1
|
Tan Z, Ban S, Ahn Y, Ku KH, Kim BJ. Bifunctional additive-driven shape transitions of block copolymer particles through synergistic quaternization and protonation. Chem Sci 2025; 16:6265-6272. [PMID: 40092593 PMCID: PMC11907369 DOI: 10.1039/d5sc00259a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Block copolymer (BCP) particles with tailored shapes and nanostructures hold promise for applications in cell adhesion, photonic system, and energy storage due to their unique optical and rheological properties. Conventional approaches relying on surfactant-mediated self-assembly often limit particle geometries to simple structures. Herein, we present a versatile approach to expand the morphology of poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) BCP particles through the incorporation of 9-bromononanoic acid (BNA), a bifunctional additive that facilitates synergistic quaternization and protonation. Increasing the BNA-to-2VP molar ratio enhances P2VP hydrophilicity and decreases the pH value, driving dramatic shape transitions from onion-like spheres to tulip bulbs, ellipsoids, discs, and Janus cups. This morphological diversity is attributed to synergetic interfacial instability-driven water infiltration and pH-induced repulsion of protonated P2VP chains. Additives with a single functional group, however, yield limited morphologies, such as tulip bulbs or onion-like spheres. Notably, Janus cups fabricated via this strategy exhibit selective cargo-loading capabilities, highlighting the importance of precise control over the internal composition and structure of BCP particles.
Collapse
Affiliation(s)
- Zhengping Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Soohyun Ban
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Younghyeon Ahn
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Wang M, Liu J, Mao X, Deng R, Zhu J. Neutral Interface Directed 3D Confined Self-Assembly of Block Copolymer: Anisotropic Patterned Particles with Ordered Structures. Chemistry 2025; 31:e202403787. [PMID: 39574397 DOI: 10.1002/chem.202403787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 02/04/2025]
Abstract
Three-dimensional confined self-assembly (3D-CSA) of block copolymers (BCPs) is a distinctive and robust strategy that can yield colloidal polymer particles boasting ordered internal structures and diverse morphologies. The unique advantage of neutral interface lies in its ability to create anisotropic particles with surface patterns. The resulting unique polymer particles exhibit deformability under swelling, coupled with excellent spreadability and optical properties. These particles can also be used for fabrication of anisotropic nanoobjects or mesoporous particles via disassembly or serving as templates. This review comprehensively outlines the research advancements in neutral interface-guided 3D-CSA systems, including surfactant engineering, internal structure control, properties and future possibilities of anisotropic patterned particles.
Collapse
Affiliation(s)
- Mian Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingye Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xi Mao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Renhua Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Sun M, Chen W, Qin L, Xie XM. The Effect of Colloidal Nanoparticles on Phase Separation of Block and Heteroarm Star Copolymers Confined between Polymer Brushes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:804. [PMID: 38399056 PMCID: PMC10890131 DOI: 10.3390/ma17040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
The effect of colloidal nanoparticles on the phase changes of the amphiphilic AB linear diblock, A1A2B, and A2B heteroarm star copolymers confined between two polymer brush substrates was investigated by using a real-space self-consistent field theory. By changing the concentrations of nanoparticles and polymer brushes, the phase structure of the amphiphilic AB copolymer transforms from lamellar to core-shell hexagonal phase to cylinder phase. The pattern of A2B heteroarm star copolymer changes from core-shell hexagonal phases to lamellar phases and the layer decreases when increasing the density of the polymer brushes. The results showed that the phase behavior of the system is strongly influenced by the polymer brush architecture and the colloidal nanoparticle numbers. The colloidal nanoparticles and the soft confined surface of polymer brushes make amphiphilic AB copolymers easier to form ordered structures. The dispersion of the nanoparticles was also investigated in detail. The soft surfaces of polymer brushes and the conformation of the block copolymers work together to force the nanoparticles to disperse evenly. It will give helpful guidance for making some new functional materials by nano etching technology, nano photoresist, and nanoprinting.
Collapse
Affiliation(s)
- Minna Sun
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China;
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenyu Chen
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
| | - Lei Qin
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China;
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
| | - Xu-Ming Xie
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Han WC, Kim YB, Lee YJ, Kim DS. Exploring multiphase liquid crystal polymeric droplets created by a partial phase-separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Zhang Q, Lu M, Wu H, Zhang L, Feng X, Jin Z. Formation and Transformation of Polystyrene- block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12441-12449. [PMID: 36196878 DOI: 10.1021/acs.langmuir.2c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD-TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD-TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Mengfan Lu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai201620, China
| | - Lu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai201620, China
| | - Zhaoxia Jin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
6
|
Navarro L, Thünemann AF, Yokosawa T, Spiecker E, Klinger D. Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post-Assembly Control of Colloidal Features. Angew Chem Int Ed Engl 2022; 61:e202208084. [PMID: 35790063 PMCID: PMC9544770 DOI: 10.1002/anie.202208084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/24/2022]
Abstract
Post-assembly modifications are efficient tools to adjust colloidal features of block copolymer (BCP) particles. However, existing methods often address particle shape, morphology, and chemical functionality individually. For simultaneous control, we transferred the concept of seeded polymerization to phase separated BCP particles. Key to our approach is the regioselective polymerization of (functional) monomers inside specific BCP domains. This was demonstrated in striped PS-b-P2VP ellipsoids. Here, polymerization of styrene preferably occurs in PS domains and increases PS lamellar thickness up to 5-fold. The resulting asymmetric lamellar morphology also changes the particle shape, i.e., increases the aspect ratio. Using 4-vinylbenzyl azide as co-monomer, azides as chemical functionalities can be added selectively to the PS domains. Overall, our simple and versatile method gives access to various multifunctional BCP colloids from a single batch of pre-formed particles.
Collapse
Affiliation(s)
- Lucila Navarro
- Institute of PharmacyFreie Universität BerlinKönigin-Luise Straße 2–414195BerlinGermany
| | - Andreas F. Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM)Unter den Eichen 8712205BerlinGermany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research (IMN) &Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNFCauerstraße 391058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) &Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNFCauerstraße 391058ErlangenGermany
| | - Daniel Klinger
- Institute of PharmacyFreie Universität BerlinKönigin-Luise Straße 2–414195BerlinGermany
| |
Collapse
|
7
|
Navarro L, Thünemann AF, Yokosawa T, Spiecker E, Klinger D. Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post‐Assembly Control of Colloidal Features. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucila Navarro
- Freie Universitat Berlin Biology, Chemistry, Pharmacy GERMANY
| | - Andreas F. Thünemann
- Bundesanstalt fur Materialforschung und -prufung Division 6.5 Synthesis and Scattering of Nanostructure GERMANY
| | - Tadahiro Yokosawa
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM) GERMANY
| | - Erdmann Spiecker
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM) GERMANY
| | - Daniel Klinger
- Freie Universitat Berlin Biology, Chemistry, Pharmacy Königin-Luise-Str. 2-4 14195 Berlin GERMANY
| |
Collapse
|
8
|
Navarro L, Thünemann AF, Klinger D. Solvent Annealing of Striped Ellipsoidal Block Copolymer Particles: Reversible Control over Lamellae Asymmetry, Aspect Ratio, and Particle Surface. ACS Macro Lett 2022; 11:329-335. [PMID: 35575365 DOI: 10.1021/acsmacrolett.1c00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solvent annealing is a versatile tool to adjust the shape and morphology of block copolymer (BCP) particles. During this process, polar solvents are often used for block-selective swelling. However, such water-miscible solvents can induce (partial) solubilization of one block in the surrounding aqueous medium, thus, causing complex structural variations and even particle disassembly. To reduce the complexity in morphology control, we focused on toluene as a nonpolar polystyrene-selective solvent for the annealing of striped polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) ellipsoids. The selective stretching of PS chains produces unique asymmetric lamellae structures, which translate to an increase in the particle aspect ratio after toluene evaporation. Complete reversibility is achieved by changing to chloroform as a nonselective solvent. Moreover, surfactants can be used to tune block-selective wetting of the particle surface during the annealing; for example, a PS shell can protect the internal lamellae structure from disassembly. Overall, this versatile postassembly process enables the tailoring of the structural features of striped colloidal ellipsoids by only using commercial BCPs and solvents.
Collapse
Affiliation(s)
- Lucila Navarro
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise Straße 2-4, 14195Berlin, Germany
| | - Andreas F. Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205Berlin, Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise Straße 2-4, 14195Berlin, Germany
| |
Collapse
|
9
|
Kim EJ, Shin JJ, Lee GS, Kim S, Park S, Park J, Choe Y, Lee D, Choi J, Bang J, Kim YH, Li S, Hur SM, Kim JG, Kim BJ. Synthesis and Self-Assembly of Poly(vinylpyridine)-Containing Brush Block Copolymers: Combined Synthesis of Grafting-Through and Grafting-to Approaches. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeman J. Shin
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sejong Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Juhae Park
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeojin Choe
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dahye Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwoong Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Hun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Mi Hur
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Ku KH. Responsive Nanostructured Polymer Particles. Polymers (Basel) 2021; 13:273. [PMID: 33467649 PMCID: PMC7829942 DOI: 10.3390/polym13020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Responsive polymer particles with switchable properties are of great importance for designing smart materials in various applications. Recently, the self-assembly of block copolymers (BCPs) and polymer blends within evaporative emulsions has led to advances in the shape-controlled synthesis of polymer particles. Despite extensive recent progress on BCP particles, the responsive shape tuning of BCP particles and their applications have received little attention. This review provides a brief overview of recent approaches to developing non-spherical polymer particles from soft evaporative emulsions based on the physical principles affecting both particle shape and inner structure. Special attention is paid to the stimuli-responsive, shape-changing nanostructured polymer particles, i.e., design of polymers and surfactant pairs, detailed experimental results, and their applications, including the state-of-the-art progress in this field. Finally, the perspectives on current challenges and future directions in this research field are presented, including the development of surfactants with higher reversibility to multiple stimuli and polymers with unique structural functionality, and diversification of polymer architectures.
Collapse
Affiliation(s)
- Kang Hee Ku
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
11
|
Zhang M, Hou Z, Wang H, Zhang L, Xu J, Zhu J. Shaping Block Copolymer Microparticles by pH-Responsive Core-Cross-Linked Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:454-460. [PMID: 33373522 DOI: 10.1021/acs.langmuir.0c03099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Block copolymer microparticles with controllable morphology have drawn widespread attention owing to their promising applications in photonic materials, energy storage, and other areas. Hence, it is highly desired to achieve a controllable transformation of microparticle morphology. In this work, we report a simple method to shape the morphology of polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) microparticles, by employing core-cross-linked polymeric nanoparticles (CNPs) as cosurfactants which are synthesized through cross-linking P4VP segment of PS-block-poly(4-vinylpyridine) (PS-b-P4VP). The addition of pH-responsive CNPs makes the shape of pH-inert PS-b-PDMS microparticles sensitive to pH value. The PS-b-PDMS microparticles transformed from elongated Janus pupa-like particles to onion-like particles by decreasing the pH value of the aqueous phase. The deformation mechanism is investigated by changing pH value, the weight fraction of CNPs, and surfactant property. This study provides a facile strategy to deform microparticles of pH-inert BCPs by tuning pH value, which is anticipated to be applicable to other non-pH-responsive BCP microparticles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zaiyan Hou
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Huiying Wang
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jiangping Xu
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
12
|
Deng R, Zheng L, Mao X, Li B, Zhu J. Transformable Colloidal Polymer Particles with Ordered Internal Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006132. [PMID: 33373115 DOI: 10.1002/smll.202006132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Based on studies combining experiments and simulations, internally ordered colloidal particles that are able to undergo morphological transformations both in shape and internal structure are presented. The particles are prepared by emulsion solvent evaporation-induced 3D soft confined assembly of di-block copolymer polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP). Control over the solvent selectivity leads to a dramatic change in shape and internal structure for particles. Pupa-like particles of lamellar morphology are obtained when using a non-selective solvent, while patchy particles possessing a plum pudding structure formed when the solvent is selective for PS-block. More interestingly, 3D soft confined annealing drives order-order morphological transformation of the particles. The morphology of reshaped particles can be well controlled by varying the solvent selectivity, annealing time, and interfacial interaction. The experimental results can be explained based on simulations. This study can offer considerable scope for the design of new stimuli-responsive colloidal particles for potential applications in photonic crystal, drug delivery and release, sensor and smart coating, etc.
Collapse
Affiliation(s)
- Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lingfei Zheng
- School of Physics and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Baohui Li
- School of Physics and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
13
|
Shin JJ. Effect of Site-Specific Functionalization on the Shape of Nonspherical Block Copolymer Particles. Polymers (Basel) 2020; 12:E2804. [PMID: 33256239 PMCID: PMC7760798 DOI: 10.3390/polym12122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 10/26/2022] Open
Abstract
Shape-anisotropic polymeric colloids having chemically distinct compartments are promising materials, however, introducing site-specific surface functionality to block copolymer (BCP) particles has not yet been actively investigated. The current contribution demonstrates the selective surface functionalization of nanostructured, ellipsoidal polystyrene-b-polybutadiene (PS-b-PB) particle and investigate their effects on the particle shape. Photo-induced thiol-ene click reaction was used as a selective functionalization chemistry for modifying the PB block, which was achieved by controlling the feed ratio of functional thiols to the double bonds in PB. Importantly, the controlled particle elongation was observed as a function of the degree of PB functionalization. Such an increase in the aspect ratio is attributed to the (i) increased incompatibility of the PS and modified PB block and (ii) the reduced surface tension between the particles and surrounding aqueous medium, both of which contributes to the further elongation of ellipsoids. Further tunability of the elongation behavior of ellipsoids was further demonstrated by controlling the particle size and chemical structure of functional thiols, showing the versatility of this approach for controlling the particle shape. Finally, the utility of surface functionality was demonstrated by the facile complexation of fluorescent dye on the modified surface of the particle via favorable interaction, which showed stable fluorescence and colloidal dispersity.
Collapse
Affiliation(s)
- Jaeman J Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
14
|
Lee S, Shin JJ, Ku KH, Lee YJ, Jang SG, Yun H, Kim BJ. Interfacial Instability-Driven Morphological Transition of Prolate Block Copolymer Particles: Striped Football, Larva to Sphere. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Seonghan Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- ENF Technology, Yongin 17084, Republic of Korea
| | - Jaeman J. Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Hongseok Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Shin JJ, Kim EJ, Ku KH, Lee YJ, Hawker CJ, Kim BJ. 100th Anniversary of Macromolecular Science Viewpoint: Block Copolymer Particles: Tuning Shape, Interfaces, and Morphology. ACS Macro Lett 2020; 9:306-317. [PMID: 35648552 DOI: 10.1021/acsmacrolett.0c00020] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Confined assembly of block copolymers (BCPs) is receiving increasing attention due to the ability to create unconventional morphologies that cannot be observed in the corresponding bulk systems. This effect is further driven by the simplicity and versatility of these procedures for controlling the shape of particles prepared by 3D soft confinement of BCPs in emulsions. By taking advantage of a mobile emulsion interface, the one-step formation of nonspherical BCP particles through spontaneous deformation is possible with design principles and theoretical models for controlling shape/nanostructure now being established. This Viewpoint highlights strategies for shape tuning of BCP particles, currently accessible shapes, their controllability, and potential application. The emergence of 3D soft confinement of BCPs and related theory is overviewed with a focus on current strategies, types of nonspherical shapes achieved, and structure-property relationships for nonspherical BCP particles. Finally, the applications and future perspectives for these materials are discussed.
Collapse
Affiliation(s)
- Jaeman J. Shin
- Materials Research Laboratory, University of California−Santa Barbara, Santa Barbara, California 93106, United States
| | | | | | | | - Craig J. Hawker
- Materials Research Laboratory, University of California−Santa Barbara, Santa Barbara, California 93106, United States
| | | |
Collapse
|
16
|
|
17
|
Hamilton HSC, Bradley LC. Probing the morphology evolution of chemically anisotropic colloids prepared by homopolymerization- and copolymerization-induced phase separation. Polym Chem 2020. [DOI: 10.1039/c9py01166h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemically anisotropic colloids prepared by polymerization-induced phase separation during seeded emulsion polymerization with non-crosslinked seeds reveals tunability in both surface and interior properties based on the morphology evolution.
Collapse
Affiliation(s)
- Heather S. C. Hamilton
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| | - Laura C. Bradley
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
18
|
Man Y, Li X, Li S, Yang Z, Lee YI, Liu HG. Effects of hydrophobic/hydrophilic blocks ratio on PS-b-PAA self-assembly in solutions, in emulsions, and at the interfaces. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Wang X, Liu S, Cao S, Han F, Wang H, Chen H. Tandem Self-Assembly of Block Copolymer: From Vesicles to Stacked Bowls. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaoqing Wang
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Songlin Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shida Cao
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fei Han
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hong Wang
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hongyu Chen
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
20
|
Lee J, Ku KH, Kim J, Lee YJ, Jang SG, Kim BJ. Light-Responsive, Shape-Switchable Block Copolymer Particles. J Am Chem Soc 2019; 141:15348-15355. [DOI: 10.1021/jacs.9b07755] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Junhyuk Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
21
|
Affiliation(s)
- Xiaolian Qiang
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - Ramzi Chakroun
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - Nicole Janoszka
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - André H. Gröschel
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| |
Collapse
|
22
|
Man Y, Li S, Diao Q, Lee YI, Liu HG. PS-b-PAA/Cu two-dimensional nanoflowers fabricated at the liquid/liquid interface: A highly active and robust heterogeneous catalyst. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Zheng L, Wang Z, Yin Y, Jiang R, Li B. Formation Mechanisms of Porous Particles from Self-Assembly of Amphiphilic Diblock Copolymers inside an Oil-in-Water Emulsion Droplet upon Solvent Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5902-5910. [PMID: 30950621 DOI: 10.1021/acs.langmuir.9b00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The formation mechanisms of porous particles from self-assembly of amphiphilic diblock copolymers inside an oil-in-water emulsion droplet upon evaporation of the organic solvent are investigated based on Monte Carlo simulations for the first time. A morphological diagram of particles is constructed as a function of the surfactant concentration (φ) and the copolymer composition characterized by the volume fraction of the hydrophilic B block ( fB). Particles with various morphologies are predicted. Morphological sequences from non-porosity to closed-porosity to capsules and finally to open-porosity particles are usually observed with increasing φ when fB ≤ 1/2, with the only exception that capsules do not occur when fB = 1/6. Furthermore, the critical φ value for a given morphological transition usually decreases with increasing fB. Micelles are always observed at higher φ regions when fB > 1/2. It is found that the specific surface area falls on almost the same regime for particles with the same kind of morphology, indicating that the morphology of a particle largely determines its specific surface area. The chain stretching varies with the particle morphology. It is the presence of the surfactant that makes the formation of porous particles possible, while when φ > 0, multiple morphological transitions can be induced by changing fB. In the process of organic solvent removal, the value of fB may affect the shape of pores inside the droplet and hence leads to the fB dependence of the morphological sequences. When the solvent evaporation is not too fast, the resulting morphological sequence does not depend on the evaporation rate. Our results are compared with related experiments.
Collapse
Affiliation(s)
- Lingfei Zheng
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
| | - Zheng Wang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
| | - Yuhua Yin
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
| | - Run Jiang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
24
|
Al Nakeeb N, Nischang I, Schmidt BVKJ. Tannic Acid-Mediated Aggregate Stabilization of Poly( N-vinylpyrrolidone)- b-poly(oligo (ethylene glycol) methyl ether methacrylate) Double Hydrophilic Block Copolymers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E662. [PMID: 31035517 PMCID: PMC6566864 DOI: 10.3390/nano9050662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
The self-assembly of block copolymers in aqueous solution is an important field in modern polymer science that has been extended to double hydrophilic block copolymers (DHBC) in recent years. In here, a significant improvement of the self-assembly process of DHBC in aqueous solution by utilizing a linear-brush macromolecular architecture is presented. The improved self-assembly behavior of poly(N-vinylpyrrolidone)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PVP-b-P(OEGMA)) and its concentration dependency is investigated via dynamic light scattering (DLS) (apparent hydrodynamic radii ≈ 100-120 nm). Moreover, the DHBC assemblies can be non-covalently crosslinked with tannic acid via hydrogen bonding, which leads to the formation of small aggregates as well (apparent hydrodynamic radius ≈ 15 nm). Non-covalent crosslinking improves the self-assembly and stabilizes the aggregates upon dilution, reducing the concentration dependency of aggregate self-assembly. Additionally, the non-covalent aggregates can be disassembled in basic media. The presence of aggregates was studied via cryogenic scanning electron microscopy (cryo-SEM) and DLS before and after non-covalent crosslinking. Furthermore, analytical ultracentrifugation of the formed aggregate structures was performed, clearly showing the existence of polymer assemblies, particularly after non-covalent crosslinking. In summary, we report on the completely hydrophilic self-assembled structures in solution formed from fully biocompatible building entities in water.
Collapse
Affiliation(s)
- Noah Al Nakeeb
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Bernhard V K J Schmidt
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
25
|
Jiang Z, Bhaskaran A, Aitken HM, Shackleford ICG, Connal LA. Using Synergistic Multiple Dynamic Bonds to Construct Polymers with Engineered Properties. Macromol Rapid Commun 2019; 40:e1900038. [PMID: 30977952 DOI: 10.1002/marc.201900038] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Dynamic bonds have achieved significant attention for their ability to impart fascinating properties to polymeric materials, such as high mechanical strength, self-healing, shape memory, 3D printability, and conductivity. Incorporating multiple dynamic bonds into polymer systems affords an attractive and efficient approach to endow multiple functionalities. This mini-review focuses on the use of complementary dynamic interactions to control the properties of soft materials. Owing to the diversity in dynamic chemistries that can be explored, the scope of this article is restricted to polymers and does not include colloids, amphiphiles, liquid crystals, or biological soft matter.
Collapse
Affiliation(s)
- Zhen Jiang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Heather M Aitken
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - India C G Shackleford
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
26
|
Ku KH, Lee YJ, Kim Y, Kim BJ. Shape-Anisotropic Diblock Copolymer Particles from Evaporative Emulsions: Experiment and Theory. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02465] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Kim EJ, Shin JM, Kim Y, Ku KH, Yun H, Kim BJ. Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A-b-B diblock copolymers and C-type copolymers within emulsion droplets. Polym Chem 2019. [DOI: 10.1039/c9py00306a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An approach to blend AB-type block copolymers and C-type copolymers within the emulsion droplet is an efficient particle shape-engineering strategy.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - Jae Man Shin
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - YongJoo Kim
- KAIST Institute for Nanocentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - Kang Hee Ku
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - Hongseok Yun
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
- KAIST Institute for Nanocentury
| |
Collapse
|
28
|
Heinz D, Amado E, Kressler J. Polyphilicity-An Extension of the Concept of Amphiphilicity in Polymers. Polymers (Basel) 2018; 10:E960. [PMID: 30960885 PMCID: PMC6403972 DOI: 10.3390/polym10090960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in synthetic pathways as simple reversible-deactivation radical polymerization (RDRP) techniques and quantitative post-polymerization reactions, most notoriously 'click' reactions, leading to segmented copolymers, have broadened the molecular architectures accessible to polymer chemists as a matter of routine. Segments can be blocks, grafted chains, branchings, telechelic end-groups, covalently attached nanoparticles, nanodomains in networks, even sequences of random copolymers, and so on. In this review, we describe the variety of the segmented synthetic copolymers landscape from the point of view of their chemical affinity, or synonymous philicity, in bulk or with their surroundings, such as solvents, permeant gases, and solid surfaces. We focus on recent contributions, current trends, and perspectives regarding polyphilic copolymers, which have, in addition to hydrophilic and lipophilic segments, other philicities, for example, towards solvents, fluorophilic entities, ions, silicones, metals, nanoparticles, and liquid crystalline moieties.
Collapse
Affiliation(s)
- Daniel Heinz
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Elkin Amado
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Jörg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| |
Collapse
|
29
|
Self‐Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets. Macromol Rapid Commun 2018; 39:e1800177. [DOI: 10.1002/marc.201800177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Indexed: 01/08/2023]
|