1
|
Li Y, Cai Z, Gu J, Chen J, Zhang Y. Naphthalimide-based Functional Glycopolymeric Nanoparticles as Fluorescent Probes for Selective Imaging of Tumor Cells. Chemistry 2024; 30:e202304165. [PMID: 38246871 DOI: 10.1002/chem.202304165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
A series of functional glycopolymer nanoparticles with 1,8-naphthalimide motif was designed, synthesized and applied for tumor cell imaging. With the pH-sensitive and aggregation-induced emission (AIE) effect of the 1,8-naphthalimide fluorescent probe, the presence of glucose-based glycopolymers enhanced its water-solubility and biocompatibility. Owing to the dual tumor-targeting effects of the dense glucose part and the boronic ester modification, the obtained glycopolymers showed high affinity to tumor cells, with a much faster staining rate than normal cells, indicating a great potential for diagnosis and treatments of cancers.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Zhi Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
2
|
Yadav AK, Zhao Z, Weng Y, Gardner SH, Brady CJ, Pichardo Peguero OD, Chan J. Hydrolysis-Resistant Ester-Based Linkers for Development of Activity-Based NIR Bioluminescence Probes. J Am Chem Soc 2023; 145:1460-1469. [PMID: 36603103 PMCID: PMC10120059 DOI: 10.1021/jacs.2c12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activity-based sensing (ABS) probes equipped with a NIR bioluminescence readout are promising chemical tools to study cancer biomarkers owing to their high sensitivity and deep tissue compatibility. Despite the demand, there is a dearth of such probes because NIR substrates (e.g., BL660 (a NIR luciferin analog)) are not equipped with an appropriate attachment site for ABS trigger installation. For instance, our attempts to mask the carboxylic acid moiety with standard self-immolative benzyl linkers resulted in significant background signals owing to undesirable ester hydrolysis. In this study, we overcame this longstanding challenge by rationally designing a new hydrolysis-resistant ester-based linker featuring an isopropyl shielding arm. Compared to the parent, the new design is 140.5-fold and 67.8-fold more resistant toward spontaneous and esterase-mediated hydrolysis, respectively. Likewise, we observed minimal cleavage of the ester moiety when incubated with a panel of enzymes possessing ester-hydrolyzing activity. These impressive in vitro results were corroborated through a series of key experiments in live cells. Further, we showcased the utility of this technology by developing the first NIR bioluminescent probe for nitroreductase (NTR) activity and applied it to visualize elevated NTR expression in oxygen deficient lung cancer cells and in a murine model of non-small cell lung cancer. The ability to monitor the activity of this key biomarker in a deep tissue context is critical because it is associated with tumor hypoxia, which in turn is linked to drug resistance and aggressive cancer phenotypes.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yourong Weng
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catharine J Brady
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Oliver D Pichardo Peguero
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Shanmughan A, Raja Lakshmi P, Umadevi D, Shanmugaraju S. Discriminative fluorescent sensing of nitro-antibiotics at ppb level using N-phenyl-amino-1,8-naphthalimides chemosensors. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
4
|
Le TN, Lin CJ, Shen YC, Lin KY, Lee CK, Huang CC, Rao NV. Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:8325-8332. [PMID: 35005953 DOI: 10.1021/acsabm.1c00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) is conjugated with BHQ3 moiety with azo bonds to prepare hypoxia-responsive polymer conjugate. Because of the amphiphilic nature, the polymer conjugate self-assembles to HA-BHQ3 nanoparticles (NPs). The anticancer drug doxorubicin (DOX) is loaded into the NPs. In the physiological environment, DOX is released slowly. In contrast, under hypoxic conditions, the azo bond in BHQ3 is cleaved, thus significantly enhancing the DOX release rate. For instance, after 24 h, 25% of DOX is released under normal conditions, while 74% of DOX is released under hypoxic conditions. In vitro cytotoxicity demonstrates higher toxicity in the hypoxic conditions. DOX@HA-BHQ3 NPs exhibit greater toxicity levels against 4T1 cells in hypoxic conditions. The fluorescent microscope images confirm the oxygen-dependent intracellular DOX release from the NPs. The in vivo biodistribution results suggest the tumor targetability of HA-BHQ3 NPs in 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yen Chen Shen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Kuan-Yu Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - N Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| |
Collapse
|
5
|
Kumari R, R. V, Sunil D, N. V. AK, Ningthoujam RS, Pandey BN, D. Kulkarni S, Varadavenkatesan T, Venkatachalam G. Dinitro Derivative of Naphthalimide as a Fluorescent Probe for Tumor Hypoxia Imaging. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2009525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vasumathy R.
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anil Kumar N. V.
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Badri Narain Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Suresh D. Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, India
| |
Collapse
|
6
|
Kotowicz S, Korzec M, Malarz K, Krystkowska A, Mrozek-Wilczkiewicz A, Golba S, Siwy M, Maćkowski S, Schab-Balcerzak E. Luminescence and Electrochemical Activity of New Unsymmetrical 3-Imino-1,8-naphthalimide Derivatives. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5504. [PMID: 34639899 PMCID: PMC8509721 DOI: 10.3390/ma14195504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
A new series of 1,8-naphtalimides containing an imine bond at the 3-position of the naphthalene ring was synthesized using 1H, 13C NMR, FTIR, and elementary analysis. The impact of the substituent in the imine linkage on the selected properties and bioimaging of the synthesized compounds was studied. They showed a melting temperature in the range of 120-164 °C and underwent thermal decomposition above 280 °C. Based on cyclic and differential pulse voltammetry, the electrochemical behavior of 1,8-naphtalimide derivatives was evaluated. The electrochemical reduction and oxidation processes were observed. The compounds were characterized by a low energy band gap (below 2.60 eV). Their photoluminescence activities were investigated in solution considering the solvent effect, in the aggregated and thin film, and a mixture of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt.%). They demonstrated low emissions due to photoinduced electron transport (PET) occurring in the solution and aggregation, which caused photoluminescence quenching. Some of them exhibited light emission as thin films. They emitted light in the range of 495 to 535 nm, with photoluminescence quantum yield at 4%. Despite the significant overlapping of its absorption range with emission of the PVK:PBD, incomplete Förster energy transfer from the matrix to the luminophore was found. Moreover, its luminescence ability induced by external voltage was tested in the diode with guest-host configuration. The possibility of compound hydrolysis due to the presence of the imine bond was also discussed, which could be of importance in biological studies that evaluate 3-imino-1,8-naphatalimides as imaging tools and fluorescent materials for diagnostic applications and molecular bioimaging.
Collapse
Affiliation(s)
- Sonia Kotowicz
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Mateusz Korzec
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Aleksandra Krystkowska
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Sylwia Golba
- Institute of Materials Science, University of Silesia, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland;
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland;
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland;
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland;
| |
Collapse
|
7
|
Georgiev NI, Bryaskova RG, Ismail SR, Philipova ND, Uzunova VP, Bakov VV, Tzoneva RD, Bojinov VB. Aggregation induced emission in 1,8-naphthalimide embedded nanomicellar architecture as a platform for fluorescent ratiometric pH-probe with biomedical applications. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Kumari R, R V, Sunil D, Ningthoujam RS, Pandey BN, Kulkarni SD, Varadavenkatesan T, Venkatachalam G, V AKN. A Nitronaphthalimide Probe for Fluorescence Imaging of Hypoxia in Cancer Cells. J Fluoresc 2021; 31:1665-1673. [PMID: 34383168 PMCID: PMC8545720 DOI: 10.1007/s10895-021-02800-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
The bioreductive enzymes typically upregulated in hypoxic tumor cells can be targeted for developing diagnostic and drug delivery applications. In this study, a new fluorescent probe 4-(6-nitro-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)benzaldehyde (NIB) based on a nitronaphthalimide skeleton that could respond to nitroreductase (NTR) overexpressed in hypoxic tumors is designed and its application in imaging tumor hypoxia is demonstrated. The docking studies revealed favourable interactions of NIB with the binding pocket of NTR-Escherichia coli. NIB, which is synthesized through a simple and single step imidation of 4-nitro-1,8-naphthalic anhydride displayed excellent reducible capacity under hypoxic conditions as evidenced from cyclic voltammetry investigations. The fluorescence measurements confirmed the formation of identical products (NIB-red) during chemical as well as NTR-aided enzymatic reduction in the presence of NADH. The potential fluorescence imaging of hypoxia based on NTR-mediated reduction of NIB is confirmed using in-vitro cell culture experiments using human breast cancer (MCF-7) cells, which displayed a significant change in the fluorescence colour and intensity at low NIB concentration within a short incubation period in hypoxic conditions.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vasumathy R
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Suresh D Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, 630003, Tamil Nadu, India
| | - Anil Kumar N V
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
9
|
Phan TH, Divakarla SK, Yeo JH, Lei Q, Tharkar P, Pansani TN, Leslie KG, Tong M, Coleman VA, Jämting Å, Du Plessis MD, New EJ, Kalionis B, Demokritou P, Woo HK, Cho YK, Chrzanowski W. New Multiscale Characterization Methodology for Effective Determination of Isolation-Structure-Function Relationship of Extracellular Vesicles. Front Bioeng Biotechnol 2021; 9:669537. [PMID: 34164385 PMCID: PMC8215393 DOI: 10.3389/fbioe.2021.669537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been lauded as next-generation medicines, but very few EV-based therapeutics have progressed to clinical use. Limited clinical translation is largely due to technical barriers that hamper our ability to mass produce EVs, i.e., to isolate, purify, and characterize them effectively. Technical limitations in comprehensive characterization of EVs lead to unpredicted biological effects of EVs. Here, using a range of optical and non-optical techniques, we showed that the differences in molecular composition of EVs isolated using two isolation methods correlated with the differences in their biological function. Our results demonstrated that the isolation method determines the composition of isolated EVs at single and sub-population levels. Besides the composition, we measured for the first time the dry mass and predicted sedimentation of EVs. These parameters were likely to contribute to the biological and functional effects of EVs on single cell and cell cultures. We anticipate that our new multiscale characterization approach, which goes beyond traditional experimental methodology, will support fundamental understanding of EVs as well as elucidate the functional effects of EVs in in vitro and in vivo studies. Our findings and methodology will be pivotal for developing optimal isolation methods and establishing EVs as mainstream therapeutics and diagnostics. This innovative approach is applicable to a wide range of sectors including biopharma and biotechnology as well as to regulatory agencies.
Collapse
Affiliation(s)
- Thanh Huyen Phan
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Shiva Kamini Divakarla
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Jia Hao Yeo
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Qingyu Lei
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Priyanka Tharkar
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Taisa Nogueira Pansani
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, UNESP-Universidade Estadual Paulista, Araraquara, Brazil
| | - Kathryn G Leslie
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Maggie Tong
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Victoria A Coleman
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Åsa Jämting
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Mar-Dean Du Plessis
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, Faculty of Science, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Bill Kalionis
- Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, and Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Hyun-Kyung Woo
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Wojciech Chrzanowski
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
10
|
|
11
|
Trinh N, Jolliffe KA, New EJ. Dual-Functionalisation of Fluorophores for the Preparation of Targeted and Selective Probes. Angew Chem Int Ed Engl 2020; 59:20290-20301. [PMID: 32662086 DOI: 10.1002/anie.202007673] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/09/2023]
Abstract
A key current challenge in biological research is the elucidation of the that roles chemicals and chemical reactions play in cellular function and dysfunction. Of the available cellular imaging techniques, fluorescence imaging offers a balance between sensitivity and resolution, enabling the cost-effective and rapid visualisation of model biological systems. Importantly, the use of responsive fluorescent probes in conjunction with ever-advancing microscopy and flow cytometry techniques enables the visualisation, with high spatiotemporal resolution, of both specific chemical species and chemical reactions in living cells. Ideal responsive fluorescent probes are those that contain a fluorophore tethered to both a sensing unit, to ensure selectivity of response, and a targeting group, to control the sub-cellular localisation of the probe. To date, probes that are both targeted and selective are relatively rare and most localised probes are discovered serendipitously rather than by design. A challenge in this field is therefore the identification of suitable fluorophore scaffolds that can be readily attached to both sensing and targeting groups. Here we review current strategies for dual-functionalisation of fluorophores, highlighting key examples of targeted, responsive probes.
Collapse
Affiliation(s)
- Natalie Trinh
- School of Chemistry, The University of Sydney, NSW, 2006, Sydney, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Sydney, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Sydney, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Sydney, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW, 2006, Sydney, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Sydney, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Sydney, Australia
| |
Collapse
|
12
|
Trinh N, Jolliffe KA, New EJ. Duale Funktionalisierung von Fluorophoren für die Konstruktion zielgerichteter und selektiver Fluoreszenz‐Sensoren. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Natalie Trinh
- School of Chemistry The University of Sydney NSW 2006 Sydney Australien
| | - Katrina A. Jolliffe
- School of Chemistry The University of Sydney NSW 2006 Sydney Australien
- The University of Sydney Nano Institute (Sydney Nano) The University of Sydney NSW 2006 Sydney Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney NSW 2006 Sydney Australien
| | - Elizabeth J. New
- School of Chemistry The University of Sydney NSW 2006 Sydney Australien
- The University of Sydney Nano Institute (Sydney Nano) The University of Sydney NSW 2006 Sydney Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney NSW 2006 Sydney Australien
| |
Collapse
|
13
|
Adair LD, Trinh N, Vérité PM, Jacquemin D, Jolliffe KA, New EJ. Synthesis of Nitro-Aryl Functionalised 4-Amino-1,8-Naphthalimides and Their Evaluation as Fluorescent Hypoxia Sensors. Chemistry 2020; 26:10064-10071. [PMID: 32428299 DOI: 10.1002/chem.202002088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2020] [Indexed: 01/03/2023]
Abstract
Fluorescent sensors are a vital research tool, enabling the study of intricate cellular processes in a sensitive manner. The design and synthesis of responsive and targeted probes is necessary to allow such processes to be interrogated in the cellular environment. This remains a challenge, and requires methods for functionalisation of fluorophores with multiple appendages for sensing and targeting groups. Methods to synthesise more structurally complex derivatives of fluorophores will expand their potential scope. Most known 4-amino-1,8-naphthalimides are only functionalised at imide and 4-positions, and structural modifications at additional positions will increase the breadth of their utility as responsive sensors. In this work, methods for the incorporation of a hypoxia sensing group to 4-amino-1,8-naphthalimide were evaluated. An intermediate was developed that allowed us to incorporate a sensing group, targeting group, and ICT donor to the naphthalimide core in a modular fashion. Synthetic strategies for attaching the hypoxia sensing group and how they affected the fluorescence of the naphthalimide were evaluated by photophysical characterisation and time-dependent density functional theory. An extracellular hypoxia probe was then rationally designed that could selectively image the hypoxic and necrotic region of tumour spheroids. Our results demonstrate the versatility of the naphthalimide scaffold and expand its utility. This approach to probe design will enable the flexible, efficient generation of selective, targeted fluorescent sensors for various biological purposes.
Collapse
Affiliation(s)
- Liam D Adair
- The University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
| | - Natalie Trinh
- The University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
| | - Pauline M Vérité
- CNRS, CEISAM UMR 6230, Université de Nantes, 44000, Nantes, France
| | - Denis Jacquemin
- CNRS, CEISAM UMR 6230, Université de Nantes, 44000, Nantes, France
| | - Katrina A Jolliffe
- The University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia.,Australian Research Council Centre of Excellence for, Innovations in Peptide and Protein Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia.,Australian Research Council Centre of Excellence for, Innovations in Peptide and Protein Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
14
|
Kim SY, Joglekar MV, Hardikar AA, Phan TH, Khanal D, Tharkar P, Limantoro C, Johnson J, Kalionis B, Chrzanowski W. Placenta Stem/Stromal Cell-Derived Extracellular Vesicles for Potential Use in Lung Repair. Proteomics 2020; 19:e1800166. [PMID: 31318160 DOI: 10.1002/pmic.201800166] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 06/26/2019] [Indexed: 12/28/2022]
Abstract
Many acute and chronic lung injuries are incurable and rank as the fourth leading cause of death globally. While stem cell treatment for lung injuries is a promising approach, there is growing evidence that the therapeutic efficacy of stem cells originates from secreted extracellular vesicles (EVs). Consequently, EVs are emerging as next-generation therapeutics. While EVs are extensively researched for diagnostic applications, their therapeutic potential to promote tissue repair is not fully elucidated. By housing and delivering tissue-repairing cargo, EVs refine the cellular microenvironment, modulate inflammation, and ultimately repair injury. Here, the potential use of EVs derived from two placental mesenchymal stem/stromal cell (MSC) lines is presented; a chorionic MSC line (CMSC29) and a decidual MSC cell line (DMSC23) for applications in lung diseases. Functional analyses using in vitro models of injury demonstrate that these EVs have a role in ameliorating injuries caused to lung cells. It is also shown that EVs promote repair of lung epithelial cells. This study is fundamental to advancing the field of EVs and to unlock the full potential of EVs in regenerative medicine.
Collapse
Affiliation(s)
- Sally Yunsun Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Mugdha V Joglekar
- Islet Biology and Diabetes Group, National Health and Medical Research Council Clinical Trials Center, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - Anandwardhan A Hardikar
- Islet Biology and Diabetes Group, National Health and Medical Research Council Clinical Trials Center, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - Thanh Huyen Phan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Dipesh Khanal
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Priyanka Tharkar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Christina Limantoro
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Jancy Johnson
- Department of Maternal fetal Medicine, Royal Women's Hospital, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bill Kalionis
- Department of Maternal fetal Medicine, Royal Women's Hospital, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
15
|
Kumari R, Sunil D, Ningthoujam RS. Naphthalimides in fluorescent imaging of tumor hypoxia - An up-to-date review. Bioorg Chem 2019; 88:102979. [PMID: 31100616 DOI: 10.1016/j.bioorg.2019.102979] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 01/17/2023]
Abstract
Hypoxia is a distinctive characteristic of advanced solid malignancies that results from a disparity between oxygen supply and its consumption. The degree of hypoxia is believed to have adverse prognostic significance. Therefore detecting cellular hypoxia can potentially offer insights into the grade of tumour as well as its evolution towards a progressive malignant phenotype, which clinically translates to greater metastatic potential and treatment resistance. Fluorescence imaging to visualize hypoxia in biological systems is a minimally-invasive method. Recently there are several reports on interdisciplinary research that aims at developing functional probes that can be efficiently used for non-invasive imaging of hypoxic tumours. Upregulated levels of nitroreductase (NTR) is detected in hypoxic solid malignancies, and this characteristic feature is increasingly utilized in the development of NTR-targeted fluorescent molecules to selectively sense hypoxia in vivo. The present review summarizes various reports published on the design concepts of nitro naphthalimide-based bio-reductive fluorescent sensors that can be applied noninvasively to image hypoxia in cancer.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India.
| | | |
Collapse
|
16
|
Welsh ID, Draper D, Kim J, Kitchen JA, Allison JR. Characterisation of N-(Octadecyl)-1,8-naphthalimide Monolayer Compression Using Molecular Dynamics and Experimental Approaches. Chem Asian J 2019; 14:1221-1229. [PMID: 30663846 DOI: 10.1002/asia.201801736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/22/2018] [Indexed: 11/07/2022]
Abstract
The development of luminescent surfaces is an active area of supramolecular chemistry, particularly for the development of new sensing platforms. One particularly useful surface deposition method is the Langmuir-Blodgett technique where organic amphiphilic fluorophores (e.g. 1,8-naphthalimides) can form ordered monolayers at an air-water interface before being deposited onto solid supports. The ability to simulate monolayer formation and consequently develop predictability over film formation would allow for significant advances in the luminescent materials field where synthesis might be directed by simulation data. Here, we compare pressure-area isotherms of N-(octadecyl)-1,8-naphthalimide determined experimentally, using the Langmuir-Blodgett technique, and computationally, using three different simulation techniques. We find that all three simulation techniques are able to describe the liquid-condensed/liquid-expanded region of the isotherm, and that the isotherms are highly similar in this region, although the NγT ensemble performs best. Experimental isotherms showed film formation properties that align with the simulation data, suggesting that simulations are a viable means to direct synthesis. Investigation of the underlying structural details disclosed by the simulations reveals the compression-induced ordering at atomic-level detail, which will allow prediction of how functionalisation of the naphthalimides will alter the monolayer compression and mounting process.
Collapse
Affiliation(s)
- Ivan D Welsh
- School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland Central, 1010, New Zealand
| | - Daria Draper
- Chemistry, Institute of Natural and Mathematical Sciences, Massey University, Albany Highway, Auckland, 0632, New Zealand
| | - Jaehwan Kim
- Chemistry, Institute of Natural and Mathematical Sciences, Massey University, Albany Highway, Auckland, 0632, New Zealand
| | - Jonathan A Kitchen
- Chemistry, Institute of Natural and Mathematical Sciences, Massey University, Albany Highway, Auckland, 0632, New Zealand
| | - Jane R Allison
- School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland Central, 1010, New Zealand
| |
Collapse
|
17
|
Abstract
The availability of electrons to biological systems underpins the mitochondrial electron transport chain (ETC) that powers living cells. It is little wonder, therefore, that the sufficiency of electron supply is critical to cellular health. Considering mitochondrial redox activity alone, a lack of oxygen (hypoxia) leads to impaired production of adenosine triphosphate (ATP), the major energy currency of the cell, whereas excess oxygen (hyperoxia) is associated with elevated production of reactive oxygen species (ROS) from the interaction of oxygen with electrons that have leaked from the ETC. Furthermore, the redox proteome, which describes the reversible and irreversible redox modifications of proteins, controls many aspects of biological structure and function. Indeed, many major diseases, including cancer and diabetes, are now termed "redox diseases", spurring much interest in the measurement and monitoring of redox states and redox-active species within biological systems. In this Account, we describe recent efforts to develop magnetic resonance (MR) and fluorescence imaging probes for studying redox biology. These two classes of molecular imaging tools have proved to be invaluable in supplementing the structural information that is traditionally provided by MRI and fluorescence microscopy, respectively, with highly sensitive chemical information. Importantly, the study of biological redox processes requires sensors that operate at biologically relevant reduction potentials, which can be achieved by the use of bioinspired redox-sensitive groups. Since oxidation-reduction reactions are so crucial to modulating cellular function and yet also have the potential to damage cellular structures, biological systems have developed highly sophisticated ways to regulate and sense redox changes. There is therefore a plethora of diverse chemical structures in cells with biologically relevant reduction potentials, from transition metals to organic molecules to proteins. These chemical groups can be harnessed in the development of exogenous molecular imaging agents that are well-tuned to biological redox events. To date, small-molecule redox-sensitive tools for oxidative stress and hypoxia have been inspired from four classes of cellular regulators. The redox-sensitive groups found in redox cofactors, such as flavins and nicotinamides, can be used as reversible switches in both fluorescent and MR probes. Enzyme substrates that undergo redox processing within the cell can be modified to provide fluorescence or MR readout while maintaining their selectivity. Redox-active first-row transition metals are central to biological homeostasis, and their marked electronic and magnetic changes upon oxidation/reduction have been used to develop MR sensors. Finally, redox-sensitive amino acids, particularly cysteine, can be utilized in both fluorescent and MR sensors.
Collapse
Affiliation(s)
- Amandeep Kaur
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Havlík M, Talianová V, Kaplánek R, Bříza T, Dolenský B, Králová J, Martásek P, Král V. Versatile fluorophores for bioimaging applications: π-expanded naphthalimide derivatives with skeletal and appendage diversity. Chem Commun (Camb) 2019; 55:2696-2699. [DOI: 10.1039/c8cc09638d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel fluorescent cores bearing a transformable functional group based on a π-expanded naphthalimide including a fused pyranone or furan ring have been prepared.
Collapse
Affiliation(s)
- Martin Havlík
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
| | - Veronika Talianová
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
| | - Tomáš Bříza
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
| | - Bohumil Dolenský
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
- Czech Republic
| | - Jarmila Králová
- Institute of Molecular Genetics of the Czech Academy of Sciences
- 142 20 Prague
- Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague
- 121 08 Prague
| | - Pavel Martásek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague
- 121 08 Prague
- Czech Republic
| | - Vladimír Král
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
| |
Collapse
|
19
|
COX-2 Inhibition mediated anti-angiogenic activatable prodrug potentiates cancer therapy in preclinical models. Biomaterials 2018; 185:63-72. [PMID: 30223141 DOI: 10.1016/j.biomaterials.2018.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022]
Abstract
Anti-angiogenesis, i.e., blocking the angiogenic pathway, has been considered as an important component in current cancer therapeutic modalities. However, the associated benefits have proven to be modest as tumor angiogenesis and regrowth persist, probably due to other ill-defined complex angiogenic mechanisms. Herein, we developed an indomethacin (IMC) incorporating system to mediate hypoxia responsive prodrug (TA) and diagnostic agent (DA) in cancer theranostic applications. Cyclooxygenase 2 (COX-2) elevated expression in several cancer types is closely associated with severe tumor supporting vascularization factors. Our strategy utilizing COX-2 inhibition augmented the anti-angiogenetic induced hypoxia responsive prodrug activation well. Both in vitro and in vivo results proved that DA and TA exhibited specificity towards COX-2 positive (+ve) HeLa and A549 cancer cell lines and activation under hypoxic conditions. Compared with controls (R1, and anticancer drug SN-38), TA displayed prolonged tumor retention and enhanced therapeutic efficacy in xenograft mouse models at a reduced dosage. Our results significantly highlighted the importance of COX-2 blockade mediated anti-angiogenesis in complementing the hypoxia-responsive drug delivery systems (DDSs) and could to beneficial for the rapid development of more efficacious antitumor therapeutics.
Collapse
|
20
|
Leslie KG, Jacquemin D, New EJ, Jolliffe KA. Expanding the Breadth of 4-Amino-1,8-naphthalimide Photophysical Properties through Substitution of the Naphthalimide Core. Chemistry 2018; 24:5569-5573. [DOI: 10.1002/chem.201705546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 01/18/2023]
Affiliation(s)
| | - Denis Jacquemin
- Laboratoire CEISAM, UMR CNRS 6230; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
- Institut Universitaire de France; 1 rue Descartes 75231 Paris Cedex 05 France
| | - Elizabeth J. New
- School of Chemistry; The University of Sydney; 2006 NSW Australia
| | | |
Collapse
|