1
|
Flakina AM, Nazarov DI, Faraonov MA, Yakushev IA, Kuzmin AV, Khasanov SS, Zverev VN, Otsuka A, Yamochi H, Kitagawa H, Konarev DV. Single-Ion Magnetism of the [Dy III(hfac) 4] - Anions in the Crystalline Semiconductor {TSeT 1.5} ●+[Dy III(hfac) 4] - Containing Weakly Dimerized Stacks of Tetraselenatetracene. Int J Mol Sci 2024; 25:8068. [PMID: 39125638 PMCID: PMC11311655 DOI: 10.3390/ijms25158068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The oxidation of tetraselenatetracene (TSeT) by tetracyanoquinodimethane in the presence of dysprosium(III) tris(hexafluoroacetylacetonate), DyIII(hfac)3, produces black crystals of {TSeT1.5}●+[DyIII(hfac)4]- (1) salt, which combines conducting and magnetic sublattices. It contains one-dimensional stacks composed of partially oxidized TSeT molecules (formal averaged charge is +2/3). Dimers and monomers can be outlined within these stacks with charge and spin density redistribution. The spin triplet state of the dimers is populated above 128 K with an estimated singlet-triplet energy gap of 542 K, whereas spins localized on the monomers show paramagnetic behavior. A semiconducting behavior is observed for 1 with the activation energy of 91 meV (measured by the four-probe technique for an oriented single crystal). The DyIII ions coordinate four hfac- anions in [DyIII(hfac)4]-, providing D2d symmetry. Slow magnetic relaxation is observed for DyIII under an applied static magnetic field of 1000 Oe, and 1 is a single-ion magnet (SIM) with spin reversal barrier Ueff = 40.2 K and magnetic hysteresis at 2 K. Contributions from DyIII and TSeT●+ paramagnetic species are seen in EPR. The DyIII ion rarely manifests EPR signals, but such signal is observed in 1. It appears due to narrowing below 30 K and has g4 = 6.1871 and g5 = 2.1778 at 5.4 K.
Collapse
Affiliation(s)
- Alexandra M. Flakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Dmitry I. Nazarov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Maxim A. Faraonov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Ilya A. Yakushev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V. Kuzmin
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Vladimir N. Zverev
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dmitri V. Konarev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| |
Collapse
|
2
|
Yang ZX, Liang XW, Lin D, Zheng Q, Huo Y. Heteroatom-Modulated Assembly of Hexalanthanoid-Containing Polyoxometalate-Based Coordination Networks. Inorg Chem 2023; 62:1466-1475. [PMID: 36656113 DOI: 10.1021/acs.inorgchem.2c03561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two series of lanthanoid (Ln)-containing polyoxometalates (POMs) {[Ln6(ampH)4(H2O)24-n(ampH2)n(PW11O39)2]·21H2O (Ln = Tb, n = 0 (1), Ln = Er, n = 1 (2)) and K2[Ln6(ampH)4(H2O)22(SiW11O39)2]·23H2O (Ln = Tb (3), Er (4)) (ampH2 = (aminomethyl) phosphonic acid)} have been synthesized with tri-lacunary Keggin-type POMs containing different types of heteroatoms. Compounds 1 and 2 display neutral organic-inorganic hybrid POM molecules containing {Ln6(ampH)4} ({Ln6}) cores sandwiched by two {PW11O39} units. By changing the heteroatoms from PV to SiIV, the extended 2D networks of 3 and 4 were successfully isolated where the adjacent {Ln6} clusters were connected by {SiW11O39} moieties. Luminescence performances and magnetic properties of 1-4 have been systematically surveyed. The solid-state fluorescence spectra of 1-4 display characteristic emissions of Ln components resulting from the 4f-4f transitions, and energy transfer from the POM segments to Ln3+ centers in 1 and 3 has been observed based on the lifetime decay behaviors. Furthermore, all compounds can be utilized as electrocatalysts toward reduction of nitrite with high stability.
Collapse
Affiliation(s)
- Zeng-Xi Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xue-Wei Liang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yu Huo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| |
Collapse
|
3
|
Yamada Y, Nakajima H, Kobayashi C, Shuku Y, Awaga K, Akine S, Tanaka K. Synthesis of Isomeric Tb 3+ -Phthalocyanine Double-Decker Complexes Depending on the Difference in the Direction of Coordination Plane and Their Magnetic Properties. Chemistry 2023; 29:e202203272. [PMID: 36448188 DOI: 10.1002/chem.202203272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
A C4h symmetrically substituted phthalocyanine, 1,8,15,22-tertrakis(2,4-dimethylpent-3-oxy)phthalocyanine (H2 TdMPPc), was used to synthesize Tb3+ -phthalocyanine double-decker complexes ([Tb(TdMPPc)2 ]s). Because H2 TdMPPc has C4h symmetry, S,S, R,R, and meso isomers of [Tb(TdMPPc)2 ] were obtained depending on the difference in the direction of the coordination plane of two C4h -type phthalocyanines with respect to a central Tb3+ ion. We investigated the physical properties of these [Tb(TdMPPc)2 ] isomers, including their single-ion magnetic properties, and found that the spin-reversal energy barrier (Ueff ) of the meso isomer was apparently higher than that of the enantiomers. Detailed crystal structural analyses indicated that the meso isomer has a more symmetrical structure than do the enantiomers, thereby suggesting that the higher Ueff of the meso isomer originated from the more highly symmetrical structure.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Research Center for Materials Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Hiroaki Nakajima
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Chisa Kobayashi
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yoshiaki Shuku
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Kunio Awaga
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
4
|
Martynov AG, Horii Y, Katoh K, Bian Y, Jiang J, Yamashita M, Gorbunova YG. Rare-earth based tetrapyrrolic sandwiches: chemistry, materials and applications. Chem Soc Rev 2022; 51:9262-9339. [DOI: 10.1039/d2cs00559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarises advances in chemistry of tetrapyrrole sandwiches with rare earth elements and highlights the current state of their use in single-molecule magnetism, organic field-effect transistors, conducting materials and nonlinear optics.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Leninskiy pr., 31, Moscow, Russia
| |
Collapse
|
5
|
Liu C, Yang W, Wang J, Ding X, Ren H, Chen Y, Xie Z, Sun T, Jiang J. A sextuple-decker heteroleptic phthalocyanine heterometallic samarium-cadmium complex with crystal structure and nonlinear optical properties in solution and gel glass. Dalton Trans 2021; 50:13661-13665. [PMID: 34591058 DOI: 10.1039/d1dt02963k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A sextuple-decker heteroleptic phthalocyanine heterometallic compound (1) with a subunit arrangement of {(Pc)Sm(Pc)Cd(Pc*)Cd(Pc*)Cd(Pc)Sm(Pc)} has been prepared and analyzed using various spectroscopic instruments, in which four unsubstituted phthalocyanine anions (Pc) and two substituted analogues (Pc*) with n-pentoxyl substituents at eight peripheral positions are connected through the complexation of two Sm(III) and three Cd(II) ions. In particular, its sextuple-decker structure has been disclosed by the single-crystal X-ray diffraction technique. The solution and gel glass forms of this compound display third-order nonlinear optical properties due to the intrinsic conjugated nature over the sextuple-decker sandwich complex.
Collapse
Affiliation(s)
- Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wei Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jingjing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, China.
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Huimin Ren
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yuxiang Chen
- Department of Chemistry School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, China.
| | - Tingting Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Yang W, Ma L, Liu C, Sun T, Jiang J. Magnetic Behaviors and Nonlinear Optical Properties of Heteroleptic Bis(phthalocyaninato) Holmium Compounds. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wei Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Li Ma
- Beijing Aerospace Propulsion Institute Beijing 100176 China
| | - Chao Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Tingting Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
7
|
Pan J, Ouyang A, Fang W, Cheng G, Liu W, Wang F, Zhao D, Le K, Jiang J. cis-Silicon phthalocyanine conformation endows J-aggregated nanosphere with unique near-infrared absorbance and fluorescence enhancement: a tumor sensitive phototheranostic agent with deep tissue penetrating ability. J Mater Chem B 2021; 8:2895-2908. [PMID: 32195527 DOI: 10.1039/d0tb00192a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organic phototheranostic nanomedicines with an optimized near-infrared (NIR) biological transparent window (700-900 nm) are highly desirable for the diagnosis and treatment of deep-seated tumors in clinic. As excellent organic photosensitizers for photodynamic therapy (PDT) with outstanding photo- and thermo-stability, phthalocyanines (Pcs) have been used as the building blocks of single-component nanomedicines. However, to the best of our knowledge, all the Pc-based single-component self-assemblies reported to date are of an H-aggregate nature. This results in the simultaneous self-quenching of fluorescence emission and photodynamic activity as well as greatly reduced tissue penetration due to blue-shifted absorption. In the present work, intramolecular hydrogen bonding was formed between the two long and flexible axial NH2-terminated diethylene glycol ligands of the amphiphilic SiPc molecule (SiPc-NH2) in solution, leading to the employment of a cis-conformation of this molecule according to the 1H-NMR spectroscopy result, which as a building block then further self-assembled into monodisperse nanospheres (SiPcNano) with a J-aggregation nature on the basis of electronic absorption spectroscopic results. As a result, SiPcNano exhibited significantly enhanced red-shifted absorption in the NIR range of 750-850 nm and fluorescence emission. This in combination with the increased photodynamic effect for SiPcNano triggered by the protonation of amine groups due to the acidic nature of tumors endowed effective synergistic NIR photodynamic and photothermal effects in different cancer cells and thus effective inhibition of tumor growth in A549 tumor-bearing mice on the basis of a series of in vitro and in vivo evaluations. The present result provides a new approach for constructing novel single-component NIR organic nanomedicines for multifunctional cancer therapy.
Collapse
Affiliation(s)
- Jiabao Pan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Ancheng Ouyang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Wenjuan Fang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Guanghui Cheng
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Fang Wang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Dongmu Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Kai Le
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology, Beijing 100083, P. R. China.
| |
Collapse
|
8
|
Parmar VS, Mills DP, Winpenny REP. Mononuclear Dysprosium Alkoxide and Aryloxide Single-Molecule Magnets. Chemistry 2021; 27:7625-7645. [PMID: 33555090 PMCID: PMC8252031 DOI: 10.1002/chem.202100085] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that mononuclear lanthanide (Ln) complexes can be high‐performing single‐molecule magnets (SMMs). Recently, there has been an influx of mononuclear Ln alkoxide and aryloxide SMMs, which have provided the necessary geometrical control to improve SMM properties and to allow the intricate relaxation dynamics of Ln SMMs to be studied in detail. Here non‐aqueous Ln alkoxide and aryloxide chemistry applied to the synthesis of low‐coordinate mononuclear Ln SMMs are reviewed. The focus is on mononuclear DyIII alkoxide and aryloxide SMMs with coordination numbers up to eight, covering synthesis, solid‐state structures and magnetic attributes. Brief overviews are also provided of mononuclear TbIII, HoIII, ErIII and YbIII alkoxide and aryloxide SMMs.
Collapse
Affiliation(s)
- Vijay S Parmar
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard E P Winpenny
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
9
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
10
|
Fang Y, Sun R, Sun AH, Sun HL, Gao S. The construction of dynamic dysprosium-carboxylate ribbons by utilizing the hybrid-ligand conception. Dalton Trans 2021; 50:1246-1252. [PMID: 33410827 DOI: 10.1039/d0dt03589k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By utilizing the hybrid-ligand conception, three novel dysprosium complexes Dy(2-py-4-pmc)(L)(H2O) (H2-py-4-pmc = 2-(2-pyridyl)pyrimidine-4-carboxylic acid; L = fumarate (fum, 1), succinate (suc, 2), or pimelate (pim, 3)) have been successfully synthesized. Structural analysis reveals that the dicarboxylate ligands connect 2-py-4-pmc--protected Dy3+ to form one-dimensional molecular ribbons. Magnetic measurements indicate that the three complexes exhibit typical slow magnetic relaxation under a zero dc field with effective reversal barriers Ueff of 180 K, 145 K and 137 K for 1-3, respectively, which is mainly attributed to the strong Ising anisotropy of dysprosium ions induced by the appropriate arrangement of carboxylate groups. Ab initio calculations demonstrate that the charge distribution around dysprosium ions and the magnetic interactions between them are key contributions to their different dynamic behaviour.
Collapse
Affiliation(s)
- Yu Fang
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China.
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Ai-Huan Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China.
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
11
|
Babeshkin KA, Gavrikov AV, Petrosyants SP, Ilyukhin AB, Belova EV, Efimov NN. Unexpected Supremacy of Non‐Dysprosium Single‐Ion Magnets within a Series of Isomorphic Lanthanide Cyanocobaltate(III) Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Konstantin A. Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Andrey V. Gavrikov
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Svetlana P. Petrosyants
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Andrey B. Ilyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Ekaterina V. Belova
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
- Department of Chemistry Lomonosov Moscow State University GSP1 119991 Moscow Russian Federation
| | - Nikolay N. Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| |
Collapse
|
12
|
Goodwin CAP. Blocking like it's hot: a synthetic chemists' path to high-temperature lanthanide single molecule magnets. Dalton Trans 2020; 49:14320-14337. [PMID: 33030172 DOI: 10.1039/d0dt01904f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Progress in the synthesis, design, and characterisation of single-molecule magnets (SMMs) has expanded dramatically from curiosity driven beginnings to molecules that retain magnetization above the boiling point of liquid nitrogen. This is in no small part due to the increasingly collaborative nature of this research where synthetic targets are guided by theoretical design criteria. This article aims to summarize these efforts and progress from the perspective of a synthetic chemist with a focus on how chemistry can modulate physical properties. A simple overview is presented of lanthanide electronic structure in order to contextualize the synthetic advances that have led to drastic improvements in the performance of lanthanide-based SMMs from the early 2000s to the late 2010s.
Collapse
|
13
|
Sarwar S, Sanz S, van Leusen J, Nichol GS, Brechin EK, Kögerler P. Phthalocyanine-polyoxotungstate lanthanide double deckers. Dalton Trans 2020; 49:16638-16642. [DOI: 10.1039/d0dt03716h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two archetypal tetradentate ligands with square donor patterns, namely phthalocyanate and monolacunary Keggin-type polyoxotungstate, coordinate to rare earth ions to yield Cs-symmetric heteroleptic double-decker complexes.
Collapse
Affiliation(s)
- Sidra Sarwar
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
- Peter Grünberg Institute
| | - Sergio Sanz
- Peter Grünberg Institute
- 52425 Jülich
- Germany
- Jülich-Aachen Research Alliance
- Fundamentals for Future Information Technology (JARA-FIT)
| | - Jan van Leusen
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Gary S. Nichol
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - Euan K. Brechin
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - Paul Kögerler
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
- Peter Grünberg Institute
| |
Collapse
|
14
|
Abd El-Mageed AIA, Ogawa T. Supramolecular structures of terbium(iii) porphyrin double-decker complexes on a single-walled carbon nanotube surface. RSC Adv 2019; 9:28135-28145. [PMID: 35530484 PMCID: PMC9071046 DOI: 10.1039/c9ra05818d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
This work mainly reports the observation of novel supramolecular structures of TbIII-5,15-bisdodecylporphyrin (BDP, C12P) double-decker complexes on the surfaces of single-walled carbon nanotubes (SWNTs) performed by scanning tunneling microscopy under an ultra-high vacuum and low temperature, atomic force microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, and ultraviolet-visible spectroscopy. The molecules formed a well-ordered self-assembled helix-shaped array with regular periodicity on the tube surface. Additionally, some magnetic properties of the BDP-molecule as well as the resulting BDP-SWNT composites were investigated by superconducting quantum interference measurements. The molecule exhibits single-molecule magnetic (SMM) properties and the composite's magnetization increases almost linearly with decreasing temperature which is possibly due to the coupling between porphyrin molecules and SWNTs. Consequently, this may enable the development of more advanced spintronic devices based on porphyrin-nanocarbon composites. For the first time, using scanning probe microscopy, the supramolecular structures of terbium porphyrin double-decker complexes were observed on single-walled carbon nanotubes surfaces, where the molecules formed a well-ordered self-assembled array.![]()
Collapse
Affiliation(s)
- Ahmed I A Abd El-Mageed
- Chemistry Department, Graduate School of Science, Osaka University Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan .,Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Takuji Ogawa
- Chemistry Department, Graduate School of Science, Osaka University Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
15
|
Liu C, Li M, Zhang Y, Tian H, Chen Y, Wang H, Dou J, Jiang J. Controlling the Crystal Field of Heteroleptic Bis(phthalocyaninato) Erbium for Field‐Induced Magnetic Relaxation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing 100083 Beijing China
| | - Miao Li
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology Nanjing Normal University 210023 Nanjing P. R. China
| | - Yiquan Zhang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology Nanjing Normal University 210023 Nanjing P. R. China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Chemistry and Chemical Engineering Liaocheng University 252059 Liaocheng P. R. China
| | - Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing 100083 Beijing China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing 100083 Beijing China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Chemistry and Chemical Engineering Liaocheng University 252059 Liaocheng P. R. China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing 100083 Beijing China
| |
Collapse
|
16
|
Konarev DV, Khasanov SS, Batov MS, Martynov AG, Nefedova IV, Gorbunova YG, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN. Effect of One- and Two-Electron Reduction of Terbium(III) Double-Decker Phthalocyanine on Single-Ion Magnet Behavior and NIR Absorption. Inorg Chem 2019; 58:5058-5068. [DOI: 10.1021/acs.inorgchem.9b00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432 Russia
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS, Chernogolovka, Moscow Region, 142432 Russia
| | - Mikhail S. Batov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432 Russia
- Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991 Russia
| | - Alexander G. Martynov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii pr., 31, Bldg. 4, Moscow, 119071 Russia
| | - Irina V. Nefedova
- N. S. Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii pr., 31, Moscow, 119991 Russia
| | - Yulia G. Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii pr., 31, Bldg. 4, Moscow, 119071 Russia
- N. S. Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii pr., 31, Moscow, 119991 Russia
| | | | | | | | - Rimma N. Lyubovskaya
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432 Russia
| |
Collapse
|
17
|
Zhi Q, Ma F, Wang C, Chen Y, Wang H, Sun H, Jiang J. Single‐Ion Magnet Investigation of ABAB‐Type Tetrachloro‐ and Tetraalkoxy‐Substituted Bis(phthalocyaninato) Terbium Double‐Decker with
D
2
Symmetrical Ligand Field. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Qianjun Zhi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials Beijing Normal University Beijing 100875 China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Haoling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials Beijing Normal University Beijing 100875 China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
18
|
Chen Y, Ma F, Chen X, Zhang Y, Wang H, Wang K, Qi D, Sun HL, Jiang J. Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato]terbium Double-Decker Single-Ion Magnets. Inorg Chem 2019; 58:2422-2429. [PMID: 30721033 DOI: 10.1021/acs.inorgchem.8b02949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the purpose of further exploring the effect of nonperipherally attached substituents on single-ion magnet (SIMs) performance, tetrasubstituted bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato]terbium double-deckers, in both the reduced form TbH[Pc(α-OC5H11)4]2 (1) and the neutral form Tb[Pc(α-OC5H11)4]2 (2), were prepared. Single-crystal X-ray diffraction analysis for 2 unambiguously demonstrates the pinwheellike molecular structure with C4 symmetry. Magnetic investigations of the two bis(phthalocyaninato)terbium double-deckers reveal their characteristic SIM nature. 2 exhibits SIM performance superior to that of 1, as revealed by the larger energy barrier of 466 K for the former species and 431 K for the latter species due to the presence of organic radical-f (radical-Tb) interactions. The enhanced SIM performance of 2 in comparison to 1 actually stems from the presence of radical-f interactions and an enhanced ligand field strength. The latter positive factor is indicated by the electrostatic potential around the terbium ion on the basis of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Yuehong Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| |
Collapse
|
19
|
Jiang Z, Sun L, Li M, Wu H, Xia Z, Ke H, Zhang Y, Xie G, Chen S. Solvent-tuned magnetic exchange interactions in Dy2 systems ligated by a μ-phenolato heptadentate Schiff base. RSC Adv 2019; 9:39640-39648. [PMID: 35541401 PMCID: PMC9076079 DOI: 10.1039/c9ra08754k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 12/02/2022] Open
Abstract
A series of binuclear dysprosium compounds, namely, [Dy(api)]2 (1), [Dy(api)]2·2CH2Cl2 (2), [Dy(Clapi)]2·2C4H8O (3), and [Dy(Clapi)]2·2C3H6O (4) (H3api = 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazoline; H3Clapi = 2-(2′-hydroxy-5′-chlorophenyl)-1,3-bis[3′-aza-4′-(2′′-hydroxy-5′′-chlorophenyl)prop-4′-en-1′-yl]-1,3-imidazolidine), have been isolated by the reactions of salen-type ligands H3api/H3Clapi with DyCl3·6H2O in different solvent systems. Structural analysis reveals that each salen-type ligand provides a heptadentate coordination pocket (N4O3) to encapsulate a DyIII ion and all of the DyIII centers in 1–4 adopt a distorted square antiprism geometry with D4d symmetry. Magnetic studies showed that compound 1 did not exhibit single-molecule magnetic (SMMs) behavior. With the introduction of different lattice solvents, compounds 2–4 showed filed-induced slow magnetic relaxation with barriers Ueff of 18.2 K (2), 28.0 K (3) and 16.4 K (4), respectively. Ab initio calculations were employed to interpret the magnetization behavior of 1–4. The combination of experimental and theoretical data reveal the importance of the weak exchange interaction between the DyIII ions in the observation of slow magnetic relaxation, and a relaxation mechanism has been developed to rationalize the observed difference in the Ueff values. The different lattice solvents influence Dy–O–Dy bond angles and thus alter the torsion of the square antiprism geometry, consequently resulting in distinct magnetic interactions and the magnetic behavior. Solvent-tuning changes the magnetic exchange interaction and results in different magnetic relaxation dynamics in Dy2 systems ligated by a μ-phenolato heptadentate Schiff base.![]()
Collapse
Affiliation(s)
- Zhijie Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Min Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Haipeng Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Hongshan Ke
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Yiquan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| |
Collapse
|
20
|
Liu W, Zeng S, Chen X, Pan H, Qi D, Wang K, Dou J, Jiang J. Hemiporphyrazine-Involved Sandwich Dysprosium Double-Decker Single-Ion Magnets. Inorg Chem 2018; 57:12347-12353. [PMID: 30230324 DOI: 10.1021/acs.inorgchem.8b02068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both heteroleptic (phthalocyaninato)(hemiporphyrazinato) and homoleptic bis(hemiporphyrazinato) dysprosium double-decker complexes, Dy[H(Hp)2] (1) and Dy[H(Pc)(Hp)] (2) (H2Pc = metal-free phthalocyanine; H2Hp = metal-free hemiporphyrazine), were designed, synthesized, and structurally characterized. The dysprosium center in both double-deckers are octa-coordinated with a nearly ideal square-antiprismatic coordination geometry, which provides an increased molecular anisotropy for the dysprosium ion and ensures the strengthened magnetic properties of both single-ion magnets (SIMs) in terms of coordination geometry. Magnetic studies reveal that both double-deckers exhibit typical SIM behavior with a spin reversal energy barrier of 80.1 ± 6.3 K for 1 and 57.3 ± 3.8 K for 2 as well as the hysteresis loops emerging at 3 K. In particular, introduction of two Hp ligands with four pyridine nitrogen atoms coordinated with the dysprosium spin center endows Dy[H(Hp)2] (1) with the thus far highest energy barrier among the sandwich-type dysprosium SIMs with N4-macrocyclic ligands, revealing the potential applications of sandwich-type lanthanide complexes with Hp ligands in molecular-based information storage.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Suyuan Zeng
- Department of Chemistry , Liaocheng University , Liaocheng , 252059 , China
| | - Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Houhe Pan
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jianmin Dou
- Department of Chemistry , Liaocheng University , Liaocheng , 252059 , China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
21
|
Chen Y, Liu C, Ma F, Qi D, Liu Q, Sun HL, Jiang J. Fabricating Bis(phthalocyaninato) Terbium SIM into Tetrakis(phthalocyaninato) Terbium SMM with Enhanced Performance through Sodium Coordination. Chemistry 2018; 24:8066-8070. [PMID: 29683531 DOI: 10.1002/chem.201800408] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 11/09/2022]
Abstract
The non-peripherally substituted 1,4,8,11,15,18,22,25-octa(butoxy)-phthalocyanine-involved unsymmetrical heteroleptic bis(phthalocyaninato) terbium double-decker, Tb(Pc){H[Pc(α-OC4 H9 )8 ]} (Pc=unsubstituted phthalocyanine) (1), was revealed to exhibit typical single ion magnet (SIM) behavior with effective energy barrier, 180 K (125 cm-1 ), and blocking temperature, 2 K, due to the severe deviation of the terbium coordination polyhedron from square-antiprismatic geometry. Fabrication of this double-decker compound into the novel tetrakis(phthalocyaninato) terbium pseudo-quadruple-decker Na2 {Tb(Pc)[Pc(α-OC4 H9 )8 ]}2 (2) single molecule magnet (SMM) not only optimizes the coordination polyhedron of terbium ion towards the square-antiprismatic geometry and intensifies the coordination field strength, but more importantly significantly enhances the molecular magnetic anisotropy in the unsymmetrical bis(phthalocyaninato) double-decker unit, along with the change of the counter cation from H+ of 1 to Na+ of 2, leading to an significantly enhanced magnetic behavior with spin-reversal energy barrier, 528 K (367 cm-1 ), and blocking temperature, 25 K. The present result is surely helpful towards developing novel tetrapyrrole lanthanide SMMs through rational design and self-assembly from bis(tetrapyrrole) lanthanide single ion magnet (SIM) building block.
Collapse
Affiliation(s)
- Yuxiang Chen
- Beijing Key Laboratory for Science, and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chao Liu
- Beijing Key Laboratory for Science, and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science, and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266510, Shandong, China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science, and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
22
|
Chen X, Chen Y, Bai M, Wang C, Qi D, Liu Q, Xu M, Jiang J. Distribution of the unpaired electron in neutral bis(phthalocyaninato) yttrium double-deckers: An experimental and theoretical combinative investigation. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The location of the unpaired electron in neutral bis(phthalocyaninato) yttrium double-decker complexes, with different substituents, has been studied on the basis of both experimental methods and density functional theory (DFT) calculations over the molecular structures, atomic charges, electronic absorption, infrared spectra, and electron paramagnetic resonance. The results reveal the location of the unpaired electron mainly on the carbon atoms of both tetrapyrrole chromophores with the population distribution obviously affected by the peripheral substituents.
Collapse
Affiliation(s)
- Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Bai
- Marine College, Shandong University at Weihai, Weihai 264209, China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Meixing Xu
- Beijing National Laboratory of Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Feng M, Tong ML. Single Ion Magnets from 3d to 5f: Developments and Strategies. Chemistry 2018; 24:7574-7594. [PMID: 29385282 DOI: 10.1002/chem.201705761] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/21/2022]
Abstract
Single-ion magnets (SIMs), exhibiting slow magnetization relaxation in the absence of the magnetic field, originate from their single spin-carrier centre. In pursuit of high-performance magnetic properties, such as high spin-reversal barrier and high blocking temperature, various metal centres were investigated to establish SIMs, including 3d and 5d transition metal ions, 4f lanthanide ions, and 5f actinide ions, which possess unique zero-field splitting and magnetic properties. Therefore, proper ligand field is of great importance to different types of metals. In the given great breakthroughs since the first SIM, [Pc2 Tb]- (Pc=dianion of phthalocyanine), was reported, strategies of ligand field design have emerged. In this review, the developments of SIMs with different metal centres are summarized, as well as the possible strategies.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
24
|
Ge JY, Wang HY, Su J, Li J, Wang BL, Zhang YQ, Zuo JL. Modulating the Magnetic Interaction in New Triple-Decker Dysprosium(III) Single-Molecule Magnets. Inorg Chem 2018; 57:1408-1416. [PMID: 29314838 DOI: 10.1021/acs.inorgchem.7b02824] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new type of dinuclear dysprosium(III) complex based on phthalocyanine and salicylaldehyde derivatives (HL-R), [Dy2(Pc)2(L-R)2(H2O)]·2THF (R = OCH3 (1), OC2H5 (2); H2Pc = phthalocyanine; HL-OCH3 = 2-hydroxy-3-methoxybenzaldehyde; HL-OC2H5 = 3-ethoxy-2-hydroxybenzaldehyde), was successfully synthesized and structurally characterized. Complex 1 features a sandwich-type triple-decker structure, where two coplanar L-OCH3 ligands lie in the middle layer shared by two eight-coordinated DyIII ions and two Pc ligands are located in the outer layer. In 2, the introduction of an ethoxy group generates a noncoordination mode for the Oalkoxy atom. Magnetic studies indicate that complex 1 behaves as a zero-field single-molecule magnet with a higher energy barrier, while 2 exhibits a fast tunneling relaxation process. Theoretical calculations revealed that changes in the ligand field environment around DyIII ions can significantly affect the arrangement of the main magnetic axes and further result in distinct magnetic interactions as well as different relaxation behaviors.
Collapse
Affiliation(s)
- Jing-Yuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210023, People's Republic of China.,College of Materials and Environmental Engineering, Hangzhou Dianzi University , Hangzhou 310018, People's Republic of China
| | - Hai-Ying Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210023, People's Republic of China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210023, People's Republic of China
| | - Jing Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210023, People's Republic of China
| | - Bao-Lin Wang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210023, People's Republic of China
| |
Collapse
|
25
|
Yao X, Yan P, An G, Shi C, Li Y, Li G. Single-ion magnets with D4d symmetry based on electron-donating β-diketonate Dy(iii) complexes. NEW J CHEM 2018. [DOI: 10.1039/c8nj00636a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Four single-ion magnets based on electron-donating β-diketonate Dy(iii) complexes have been designed and isolated to explore the magnetism–structure relationship.
Collapse
Affiliation(s)
- Xu Yao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- People's Republic of China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- People's Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- People's Republic of China
| | - Chao Shi
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- People's Republic of China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- People's Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- People's Republic of China
| |
Collapse
|
26
|
Chen Y, Ma F, Zhang Y, Zhao L, Wang K, Qi D, Sun HL, Jiang J. Heteroleptic chiral bis(phthalocyaninato) terbium double-decker single-ion magnets. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00493e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chiral binaphthyl and dibutylamino were incorporated onto the periphery of the bis(phthalocyaninato) terbium SIM, confirming the effectiveness of tuning the double-decker SIM peroperties thorugh tuning the molecular magnetic anisotropy.
Collapse
Affiliation(s)
- Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- China
| | - Yuehong Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Luyang Zhao
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
27
|
Gupta T, Singh MK, Rajaraman G. Role of Ab Initio Calculations in the Design and Development of Lanthanide Based Single Molecule Magnets. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Fang Y, Ji XQ, Xiong J, Li G, Ma F, Sun HL, Zhang YQ, Gao S. Elucidation of the two-step relaxation processes of a tetranuclear dysprosium molecular nanomagnet through magnetic dilution. Dalton Trans 2018; 47:11636-11644. [DOI: 10.1039/c8dt01870g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new centrosymmetric tetranuclear aggregate [Dy4(L)2(OAc)8(CH3OH)2] (1) was assembled using a unique symmetrical Schiff base ligand 1,5-bis(salicylidene)-carbohydrazide (H2L).
Collapse
Affiliation(s)
- Yu Fang
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Xiao-Qin Ji
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Guanzheng Li
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
- No 7 Yunhan RD
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
29
|
Wang K, Ma F, Qi D, Chen X, Chen Y, Chen YC, Sun HL, Tong ML, Jiang J. Chiral bis(phthalocyaninato) terbium double-decker compounds with enhanced single-ion magnetic behavior. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00066b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introducing chirality into bis(phthalocyaninato) terbium single-ion magnets was revealed to be an alternative method towards enhancing magnetic behavior.
Collapse
Affiliation(s)
- Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials
- Beijing Normal University
- Beijing 100875
- China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
30
|
Chen Y, Ma F, Chen X, Dong B, Wang K, Jiang S, Wang C, Chen X, Qi D, Sun H, Wang B, Gao S, Jiang J. A New Bis(phthalocyaninato) Terbium Single-Ion Magnet with an Overall Excellent Magnetic Performance. Inorg Chem 2017; 56:13889-13896. [PMID: 29111697 DOI: 10.1021/acs.inorgchem.7b02010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bulky and strong electron-donating dibutylamino groups were incorporated onto the peripheral positions of one of the two phthalocyanine ligands in the bis(phthalocyaninato) terbium complex, resulting in the isolation of heteroleptic double-decker (Pc)Tb{Pc[N(C4H9)2]8} {Pc = phthalocyaninate; Pc[N(C4H9)2]8 = 2,3,9,10,16,17,23,24-octakis(dibutylamino)phthalocyaninate} with the nature of an unsymmetrical molecular structure, a square-antiprismatic coordination geometry, an intensified coordination field strength, and the presence of organic radical-f interaction. As a total result of all these factors, this sandwich-type tetrapyrrole lanthanide single-ion magnet (SIM) exhibits an overall enhanced magnetic performance including a high blocking temperature (TB) of 30 K and large effective spin-reversal energy barrier of Ueff = 939 K, rendering it the best sandwich-type tetrapyrrole lanthanide SIM reported thus far.
Collapse
Affiliation(s)
- Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing , Beijing 100083, China
| | - Fang Ma
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University , Beijing 100875, China
| | - Xiaoxiang Chen
- Beijing National Laboratory of Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Bowei Dong
- Beijing National Laboratory of Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing , Beijing 100083, China
| | - Shangda Jiang
- Beijing National Laboratory of Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing , Beijing 100083, China
| | - Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing , Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing , Beijing 100083, China
| | - Haoling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University , Beijing 100875, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
31
|
Zhang JL. Marriage of phthalocyanine chemistry with lanthanides: a single-ion magnet with a blocking temperature up to 25 K. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00502d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of rich phthalocyanine chemistry such as peripheral substitution and the unique properties of lanthanides to enhance organic radical-f interaction is expected to afford new SIMs with a higher working temperature.
Collapse
Affiliation(s)
- Jun-Long Zhang
- Beijing National Laboratory of Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| |
Collapse
|