1
|
Frizon TEA, Salla CAM, Grillo F, Rodembusch FS, Câmara VS, Silva HC, Zapp E, Junca E, Galetto FZ, de Costa AM, Pedroso GJ, Chepluki AA, Saba S, Rafique J. ESIPT-based benzazole-pyromellitic diimide derivatives. A thermal, electrochemical, and photochemical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122050. [PMID: 36495682 DOI: 10.1016/j.saa.2022.122050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
This study describes the synthesis of new pyromellitic diimide (PMDI) derivatives obtained in good yields from the reaction between pyromellitic dianhydride and aminobenzazoles reactive to proton-transfer in the excited state (ESIPT). In this investigation, a non-ESIPT PMDI was also prepared for comparison. These compounds presented absorption maxima in the ultraviolet region attributed to the allowed 1π-π* electronic transitions. Redshifted absorptions were observed for the ESIPT compounds (3b-3c) due to their π-extended conjugation if compared to the non-ESIPT dye (3a). The compounds presented fluorescence emissions between 300 and 600 nm, dependent on the solvent polarity and their chemical structures. While compound 3a presents a single emission, a dual fluorescence could be observed for compounds 3b-3c. As expected for ESIPT compounds, the emission at higher energies could be related to the excited enol conformer (E*), and the emission with a large Stokes shift was attributed to the keto tautomer (K*). All compounds presented fluorescence emission in the solid state, whereas the ESIPT derivatives presented redshifted emissions with a large Stokes shift, as expected. Cyclic voltammetry was employed to investigate the electrochemical properties of these compounds. The HOMO and LUMO energy levels were estimated at -5.40 to -5.00 eV and -2.84 to -2.62 eV, and good thermal stability (Td > 150 °C) was observed. Quantum chemical calculationsusingTD-DFT and DFT were performed to investigate the electronic and photophysical features of the molecules.
Collapse
Affiliation(s)
- Tiago E A Frizon
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil.
| | - Cristian A M Salla
- Physics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Grillo
- Department of Materials and Metallurgy, Federal Institute of Espírito Santo, Vitória, ES, Brazil
| | - Fabiano S Rodembusch
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Viktor S Câmara
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique C Silva
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | - Eduardo Junca
- University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fábio Z Galetto
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Angélica M de Costa
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Gabriela J Pedroso
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Antonio A Chepluki
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil; Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
2
|
Shaik S, Reddy Sirigireddy RM, Godugu K, Vemula V, Kakarla RR, Balaraman E, Nallagondu CGR, Aminabhavi TM. SiO 2-supported HClO 4 catalyzed synthesis of (Z)-thiazolylhydrazonoindolin-2-ones and their electrochemical properties. CHEMOSPHERE 2022; 309:136667. [PMID: 36202369 DOI: 10.1016/j.chemosphere.2022.136667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
In this paper, an environmentally benign silica-supported perchloric acid (HClO4-SiO2) catalyzed green FCDR strategy has been developed for the synthesis of (Z)-THIs (6) with high stereospecificity via an intramolecular hydrogen bond (IHB) directed approach, involving the reaction of methyl ketones (1), N-bromosuccinimide (NBS) (2), isatins (4) and thiosemicarbazide (5) in ethanol at reflux temperature for 45-60 min in one-pot. The reaction proceeds through the construction of C-Br (α-bromination), C-S & C-N (heterocyclization), and CN (condensation) bonds in one pot. The absolute structure of the compound (Z)-3-(2-(4-(4-bromophenyl)thiazol-2-yl)hydrazono)indolin-2-one (6e) has been confirmed by single-crystal XRD analysis. Further, the role of IHB on Z-configuration of the synthesized (Z)-THIs is proved by single-crystal XRD and 1H NMR studies. Wide substrate scope, good functional group tolerance, scalability, improved safety since the method circumvents the use of highly lachrymatric α-bromoketones as starting materials, high product yields (up to 98%), short reaction times, reusable solid Brønsted acid catalyst (HClO4-SiO2), and products that do not require column chromatography purification are all attractive features of this FCDR strategy. Electrochemical properties of THIs (6) are examined by cyclic voltammetry. The HOMO and LUMO energy level of THIs, 6a, 6c, 6d, 6j, 6o-6v, 6y, and 6aa are comparable with the reported ambipolar materials, and the HOMO levels of other THIs, 6b, 6e-6i, 6n, 6w, 6x, 6z and 6 ab-6ae are similar with the most commonly used hole transporting materials (HTMs).
Collapse
Affiliation(s)
- Sultana Shaik
- Green and Sustainable Synthetic Organic Chemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Rama Mohana Reddy Sirigireddy
- Green and Sustainable Synthetic Organic Chemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kumar Godugu
- Green and Sustainable Synthetic Organic Chemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Venkatramu Vemula
- Department of Physics, Krishna University Dr. M. R. Appa Row College of PG Studies, Nuzvid, 521 201, Andhra Pradesh, India
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW, 2006, Australia.
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Chinna Gangi Reddy Nallagondu
- Green and Sustainable Synthetic Organic Chemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India.
| |
Collapse
|
3
|
Tang YX, Zhuang SY, Liu JY, Chen XL, Zhou Y, Wu YD, Wu AX. I2-DMSO mediated N1/C5 difunctionalization of anthranils with aryl methyl ketones: A facile access to multicarbonyl compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Zhang D, Liang D, Gu L, Zhang H. Pyrrolopyrrole-Based Aza-BODIPY Small Molecules for Organic Field-Effect Transistors. Front Chem 2022; 10:938353. [PMID: 35832464 PMCID: PMC9271750 DOI: 10.3389/fchem.2022.938353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Diketopyrrolopyrrole (DPP), due to its good planarity, π-conjugate structure, thermal stability, and structural modifiability, has received much attention from the scientific community as an excellent semiconductor material for its applications in the field of optoelectronics, such as organic solar cells, organic photovoltaics, and organic field effect transistors. In this study, a new small molecule, pyrrolopyrrole aza-BODIPY (PPAB), based on the thiophene-substituted DPP structure was developed using the Schiff-base formation reaction of DPP and heteroaromatic amines. Absorption spectroscopy, electrochemistry, X-ray diffraction, molecular theoretical simulation calculation were performed, and organic field-effect transistor properties based on PPAB were investigated. It was found that PPAB exhibits a broad absorption range in the visible and near-infrared regions, which is attributed to its long-range conjugate structure. In addition, it is worth noting that PPAB has multiple F atoms resulting in the low LUMO level, which is conducive to the injection and transportation of charge carriers between the semiconductor layer and the electrode. Meanwhile, its hole carrier mobility is up to 1.3 × 10−3 cm2 V−1 s−1 due to its large conjugate structure, good intramolecular charge transfer effect, and high degree of coplanarity. In this study, a new chromophore with electron-deficient ability for designing high-performance semiconductors was successfully synthesized.
Collapse
Affiliation(s)
- Daohai Zhang
- School of Chemical Engineering of Guizhou Minzu University, Guiyang, China
- *Correspondence: Daohai Zhang, ; Haichang Zhang,
| | - Dongxu Liang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Liang Gu
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Daohai Zhang, ; Haichang Zhang,
| |
Collapse
|
5
|
Bogdanov AV, Mironov VF. Recent advances in the application of isoindigo derivatives in materials chemistry. Beilstein J Org Chem 2021; 17:1533-1564. [PMID: 34290836 PMCID: PMC8275870 DOI: 10.3762/bjoc.17.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, the data on the application of isoindigo derivatives in the chemistry of functional materials are analyzed and summarized. These bisheterocycles can be used in the creation of organic solar cells, sensors, lithium ion batteries as well as in OFET and OLED technologies. The potentials of the use of polymer structures based on isoindigo as photoactive component in the photoelectrochemical reduction of water, as matrix for MALDI spectrometry and in photothermal cancer therapy are also shown. Data published over the past 5 years, including works published at the beginning of 2021, are given.
Collapse
Affiliation(s)
- Andrei V Bogdanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., Kazan 420088, Russian Federation
| | - Vladimir F Mironov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., Kazan 420088, Russian Federation
| |
Collapse
|
6
|
Zou X, Cui S, Li J, Wei X, Zheng M. Diketopyrrolopyrrole Based Organic Semiconductor Materials for Field-Effect Transistors. Front Chem 2021; 9:671294. [PMID: 33937206 PMCID: PMC8080442 DOI: 10.3389/fchem.2021.671294] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 01/27/2023] Open
Abstract
Over the past several decades, organic conjugated materials as semiconductors in organic field effect transistors (OFETs) have attracted more and more attention from the scientific community due to their intriguing properties of mechanical flexibility and solution processability. However, the device fabrication technique, design, and synthesis of novel organic semiconductor materials with high charge carrier mobility is crucial for the development of high-performance OFETs. In the past few years, more and more novel materials were designed and tested in the OFETs. Among which, diketopyrrolopyrrole (DPP) and its derivatives, as the electron acceptors to build donor-acceptor (D-A) typed materials, are the perspective. In this article, recently reported molecules regarding the DPP and its derivatives for OFETs application are reviewed. In addition, the relationship between the chemical structures and the performance of the device are discussed. Furthermore, an outlook of DPP-based materials in OFETs with a future design concept and the development trend are provided.
Collapse
Affiliation(s)
- Xiangyu Zou
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, China
| | - Shuaiwei Cui
- Key Laboratory of Rubber-Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Junqiang Li
- Qingdao Haiwan Science and Technology Industry Research Institute Co., Ltd., Qingdao, China
| | - Xueling Wei
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, China
| | - Meng Zheng
- Key Laboratory of Rubber-Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.,Qingdao Haiwan Science and Technology Industry Research Institute Co., Ltd., Qingdao, China
| |
Collapse
|
7
|
Hagara J, Mrkyvkova N, Feriancová L, Putala M, Nádaždy P, Hodas M, Shaji A, Nádaždy V, Huss-Hansen MK, Knaapila M, Hagenlocher J, Russegger N, Zwadlo M, Merten L, Sojková M, Hulman M, Vlad A, Pandit P, Roth S, Jergel M, Majková E, Hinderhofer A, Siffalovic P, Schreiber F. Novel highly substituted thiophene-based n-type organic semiconductor: structural study, optical anisotropy and molecular control. CrystEngComm 2020. [DOI: 10.1039/d0ce01171a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligothiophenes and their functionalized derivatives have been shown to be a viable option for high-performance organic electronic devices.
Collapse
|