1
|
Gerchman D, Acunha Ferrari PH, Baranov O, Levchenko I, Takimi AS, Bazaka K. One-step rapid formation of wrinkled fractal antibiofouling coatings from environmentally friendly, waste-derived terpenes. J Colloid Interface Sci 2024; 668:319-334. [PMID: 38678887 DOI: 10.1016/j.jcis.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Wrinkled coatings are a potential drug-free method for mitigating bacterial attachment and biofilm formation on materials such as medical and food grade steel. However, their fabrication typically requires multiple steps and often the use of a stimulus to induce wrinkle formation. Here, we report a facile plasma-based method for rapid fabrication of thin (<250 nm) polymer coatings from a single environmentally friendly precursor, where wrinkle formation and fractal pattern development are controlled solely by varying the deposition time from 3 s to 60 s. We propose a mechanism behind the observed in situ development of wrinkles in plasma, as well as demonstrate how introducing specific topographical features on the surface of the substrata can result int the formation of even more complex, ordered wrinkle patterns arising from the non-uniformity of plasma when in contact with structured surfaces. Thus-fabricated wrinkled surfaces show good adhesion to substrate and an antifouling activity that is not observed in the equivalent smooth coatings and hence is attributed to the specific pattern of wrinkles.
Collapse
Affiliation(s)
- Daniel Gerchman
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Oleg Baranov
- Department of Theoretical Mechanics, Engineering and Robomechanical Systems, National Aerospace University, Kharkiv 61070, Ukraine; Department of Gaseous Electronics, Jožef Stefan Institute, Ljubljana 1000, Slovenia, EU
| | - Igor Levchenko
- Plasma Sources and Application Center, NIE, Nanyang Technological University, Singapore 639798, Singapore.
| | | | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
2
|
Szpiro L, Bourgeay C, Hoareau AL, Julien T, Menard C, Marie Y, Rosa-Calatrava M, Moules V. Antiviral Activity of Active Materials: Standard and Finger-Pad-Based Innovative Experimental Approaches. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2889. [PMID: 37049183 PMCID: PMC10096329 DOI: 10.3390/ma16072889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Environmental surfaces, including high-touch surfaces (HITS), bear a high risk of becoming fomites and can participate in viral dissemination through contact and transmission to other persons, due to the capacity of viruses to persist on such contaminated surface before being transferred to hands or other supports at sufficient concentration to initiate infection through direct contact. Interest in the development of self-decontaminating materials as additional safety measures towards preventing viral infectious disease transmission has been growing. Active materials are expected to reduce the viral charge on surfaces over time and consequently limit viral transmission capacity through direct contact. In this study, we compared antiviral activities obtained using three different experimental procedures by assessing the survival of an enveloped virus (influenza virus) and non-enveloped virus (feline calicivirus) over time on a reference surface and three active materials. Our data show that experimental test conditions can have a substantial impact of over 1 log10 on the antiviral activity of active material for the same contact period, depending on the nature of the virus. We then developed an innovative and reproducible approach based on finger-pad transfer to evaluate the antiviral activity of HITS against a murine norovirus inoculum under conditions closely reflecting real-life surface exposure.
Collapse
Affiliation(s)
- Lea Szpiro
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Clara Bourgeay
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Loic Hoareau
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Thomas Julien
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Camille Menard
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Yana Marie
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Vincent Moules
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| |
Collapse
|
3
|
Plasma-induced nanostructured metallic silver surfaces: study of bacteriophobic effect to avoid bacterial adhesion on medical devices. Heliyon 2022; 8:e10842. [PMID: 36217459 PMCID: PMC9547212 DOI: 10.1016/j.heliyon.2022.e10842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 12/17/2022] Open
Abstract
Biofilm formation in medical devices represents one of the major problems for the healthcare system, especially those that occur on implantable silicone-based devices. To provide a general solution to avoid biofilm formation in the first stages of development, this work studied how nanostructured metallic silver coatings hinder bacteria-surface interaction by preventing bacteria adhesion. The three studied silver nanostructures (“Sharp blades”, “Thick blades” and “Leaves”) combined superhydrophobic behavior with a physical impediment of the coating nanostructure that produced a bacteriophobic effect avoiding the adhesion mechanism of different bacterial strains. These silver nanostructures are immobilized on stretchable substrates through a polymeric thin film of plasma–polymerized penta-fluorophenyl methacrylate. The control over the nanostructures and therefore its bacteriophobic—bactericidal effect depends on the plasma polymerization conditions of the polymer. The characterization of this bacteriophobic effect through FE-SEM microscopy, live/dead cell staining, and direct bacterial adhesion counts, provided a complete mapping of how bacteria interact with the surface in each scenario. Results revealed that the bacterial adhesion was reduced by up to six orders of magnitude in comparison with uncoated surfaces thereby constituting an effective strategy to avoid the formation of biofilm on medical materials.
Collapse
|
4
|
Shi Y, Chen T, Shaw P, Wang PY. Manipulating Bacterial Biofilms Using Materiobiology and Synthetic Biology Approaches. Front Microbiol 2022; 13:844997. [PMID: 35875573 PMCID: PMC9301480 DOI: 10.3389/fmicb.2022.844997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria form biofilms on material surfaces within hours. Biofilms are often considered problematic substances in the fields such as biomedical devices and the food industry; however, they are beneficial in other fields such as fermentation, water remediation, and civil engineering. Biofilm properties depend on their genome and the extracellular environment, including pH, shear stress, and matrices topography, stiffness, wettability, and charges during biofilm formation. These surface properties have feedback effects on biofilm formation at different stages. Due to emerging technology such as synthetic biology and genome editing, many studies have focused on functionalizing biofilm for specific applications. Nevertheless, few studies combine these two approaches to produce or modify biofilms. This review summarizes up-to-date materials science and synthetic biology approaches to controlling biofilms. The review proposed a potential research direction in the future that can gain better control of bacteria and biofilms.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingli Chen
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Sonnleitner D, Sommer C, Scheibel T, Lang G. Approaches to inhibit biofilm formation applying natural and artificial silk-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112458. [PMID: 34857315 DOI: 10.1016/j.msec.2021.112458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The discovery of penicillin started a new era of health care since it allowed the effective treatment of formerly deadly infections. As a drawback, its overuse led to a growing number of multi-drug resistant pathogens. Challenging this arising threat, material research focuses on the development of microbe-killing or microbe repellent agents implementing such functions directly into materials. Due to their biocompatibility, non-immunogenicity and mechanical strength, silk-based materials are attractive candidates for applications in the biomedical field. Furthermore, it has been observed that silks display high persistency in their natural environment giving reason to suspect that they might be attractive candidates to prevent microbial infestation. The current review describes the process of biofilm formation on medical devices and the most common strategies to prevent it, divided into effects of surface topography, material modification and integrated additives. In this context, recent state of the art developments in the field of natural and artificial silk-based materials with microbe-repellant or antimicrobial properties are addressed. These silk properties are controversially discussed and conclusions are drawn as to which parameters will be decisive for the successful design of new bio-functional materials based on the blueprint of silk proteins.
Collapse
Affiliation(s)
- David Sonnleitner
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Christoph Sommer
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany.
| |
Collapse
|
6
|
Jesmer AH, Huynh V, Marple AST, Ding X, Moran-Mirabal JM, Wylie RG. Graft-Then-Shrink: Simultaneous Generation of Antifouling Polymeric Interfaces and Localized Surface Plasmon Resonance Biosensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52362-52373. [PMID: 34704743 DOI: 10.1021/acsami.1c14930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antifouling polymer coatings that are simple to manufacture are crucial for the performance of medical devices such as biosensors. "Grafting-to", a simple technique where presynthesized polymers are immobilized onto surfaces, is commonly employed but suffers from nonideal polymer packing leading to increased biofouling. Herein, we present a material prepared via the grafting-to method with improved antifouling surface properties and intrinsic localized surface plasmon resonance (LSPR) sensor capabilities. A new substrate shrinking fabrication method, Graft-then-Shrink, improved the antifouling properties of polymer-coated Au surfaces by altering graft-to polymer packing while simultaneously generating wrinkled Au structures for LSPR biosensing. Thiol-terminated, antifouling, hydrophilic polymers were grafted to Au-coated prestressed polystyrene (PS) followed by shrinking upon heating above the PS glass transition temperature. Interestingly, the polymer molecular weight and hydration influenced Au wrinkling patterns. Compared to Shrink-then-Graft controls, where polymers are immobilized post shrinking, Graft-then-Shrink increased the polymer content by 76% in defined footprints and improved the antifouling properties as demonstrated by 84 and 72% reduction in macrophage adhesion and protein adsorption, respectively. Wrinkled Au LSPR sensors had sensitivities of ∼200-1000 Δλ/ΔRIU, comparing favorably to commercial LSPR sensors, and detected biotin-avidin and desthiobiotin-avidin complexation in a concentration-dependent manner using a standard plate reader and a 96-well format.
Collapse
Affiliation(s)
- Alexander H Jesmer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Vincent Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - April S T Marple
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Xiuping Ding
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Ryan G Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
7
|
He W, Ye X, Cui T. Progress of shrink polymer micro- and nanomanufacturing. MICROSYSTEMS & NANOENGINEERING 2021; 7:88. [PMID: 34790360 PMCID: PMC8566528 DOI: 10.1038/s41378-021-00312-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 05/31/2023]
Abstract
Traditional lithography plays a significant role in the fabrication of micro- and nanostructures. Nevertheless, the fabrication process still suffers from the limitations of manufacturing devices with a high aspect ratio or three-dimensional structure. Recent findings have revealed that shrink polymers attain a certain potential in micro- and nanostructure manufacturing. This technique, denoted as heat-induced shrink lithography, exhibits inherent merits, including an improved fabrication resolution by shrinking, controllable shrinkage behavior, and surface wrinkles, and an efficient fabrication process. These merits unfold new avenues, compensating for the shortcomings of traditional technologies. Manufacturing using shrink polymers is investigated in regard to its mechanism and applications. This review classifies typical applications of shrink polymers in micro- and nanostructures into the size-contraction feature and surface wrinkles. Additionally, corresponding shrinkage mechanisms and models for shrinkage, and wrinkle parameter control are examined. Regarding the size-contraction feature, this paper summarizes the progress on high-aspect-ratio devices, microchannels, self-folding structures, optical antenna arrays, and nanowires. Regarding surface wrinkles, this paper evaluates the development of wearable sensors, electrochemical sensors, energy-conversion technology, cell-alignment structures, and antibacterial surfaces. Finally, the limitations and prospects of shrink lithography are analyzed.
Collapse
Affiliation(s)
- Wenzheng He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street S.E., Minneapolis, MN 55455 USA
| |
Collapse
|
8
|
Halder P, Hossain N, Pramanik BK, Bhuiyan MA. Engineered topographies and hydrodynamics in relation to biofouling control-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40678-40692. [PMID: 32974820 DOI: 10.1007/s11356-020-10864-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Biofouling, the unwanted growth of microorganisms on submerged surfaces, has appeared as a significant impediment for underwater structures, water vessels, and medical devices. For fixing the biofouling issue, modification of the submerged surface is being experimented as a non-toxic approach worldwide. This technique necessitated altering the surface topography and roughness and developing a surface with a nano- to micro-structured pattern. The main objective of this study is to review the recent advancements in surface modification and hydrodynamic analysis concerning biofouling control. This study described the occurrence of the biofouling process, techniques suitable for biofouling control, and current state of research advancements comprehensively. Different biofilms under various hydrodynamic conditions have also been outlined in this study. Scenarios of biomimetic surfaces and underwater super-hydrophobicity, locomotion of microorganisms, nano- and micro-hydrodynamics on various surfaces around microorganisms, and material stiffness were explained thoroughly. The review also documented the approaches to inhibit the initial settlement of microorganisms and prolong the subsequent biofilm formation process for patterned surfaces. Though it is well documented that biofouling can be controlled to various degrees with different nano- and micro-structured patterned surfaces, the understanding of the underlying mechanism is still imprecise. Therefore, this review strived to present the possibilities of implementing the patterned surfaces as a physical deterrent against the settlement of fouling organisms and developing an active microfluidic environment to inhibit the initial bacterial settlement process. In general, microtopography equivalent to that of bacterial cells influences attachment via hydrodynamics, topography-induced cell placement, and air-entrapment, whereas nanotopography influences physicochemical forces through macromolecular conditioning.
Collapse
Affiliation(s)
- Partha Halder
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Nazia Hossain
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Muhammed A Bhuiyan
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
9
|
Di Cerbo A, Rosace G, Rea S, Stocchi R, Morales-Medina JC, Canton R, Mescola A, Condò C, Loschi AR, Sabia C. Time-Course Study of the Antibacterial Activity of an Amorphous SiO xC yH z Coating Certified for Food Contact. Antibiotics (Basel) 2021; 10:antibiotics10080901. [PMID: 34438952 PMCID: PMC8388733 DOI: 10.3390/antibiotics10080901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
One of the most-used food contact materials is stainless steel (AISI 304L or AISI 316L), owing to its high mechanical strength, cleanability, and corrosion resistance. However, due to the presence of minimal crevices, stainless-steel is subject to microbial contamination with consequent significant reverb on health and industry costs due to the lack of effective reliability of sanitizing agents and procedures. In this study, we evaluated the noncytotoxic effect of an amorphous SiOxCyHz coating deposited on stainless-steel disks and performed a time-course evaluation for four Gram-negative bacteria and four Gram-positive bacteria. A low cytotoxicity of the SiOxCyHz coating was observed; moreover, except for some samples, a five-logarithm decrease was visible after 1 h on coated surfaces without any sanitizing treatment and inoculated with Gram-negative and Gram-positive bacteria. Conversely, a complete bacterial removal was observed after 30 s−1 min application of alcohol and already after 15 s under UVC irradiation against both bacterial groups. Moreover, coating deposition changed the wetting behaviors of treated samples, with contact angles increasing from 90.25° to 113.73°, realizing a transformation from hydrophilicity to hydrophobicity, with tremendous repercussions in various technological applications, including the food industry.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (S.R.); (R.S.); (A.R.L.)
- Correspondence: ; Tel.: +39-073-740-3466
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, Italy;
| | - Stefano Rea
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (S.R.); (R.S.); (A.R.L.)
| | - Roberta Stocchi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (S.R.); (R.S.); (A.R.L.)
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, Tlaxcala 90000, Mexico;
| | | | | | - Carla Condò
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (C.S.)
| | - Anna Rita Loschi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (S.R.); (R.S.); (A.R.L.)
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (C.S.)
| |
Collapse
|
10
|
Khalid S, Gao A, Wang G, Chu PK, Wang H. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci 2021; 8:6840-6857. [PMID: 32812537 DOI: 10.1039/d0bm00845a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial contamination and subsequent formation of biofilms frequently cause failure of surgical implants and a good understanding of the bacteria-surface interactions is vital to the design and safety of biomaterials. In this review, the physical and chemical factors that are involved in the various stages of implant-associated bacterial infection are described. In particular, topographical modification strategies that have been employed to mitigate bacterial adhesion via topographical mechanisms are summarized and discussed comprehensively. Recent advances have improved our understanding about bacteria-surface interactions and have enabled biomedical engineers and researchers to develop better and more effective antibacterial surfaces. The related interdisciplinary efforts are expected to continue in the quest for next-generation medical devices to attain the ultimate goal of improved clinical outcomes and reduced number of revision surgeries.
Collapse
Affiliation(s)
- Saud Khalid
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | |
Collapse
|
11
|
Zheng S, Bawazir M, Dhall A, Kim HE, He L, Heo J, Hwang G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front Bioeng Biotechnol 2021; 9:643722. [PMID: 33644027 PMCID: PMC7907602 DOI: 10.3389/fbioe.2021.643722] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilms are structured microbial communities attached to surfaces, which play a significant role in the persistence of biofoulings in both medical and industrial settings. Bacteria in biofilms are mostly embedded in a complex matrix comprised of extracellular polymeric substances that provide mechanical stability and protection against environmental adversities. Once the biofilm is matured, it becomes extremely difficult to kill bacteria or mechanically remove biofilms from solid surfaces. Therefore, interrupting the bacterial surface sensing mechanism and subsequent initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Noting that the process of bacterial adhesion is influenced by many factors, including material surface properties, this review summarizes recent works dedicated to understanding the influences of surface charge, surface wettability, roughness, topography, stiffness, and combination of properties on bacterial adhesion. This review also highlights other factors that are often neglected in bacterial adhesion studies such as bacterial motility and the effect of hydrodynamic flow. Lastly, the present review features recent innovations in nanotechnology-based antifouling systems to engineer new concepts of antibiofilm surfaces.
Collapse
Affiliation(s)
- Sherry Zheng
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marwa Bawazir
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Atul Dhall
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hye-Eun Kim
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Le He
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Heo
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Geelsu Hwang
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Hemmatian T, Lee H, Kim J. Bacteria Adhesion of Textiles Influenced by Wettability and Pore Characteristics of Fibrous Substrates. Polymers (Basel) 2021; 13:E223. [PMID: 33440678 PMCID: PMC7827894 DOI: 10.3390/polym13020223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria adhesion on the surface is an initial step to create biofouling, which may lead to a severe infection of living organisms and humans. This study is concerned with investigating the textile properties including wettability, porosity, total pore volume, and pore size in association with bacteria adhesion. As model bacteria, Gram-negative, rod-shaped Escherichia coli and the Gram-positive, spherical-shaped Staphylococcus aureus were used to analyze the adhesion tendency. Electrospun webs made from polystyrene and poly(lactic acid) were used as substrates, with modification of wettability by the plasma process using either O2 or C4F8 gas. The pore and morphological characteristics of fibrous webs were analyzed by the capillary flow porometer and scanning electron microscopy. The substrate's wettability appeared to be the primary factor influencing the cell adhesion, where the hydrophilic surface resulted in considerably higher adhesion. The pore volume and the pore size, rather than the porosity itself, were other important factors affecting the bacteria adherence and retention. In addition, the compact spatial distribution of fibers limited the cell intrusion into the pores, reducing the total amount of adherence. Thus, superhydrophobic textiles with the reduced total pore volume and smaller pore size would circumvent the adhesion. The findings of this study provide informative discussion on the characteristics of fibrous webs affecting the bacteria adhesion, which can be used as a fundamental design guide of anti-biofouling textiles.
Collapse
Affiliation(s)
- Tahmineh Hemmatian
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (T.H.); (H.L.)
| | - Halim Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (T.H.); (H.L.)
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea; (T.H.); (H.L.)
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Molecular dynamics model for the antibactericity of textured surfaces. Colloids Surf B Biointerfaces 2021; 199:111504. [PMID: 33418209 DOI: 10.1016/j.colsurfb.2020.111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022]
Abstract
An original model has been developed for the initial stage of bacterial adhesion on textured surfaces. Based on molecular dynamics, the model describes contact between individual bacterial cells in a planktonic state and a surface, accounting for both the mechanical properties of the cells and the physico-chemical mechanisms governing interaction with the substrate. Feasibility of the model is assessed via comparison with experimental results of bacterial growth on stainless steel substrates textured with ultrashort laser pulses. Simulations are performed for two different bacterial species, Staphylococcus aureus and Escherichia coli, on two distinct surface types characterised by elongated ripples and isolated nanopillars, respectively. Calculated results are in agreement with experiment outcomes and highlight the role of mechanical stresses within the cell wall due to deformation upon interaction with the substrate, creating unfavourable conditions for bacteria during the initial phases of adhesion. Furthermore, the flexibility of the model provides insight into the intricate interplay between topography and the physico-chemical properties of the substrate, pointing to a unified picture of the mechanisms underlying bacterial affinity to a textured surface.
Collapse
|
14
|
Growth of Lactic Acid Bacteria on Gold-Influence of Surface Roughness and Chemical Composition. NANOMATERIALS 2020; 10:nano10122499. [PMID: 33322124 PMCID: PMC7763910 DOI: 10.3390/nano10122499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
The main focus of this work was to establish a correlation between surface topography and chemistry and surface colonization by lactic acid bacteria. For this reason, we chose gold substrates with different surface architectures (i.e., smooth and nanorough) that were characterized by atomic force microscopy (AFM), electron scanning microscopy (SEM), and X-ray diffractometry (XRD). Moreover, to enhance biocompatibility, we modified gold substrates with polymeric monolayers, namely cationic dextran derivatives with different molar masses. The presence of those layers was confirmed by AFM, infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). In order to determine the adhesion abilities of non-modified and modified gold surfaces, we tested three lactic acid bacteria (LAB) strains (i.e., Lactobacillus rhamnosus GG, Lactobacillus acidophilus, and Lactobacillus plantarum 299v). We have shown that surface roughness influences the surface colonization of bacteria, and the most significant impact on the growth was observed for the Lactobacillus rhamnosus GG strain. What is more, covering the gold surface with a molecular polymeric film by using the layer-by-layer (LbL) method allows additional changes in the bacterial growth, independently on the used strain. The well-being of the bacteria cells on tested surfaces was confirmed by using selective staining and fluorescence microscopy. Finally, we have determined the bacterial metabolic activity by measuring the amount of produced lactic acid regarding the growth conditions. The obtained results proved that the adhesion of bacteria to the metallic surface depends on the chemistry and topography of the surface, as well as the specific bacteria strain.
Collapse
|
15
|
Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnol Adv 2020; 43:107586. [DOI: 10.1016/j.biotechadv.2020.107586] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
16
|
Imani SM, Ladouceur L, Marshall T, Maclachlan R, Soleymani L, Didar TF. Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS NANO 2020; 14:12341-12369. [PMID: 33034443 PMCID: PMC7553040 DOI: 10.1021/acsnano.0c05937] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/01/2020] [Indexed: 05/05/2023]
Abstract
The global COVID-19 pandemic has attracted considerable attention toward innovative methods and technologies for suppressing the spread of viruses. Transmission via contaminated surfaces has been recognized as an important route for spreading SARS-CoV-2. Although significant efforts have been made to develop antibacterial surface coatings, the literature remains scarce for a systematic study on broad-range antiviral coatings. Here, we aim to provide a comprehensive overview of the antiviral materials and coatings that could be implemented for suppressing the spread of SARS-CoV-2 via contaminated surfaces. We discuss the mechanism of operation and effectivity of several types of inorganic and organic materials, in the bulk and nanomaterial form, and assess the possibility of implementing these as antiviral coatings. Toxicity and environmental concerns are also discussed for the presented approaches. Finally, we present future perspectives with regards to emerging antimicrobial technologies such as omniphobic surfaces and assess their potential in suppressing surface-mediated virus transfer. Although some of these emerging technologies have not yet been tested directly as antiviral coatings, they hold great potential for designing the next generation of antiviral surfaces.
Collapse
Affiliation(s)
- Sara M. Imani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Liane Ladouceur
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Terrel Marshall
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Roderick Maclachlan
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Tohid F. Didar
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Mechanical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Michael G. DeGroote Institute of
Infectious Disease Research, McMaster
University, Hamilton, ON L8N 3Z5,
Canada
| |
Collapse
|
17
|
The Effectiveness of Nafion-Coated Stainless Steel Surfaces for Inhibiting Bacillus Subtilis Biofilm Formation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10145001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stainless steel is one of most commonly used materials in the world; however, biofilms on the surfaces of stainless steel cause many serious problems. In order to find effective methods of reducing bacterial adhesion to stainless steel, and to investigate the role of electrostatic effects during the formation of biofilms, this study used a stainless steel surface that was negatively charged by being coated with Nafion which was terminated by sulfonic groups. The results showed that the roughness of stainless steel discs coated with 1% Nafion was similar to an uncoated surface; however the hydrophobicity increased, and the Nafion-coated surface reduced the adhesion of Bacillus subtilis by 75% compared with uncoated surfaces. Therefore, a facile way to acquire antibacterial stainless steel was found, and it is proved that electrostatic effects have a significant influence on the formation of biofilms.
Collapse
|
18
|
Encinas N, Yang CY, Geyer F, Kaltbeitzel A, Baumli P, Reinholz J, Mailänder V, Butt HJ, Vollmer D. Submicrometer-Sized Roughness Suppresses Bacteria Adhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21192-21200. [PMID: 32142252 PMCID: PMC7226781 DOI: 10.1021/acsami.9b22621] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of functional polymer brushes or films provides a route toward antifouling coatings. Furthermore, nanorough or superhydrophobic surfaces can delay biofilm formation. Here we show that submicrometer-sized roughness can outweigh surface chemistry by testing the adhesion of E. coli to surfaces of different topography and wettability over long exposure times (>7 days). Gram-negative and positive bacterial strains are tested for comparison. We show that an irregular three-dimensional layer of silicone nanofilaments suppresses bacterial adhesion, both in the presence and absence of an air cushion. We hypothesize that a 3D topography can delay biofilm formation (i) if bacteria do not fit into the pores of the coating or (ii) if bending of the bacteria is required to adhere. Thus, such a 3D topography offers an underestimated possibility to design antibacterial surfaces that do not require biocides or antibiotics.
Collapse
Affiliation(s)
- Noemí Encinas
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ching-Yu Yang
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Florian Geyer
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Philipp Baumli
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jonas Reinholz
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstrasse
1, Mainz 55131, Germany
| | - Volker Mailänder
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstrasse
1, Mainz 55131, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Doris Vollmer
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
19
|
Nguyen DHK, Bazaka O, Bazaka K, Crawford RJ, Ivanova EP. Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies. Trends Biotechnol 2020; 38:558-571. [PMID: 32302580 DOI: 10.1016/j.tibtech.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Olha Bazaka
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Kateryna Bazaka
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra ACT 2600, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia.
| |
Collapse
|
20
|
Imani SM, Maclachlan R, Rachwalski K, Chan Y, Lee B, McInnes M, Grandfield K, Brown ED, Didar TF, Soleymani L. Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria. ACS NANO 2020; 14:454-465. [PMID: 31834780 DOI: 10.1021/acsnano.9b06287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Healthcare acquired infections are a major human health problem, and are becoming increasingly troublesome with the emergence of drug resistant bacteria. Engineered surfaces that reduce the adhesion, proliferation, and spread of bacteria have promise as a mean of preventing infections and reducing the use of antibiotics. To address this need, we created a flexible plastic wrap that combines a hierarchical wrinkled structure with chemical functionalization to reduce bacterial adhesion, biofilm formation, and the transfer of bacteria through an intermediate surface. These hierarchical wraps were effective for reducing biofilm formation of World Health Organization-designated priority pathogens Gram positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram negative Pseudomonas aeruginosa by 87 and 84%, respectively. In addition, these surfaces remain free of bacteria after being touched by a contaminated surface with Gram negative E. coli. We showed that these properties are the result of broad liquid repellency of the engineered surfaces and the presence of reduced anchor points for bacterial adhesion on the hierarchical structure. Such wraps are fabricated using scalable bottom-up techniques and form an effective cover on a variety of complex objects, making them superior to top-down and substrate-specific surface modification methods.
Collapse
Affiliation(s)
- Sara M Imani
- McMaster University , School of Biomedical Engineering , 1280 Main Street West , Hamilton , L8S 4L7 , Canada
| | - Roderick Maclachlan
- McMaster University , Department of Engineering Physics , 1280 Main Street West , Hamilton , L8S 4L7 , Canada
| | - Kenneth Rachwalski
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON L8N 3Z5 , Canada
- Michael G. DeGroote Institute of Infectious Disease Research , McMaster University , Hamilton , ON L8N 3Z5 , Canada
| | - Yuting Chan
- McMaster University , Department of Engineering Physics , 1280 Main Street West , Hamilton , L8S 4L7 , Canada
| | - Bryan Lee
- McMaster University , School of Biomedical Engineering , 1280 Main Street West , Hamilton , L8S 4L7 , Canada
| | - Mark McInnes
- OptiSolve ® , Peterborough , ON K9J 6 × 6 , Canada
| | - Kathryn Grandfield
- McMaster University , School of Biomedical Engineering , 1280 Main Street West , Hamilton , L8S 4L7 , Canada
- Department of Materials Science and Engineering , McMaster University , Hamilton , Ontario Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON L8N 3Z5 , Canada
- Michael G. DeGroote Institute of Infectious Disease Research , McMaster University , Hamilton , ON L8N 3Z5 , Canada
| | - Tohid F Didar
- McMaster University , School of Biomedical Engineering , 1280 Main Street West , Hamilton , L8S 4L7 , Canada
- Michael G. DeGroote Institute of Infectious Disease Research , McMaster University , Hamilton , ON L8N 3Z5 , Canada
- Department of Mechanical Engineering , McMaster University , Hamilton , Ontario Canada
| | - Leyla Soleymani
- McMaster University , School of Biomedical Engineering , 1280 Main Street West , Hamilton , L8S 4L7 , Canada
- McMaster University , Department of Engineering Physics , 1280 Main Street West , Hamilton , L8S 4L7 , Canada
| |
Collapse
|
21
|
Erramilli S, Genzer J. Influence of surface topography attributes on settlement and adhesion of natural and synthetic species. SOFT MATTER 2019; 15:4045-4067. [PMID: 31066434 DOI: 10.1039/c9sm00527g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface topographies of various sizes, shapes, and spatial organization abound in nature. They endow properties such as super-hydrophobicity, reversible adhesion, anti-fouling, self-cleaning, anti-glare, and anti-bacterial, just to mention a few. Researchers have long attempted to replicate these structures to create artificial surfaces with the functionalities found in nature. In this review, we decompose the attributes of surface topographies into their constituents, namely feature dimensions, geometry, and stiffness, and examine how they contribute (individually or collectively) to settlement and adhesion of natural organisms and synthetic particles on the surface. The size of features that comprise the topography affects the contact area between the particle and surface as well as its adhesion and contributes to the observed adsorptive properties of the surface. The geometry of surface perturbations can also affect the contact area and gives rise to anisotropic particle settlement. Surface topography also affects the local stiffness of the surface and governs the adhesion strength on the surface. Overall, systematically studying attributes of surface topography and elucidating how each of them affects adhesion and settlement of particles will facilitate the design of topographically-corrugated surfaces with desired adsorption characteristics.
Collapse
Affiliation(s)
- Shreya Erramilli
- Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
22
|
Elbourne A, Chapman J, Gelmi A, Cozzolino D, Crawford RJ, Truong VK. Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. J Colloid Interface Sci 2019; 546:192-210. [PMID: 30921674 DOI: 10.1016/j.jcis.2019.03.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The attachment of single-celled organisms, namely bacteria and fungi, to abiotic surfaces is of great interest to both the scientific and medical communities. This is because the interaction of such cells has important implications in a range of areas, including biofilm formation, biofouling, antimicrobial surface technologies, and bio-nanotechnologies, as well as infection development, control, and mitigation. While central to many biological phenomena, the factors which govern microbial surface attachment are still not fully understood. This lack of understanding is a direct consequence of the complex nature of cell-surface interactions, which can involve both specific and non-specific interactions. For applications involving micro- and nano-structured surfaces, developing an understanding of such phenomenon is further complicated by the diverse nature of surface architectures, surface chemistry, variation in cellular physiology, and the intended technological output. These factors are extremely important to understand in the emerging field of antibacterial nanostructured surfaces. The aim of this perspective is to re-frame the discussion surrounding the mechanism of nanostructured-microbial surface interactions. Broadly, the article reviews our current understanding of these phenomena, while highlighting the knowledge gaps surrounding the adhesive forces which govern bacterial-nanostructure interactions and the role of cell membrane rigidity in modulating surface activity. The roles of surface charge, cell rigidity, and cell-surface adhesion force in bacterial-surface adsorption are discussed in detail. Presently, most studies have overlooked these areas, which has left many questions unanswered. Further, this perspective article highlights the numerous experimental issues and misinterpretations which surround current studies of antibacterial nanostructured surfaces.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia.
| | - James Chapman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Amy Gelmi
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Daniel Cozzolino
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
23
|
Cheng Y, Feng G, Moraru CI. Micro- and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review. Front Microbiol 2019; 10:191. [PMID: 30846973 PMCID: PMC6393346 DOI: 10.3389/fmicb.2019.00191] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
Bacterial attachment to material surfaces can lead to the development of biofilms that cause severe economic and health problems. The outcome of bacterial attachment is determined by a combination of bacterial sensing of material surfaces by the cell and the physicochemical factors in the near-surface environment. This paper offers a systematic review of the effects of surface topography on a range of antifouling mechanisms, with a focus on how topographical scale, from micro- to nanoscale, may influence bacterial sensing of and attachment to material surfaces. A good understanding of these mechanisms can facilitate the development of antifouling surfaces based on surface topography, with applications in various sectors of human life and activity including healthcare, food, and water treatment.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | | - Carmen I. Moraru
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
24
|
De France KJ, Babi M, Vapaavuori J, Hoare T, Moran-Mirabal J, Cranston ED. 2.5D Hierarchical Structuring of Nanocomposite Hydrogel Films Containing Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6325-6335. [PMID: 30668100 DOI: 10.1021/acsami.8b16232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although two-dimensional hydrogel thin films have been applied across many biomedical applications, creating higher dimensionality structured hydrogel interfaces would enable potentially improved and more biomimetic hydrogel performance in biosensing, bioseparations, tissue engineering, drug delivery, and wound healing applications. Herein, we present a new and simple approach to control the structure of hydrogel thin films in 2.5D. Hybrid suspensions containing cellulose nanocrystals (CNCs) and aldehyde- or hydrazide-functionalized poly(oligoethylene glycol methacrylate) (POEGMA) were spin-coated onto prestressed polystyrene substrates to form cross-linked hydrogel thin films. The films were then structured via thermal shrinking, with control over the direction of shrinking leading to the formation of biaxial, uniaxial, or hierarchical wrinkles. Notably, POEGMA-only hydrogel thin films (without CNCs) did not form uniform wrinkles due to partial dewetting from the substrate during shrinking. Topographical feature sizes of CNC-POEGMA films could be tuned across 2 orders of magnitude (from ∼300 nm to 20 μm) by varying the POEGMA concentration, the length of poly(ethylene glycol) side chains in the polymer, and/or the overall film thickness. Furthermore, by employing adhesive masks during the spin-coating process, structured films with gradient wrinkle sizes can be fabricated. This precise control over both wrinkle size and wrinkle topography adds a level of functionality that to date has been lacking in conventional hydrogel networks.
Collapse
Affiliation(s)
- Kevin J De France
- Department of Chemical Engineering , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4L8 , Canada
| | - Mouhanad Babi
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4M1 , Canada
| | - Jaana Vapaavuori
- Department of Chemistry , University of Montreal , C.P. 6128 Succursale Centre-ville , Montreal , QC H3C 3J7 , Canada
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4L8 , Canada
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4M1 , Canada
| | - Emily D Cranston
- Department of Chemical Engineering , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4L8 , Canada
- Department of Wood Science , University of British Columbia , 2424 Main Mall , Vancouver , BC V6T 1Z4 , Canada
- Department of Chemical and Biological Engineering , University of British Columbia , 2360 East Mall , Vancouver , BC V6T 1Z3 , Canada
| |
Collapse
|
25
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Characterization of Pseudomonas aeruginosa Films on Different Inorganic Surfaces before and after UV Light Exposure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10806-10815. [PMID: 30122052 DOI: 10.1021/acs.langmuir.8b02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The changes of the surface properties of Au, GaN, and SiO x after UV light irradiation were used to actively influence the process of formation of Pseudomonas aeruginosa films. The interfacial properties of the substrates were characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The changes in the P. aeruginosa film properties were accessed by analyzing adhesion force maps and quantifying the intracellular Ca2+ concentration. The collected analysis indicates that the alteration of the inorganic materials' surface chemistry can lead to differences in biofilm formation and variable response from P. aeruginosa cells.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Dennis R LaJeunesse
- Joint School of Nanoscience and Nanoengineering , University of North Carolina-Greensboro and North Carolina A&T State University , Greensboro , North Carolina 27401 , United States
| | - Ramon Collazo
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Albena Ivanisevic
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|