenter BP, Fishman DA, Merham JG, Hurst PJ, Patterson JP. Direct Observation of Amorphous Precursor Phases in the Nucleation of Protein–Metal–Organic Frameworks. J Am Chem Soc 2020; 142:1433-1442. [DOI: 10.1021/jacs.9b11371] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alana F. Ogata
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Alexander M. Rakowski
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P. Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Jovany G. Merham
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Paul J. Hurst
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
30
|
Gan T, Li J, Li H, Liu Y, Xu Z. Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides. NANOSCALE 2019; 11:7839-7849. [PMID: 30951076 DOI: 10.1039/c9nr01101c] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional metal-organic framework-based composites display great potentials as electrode materials. Herein, highly dispersed Au nanorods were successfully encapsulated inside the zeolitic imidazolate framework ZIF-8 (AuNRs@ZIF-8) by epitaxial growth or nucleus coalescence. The microporous ZIF-8 shell functions as a protective coating to effectively prevent AuNRs from dissolution, aggregation, and migration during the electrochemical testing, while it provides numerous channels for the mass transfer of reactants to the AuNR surface. The as-synthesized AuNRs@ZIF-8 was then encapsulated in graphene oxide (GO) nanosheets to enhance the chemical resistance of the multicore-shell support, which possesses permanent porosity as well as high specific surface area and hydrophilicity. The excellent electrocatalytic performance of the resulting ternary AuNRs@ZIF-8@GO was demonstrated by the highly sensitive sensing of niclosamide, dichlorophen, carbendazim, and diuron, which outperformed the reported electrocatalysts for these four pesticides. This nanocomposite thus holds great promise as a catalyst for electrochemical sensor fabrication due to its abundant multiple active sites, enhanced catalytic activity, and remarkable stability.
Collapse
Affiliation(s)
- Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | | | | | | | | |
Collapse
|
31
|
Evans JD, Garai B, Reinsch H, Li W, Dissegna S, Bon V, Senkovska I, Fischer RA, Kaskel S, Janiak C, Stock N, Volkmer D. Metal–organic frameworks in Germany: From synthesis to function. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Xu H, Sommer S, Broge NLN, Gao J, Iversen BB. The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO-66 MOF Formation. Chemistry 2019; 25:2051-2058. [PMID: 30480850 DOI: 10.1002/chem.201805024] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Indexed: 11/06/2022]
Abstract
The concept of secondary building units (SBUs) is central to all science on metal-organic frameworks (MOFs), and they are widely used to design new MOF materials. However, the presence of SBUs during MOF formation remains controversial, and the formation mechanism of MOFs remains unclear, due to limited information about the evolution of prenucleation cluster structures. Here in situ pair distribution function (PDF) analysis was used to probe UiO-66 formation under solvothermal conditions. The expected SBU-a hexanuclear zirconium cluster-is present in the metal salt precursor solution. Addition of organic ligands results in a disordered structure with correlations up to 23 Å, resembling crystalline UiO-66. Heating leads to fast cluster aggregation, and further growth and ordering results in the crystalline product. Thus, SBUs are present already at room temperature and act as building blocks for MOF formation. The proposed formation steps provide insight for further development of MOF synthesis.
Collapse
Affiliation(s)
- Hui Xu
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark.,College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Sanna Sommer
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Nils Lau Nyborg Broge
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Junkuo Gao
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
| | - Bo Brummerstedt Iversen
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| |
Collapse
|
33
|
Yeung HH, Sapnik AF, Massingberd‐Mundy F, Gaultois MW, Wu Y, Fraser DAX, Henke S, Pallach R, Heidenreich N, Magdysyuk OV, Vo NT, Goodwin AL. Control of Metal–Organic Framework Crystallization by Metastable Intermediate Pre‐equilibrium Species. Angew Chem Int Ed Engl 2019; 58:566-571. [DOI: 10.1002/anie.201810039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/29/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Hamish H.‐M. Yeung
- Inorganic Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford UK
| | - Adam F. Sapnik
- Inorganic Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford UK
| | | | - Michael W. Gaultois
- Leverhulme Research Center for Functional Material DesignThe Materials Innovation FactoryDepartment of ChemistryUniversity of Liverpool UK
| | - Yue Wu
- Department of Materials Science & EngineeringNational University of Singapore Singapore
| | - Duncan A. X. Fraser
- Inorganic Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford UK
| | - Sebastian Henke
- Technische Universität DortmundAnorganische Chemie Otto-Hahn-Str. 6 Dortmund Germany
| | - Roman Pallach
- Technische Universität DortmundAnorganische Chemie Otto-Hahn-Str. 6 Dortmund Germany
| | - Niclas Heidenreich
- Institut für Anorganischen ChemieChristian-Albrechts-Universität zu Kiel Germany
- Deutsches Elektronen-Synchrotron DESY Germany
| | | | - Nghia T. Vo
- Beamline I12—JEEPDiamond Light Source Ltd. Harwell Campus Didcot UK
| | - Andrew L. Goodwin
- Inorganic Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford UK
| |
Collapse
|
34
|
Yeung HH, Sapnik AF, Massingberd‐Mundy F, Gaultois MW, Wu Y, Fraser DAX, Henke S, Pallach R, Heidenreich N, Magdysyuk OV, Vo NT, Goodwin AL. Control of Metal–Organic Framework Crystallization by Metastable Intermediate Pre‐equilibrium Species. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamish H.‐M. Yeung
- Inorganic Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford UK
| | - Adam F. Sapnik
- Inorganic Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford UK
| | | | - Michael W. Gaultois
- Leverhulme Research Center for Functional Material DesignThe Materials Innovation FactoryDepartment of ChemistryUniversity of Liverpool UK
| | - Yue Wu
- Department of Materials Science & EngineeringNational University of Singapore Singapore
| | - Duncan A. X. Fraser
- Inorganic Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford UK
| | - Sebastian Henke
- Technische Universität DortmundAnorganische Chemie Otto-Hahn-Str. 6 Dortmund Germany
| | - Roman Pallach
- Technische Universität DortmundAnorganische Chemie Otto-Hahn-Str. 6 Dortmund Germany
| | - Niclas Heidenreich
- Institut für Anorganischen ChemieChristian-Albrechts-Universität zu Kiel Germany
- Deutsches Elektronen-Synchrotron DESY Germany
| | | | - Nghia T. Vo
- Beamline I12—JEEPDiamond Light Source Ltd. Harwell Campus Didcot UK
| | - Andrew L. Goodwin
- Inorganic Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford UK
| |
Collapse
|
35
|
Kumar A, Molinero V. Two-Step to One-Step Nucleation of a Zeolite through a Metastable Gyroid Mesophase. J Phys Chem Lett 2018; 9:5692-5697. [PMID: 30196700 DOI: 10.1021/acs.jpclett.8b02413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The importance of nonclassical nucleation pathways in the formation of complex crystals has become apparent in recent years. Nonclassical pathways were unraveled for, among others, the crystallization of proteins, colloids, and clathrates. In those cases, the formation of a metastable fluid with density close to the crystal decreases the crystallization barrier. Recent simulations indicate that mesophases can facilitate the nucleation of zeolites. Here, we use molecular simulations to investigate the role of a gyroid mesophase on the crystallization of a model zeolite from liquid. The nucleation pathway is always nonclassical. At warmer temperatures, the mechanism proceeds in two well-defined steps: nucleation of a metastable gyroid followed by its crystallization into a zeolite. At colder temperatures, the second barrier becomes negligible, and the crystallization occurs in one step. This second scenario is also nonclassical, as the critical nucleus for the crystallization has the structure of the gyroid and seamlessly transforms into a zeolite as it grows past its critical size. To our knowledge, this is the first report of a nonclassical mechanism of crystallization mediated by a mesophase.
Collapse
Affiliation(s)
- Abhinaw Kumar
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
36
|
Li S, Dharmarwardana M, Welch RP, Benjamin CE, Shamir AM, Nielsen SO, Gassensmith JJ. Investigation of Controlled Growth of Metal-Organic Frameworks on Anisotropic Virus Particles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18161-18169. [PMID: 29553703 DOI: 10.1021/acsami.8b01369] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biomimetic mineralization with metal-organic frameworks (MOF), typically zeolitic imidazolate framework-8 (ZIF-8), is an emerging strategy to protect sensitive biological substances against denaturing environmental stressors such as heat and proteolytic agents. Additionally, this same biomimetic mineralization process has the potential of being used to create distinct core-shell architectures using genetically or chemically modified viral nanoparticles. Despite the proliferation of examples for ZIF-8 growth on biological or proteinaceous substrates, systematic studies of these processes are few and far between. Herein, we employed the tobacco mosaic virus (TMV) as a model biological template to investigate the biomimetic mineralization of ZIF-8, which has been proven to be a robust MOF for encasing and protecting inlaid biological substances. Our study shows a systematic dependence upon ZIF-8 crystallization parameters, e.g., ligand to metal molar ratio and metal concentration, which can yield several distinct morphologies of TMV@ZIF-8 composites and phases of ZIF-8. Further investigation using charged synthetic conjugates, time dependent growth analysis, and calorimetric analysis has shown that the TMV-Zn interaction plays a pivotal role in the final morphology of the TMV@ZIF-8, which can take the form of either core-shell bionanoparticles or large crystals of ZIF-8 with entrapped TMV located exclusively on the outer facets. The design rules outlined here, it is hoped, will provide guidance in biomimetic mineralization of MOFs on proteinaceous materials using ZIF-8.
Collapse
|