1
|
Fang C, Li L, Yang H, Kong C, Zhang J, Xie M, Wu J. Rh(III)-catalyzed selective C2 C-H acyloxylation of indoles. Chem Commun (Camb) 2023; 60:216-219. [PMID: 38050725 DOI: 10.1039/d3cc05799b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we present the first highly regio- and chemoselective C2 C-H acyloxylation of indole under rhodium catalysis and an N-quinolinyl auxiliary. This strategy accommodates a wide range of indoles and structurally diverse carboxylic acids with good reaction efficiencies to yield functionalized indoles. The utility of this logic was demonstrated by the concise synthesis of the functionalized 2-oxindole derivatives. Preliminary mechanistic studies indicate that catalyst turnover of RhIII-RhIV/V-RhII/III-RhIII might be involved in this catalytic C-H transformation.
Collapse
Affiliation(s)
- Chaoying Fang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Li Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Caiyang Kong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
2
|
Liu H, Chi W, Dong L. Ruthenium(II)-Catalyzed Sterically Hindered C-H Acyloxylation to Synthesize Biaryl Isoquinoline Derivatives via Peresters. J Org Chem 2023. [PMID: 36812452 DOI: 10.1021/acs.joc.2c02938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A novel C-H acyloxylation method of 1-(1-naphthalen-1-yl)isoquinoline derivatives with peresters in the presence of [Ru(p-cymene)Cl2]2 has been developed. The combination of ruthenium(II), AgBF4, CoI2, and 2,2,6,6-tetramethyl-1-piperidinyloxy is found to be an effective catalytic system to provide various biaryl compounds in satisfactory yields within minutes. Notably, steric hindrance is a very important determinant of the reaction.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Chi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
He L, Xu Y. Palladium‐Catalyzed Alkenyl C−H Bonds Benzoxylation of Benzofurans by Perester. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li He
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yongjun Xu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
5
|
Zhang JH, Jiang LL, Hu SJ, Li JZ, Yu XC, Liu FL, Guan YT, Lei KW, Wei WT. The polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs. Org Biomol Chem 2022; 20:7067-7070. [PMID: 35993972 DOI: 10.1039/d2ob01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs has been developed to prepare 2-pyrrolidinone derivatives with polychloromethyl units with the use of an inexpensive copper salt under mild conditions. This strategy includes two dual-role designs, not only improving atomic utilization but also allowing a cleaner process. The wide substrate scope and simple reaction conditions demonstrate the practicability of this protocol.
Collapse
Affiliation(s)
- Jun-Hao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Li-Lin Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Sen-Jie Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jiao-Zhe Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xuan-Chi Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Fa-Liang Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yu-Tao Guan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ke-Wei Lei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
6
|
Jeong J, Jung H, Kim D, Chang S. Multidimensional Screening Accelerates the Discovery of Rhodium Catalyst Systems for Selective Intra- and Intermolecular C–H Amidations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiwoo Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
7
|
A study of the reactivity and transformations of Pd/NHC complexes in the reaction of oxidative C−H acetoxylation. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Hou X, Kaplaneris N, Yuan B, Frey J, Ohyama T, Messinis AM, Ackermann L. Ruthenaelectro-catalyzed C-H acyloxylation for late-stage tyrosine and oligopeptide diversification. Chem Sci 2022; 13:3461-3467. [PMID: 35432858 PMCID: PMC8943857 DOI: 10.1039/d1sc07267f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Ruthenaelectro(ii/iv)-catalyzed intermolecular C-H acyloxylations of phenols have been developed by guidance of experimental, CV and computational insights. The use of electricity bypassed the need for stoichiometric chemical oxidants. The sustainable electrocatalysis strategy was characterized by ample scope, and its unique robustness enabled the late-stage C-H diversification of tyrosine-derived peptides.
Collapse
Affiliation(s)
- Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Johanna Frey
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Tsuyoshi Ohyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Straße 58 10785 Berlin Germany
| |
Collapse
|
9
|
Hu J, Wang C, Yu M, Zhang S, Chen N, Du H. Palladium‐Catalyzed N3‐Directed C‐H Halogenation of N9‐Arylpurines and Azapurines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junbin Hu
- Beijing University of Chemical Technology College of chemistry CHINA
| | - Chenxing Wang
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Mingwu Yu
- Ludong University School of Chemical and Material Science CHINA
| | - Shaojuan Zhang
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Ning Chen
- Beijing University of Chemical Technolgy chemistry 15 North 3-rd east road, Beijing 100029 Beijing CHINA
| | - Hongguang Du
- Beijing university of chemical technology college of chemistry CHINA
| |
Collapse
|
10
|
Xie H, Song JL, Jiang CY, Huang YX, Zeng JY, Liu XG, Zhang SS, Yang F. Thioether-directed Rh(III)-catalyzed peri-selective acyloxylation of arenes. Org Biomol Chem 2022; 20:565-569. [PMID: 34985096 DOI: 10.1039/d1ob02236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A thioether directed acyloxylation of arenes has been realized via Cp*Rh(III)-catalyzed C-H activation and subsequent coupling with carboxylic acids. This new method showed high functional group compatibility and broad substrate scope. Primary mechanistic studies have been conducted and a tentative reaction mechanism was proposed. It represents the first example of a thioether-directed Cp*Rh(III)-catalyzed C(sp2)-H acyloxylation reaction.
Collapse
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Chun-Yong Jiang
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, P. R. China
| | - Yan-Xia Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jun-Yi Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Xu-Ge Liu
- Key Laboratory of Brain Targeted Nanodrugs of Henan Province, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Fan Yang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
11
|
Chai Y, Liu X, Tian Y, Wang X, Quan Z. Metal‐Free Electrocatalytic C(sp
2
)‐H Acyloxylation of Aromatic Ring to Synthesis of Acetoxylated Phenylethers. ChemistrySelect 2021. [DOI: 10.1002/slct.202103870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yao Chai
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Xiao‐Jun Liu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Ya‐Ling Tian
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Xi‐Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| | - Zheng‐Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 People's Republic of China
| |
Collapse
|
12
|
Sarkar T, Shah TA, Maharana PK, Talukdar K, Das BK, Punniyamurthy T. Transition-Metal-Catalyzed Directing Group Assisted (Hetero)aryl C-H Functionalization: Construction of C-C/C-Heteroatom Bonds. CHEM REC 2021; 21:3758-3778. [PMID: 34164920 DOI: 10.1002/tcr.202100143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Transition-metal-catalyzed C-H functionalization is one of the fascinating scientific fronts in organic synthesis for the formation of conjugated arenes and has emerged as a benchmark to revolutionize the synthetic enterprise since past decades. In this realm, chelation-guided functionalization of C-H bonds using an exogenous directing group has received considerable attention recently for the expedient regioselective construction of C-C and C-heteroatom bonds as an efficient and sustainable alternative. This article outlines our contribution towards a wide variety of transformations that have been achieved by the directed C-H functionalization through the fine tuning of catalytic systems.
Collapse
Affiliation(s)
- Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | - Tariq A Shah
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | - Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | | |
Collapse
|
13
|
Tan X, Massignan L, Hou X, Frey J, Oliveira JCA, Hussain MN, Ackermann L. Rhodaelektrokatalysierte bimetallische C‐H‐Oxygenierung durch schwache
O
‐Koordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xuefeng Tan
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Johanna Frey
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Masoom Nasiha Hussain
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
14
|
Tan X, Massignan L, Hou X, Frey J, Oliveira JCA, Hussain MN, Ackermann L. Rhoda-Electrocatalyzed Bimetallic C-H Oxygenation by Weak O-Coordination. Angew Chem Int Ed Engl 2021; 60:13264-13270. [PMID: 33651910 PMCID: PMC8252749 DOI: 10.1002/anie.202017359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Rhodium-electrocatalyzed arene C-H oxygenation by weakly O-coordinating amides and ketones have been established by bimetallic electrocatalysis. Likewise, diverse dihydrooxazinones were selectively accessed by the judicious choice of current, enabling twofold C-H functionalization. Detailed mechanistic studies by experiment, mass spectroscopy and cyclovoltammetric analysis provided support for an unprecedented electrooxidation-induced C-H activation by a bimetallic rhodium catalysis manifold.
Collapse
Affiliation(s)
- Xuefeng Tan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Leonardo Massignan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Johanna Frey
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Masoom Nasiha Hussain
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
15
|
Jin S, Kim J, Kim D, Park JW, Chang S. Electrolytic C–H Oxygenation via Oxidatively Induced Reductive Elimination in Rh Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seongho Jin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
16
|
Monodisperse CuPd alloy nanoparticles supported on reduced graphene oxide as efficient catalyst for directed C−H activation. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Wang X, He Z, Xu X, Zhao H, Pan Y, Li H, Xu L. Rh(III)‐catalyzed C6‐selective Acylmethylation and Carboxymethylation of 2‐Pyridones with Diazo Compounds. ChemCatChem 2021. [DOI: 10.1002/cctc.202002016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyu Wang
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Zhongyu He
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Huanrong Li
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| |
Collapse
|
18
|
Yu H, Zhao H, Xu X, Zhang X, Yu Z, Li L, Wang P, Shi Q, Xu L. Rhodium(I)‐Catalyzed C2‐Selective Decarbonylative C−H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haiyang Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zexin Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lingchao Li
- Jiangsu Zenji Pharmaceuticals Ltd. Huaian 223100 P. R. China
| | - Peng Wang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| |
Collapse
|
19
|
Zhang J, Lu X, Shen C, Xu L, Ding L, Zhong G. Recent advances in chelation-assisted site- and stereoselective alkenyl C–H functionalization. Chem Soc Rev 2021; 50:3263-3314. [DOI: 10.1039/d0cs00447b] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights recent advances in vicinal- and geminal-group-directed alkenyl C–H functionalizations which proceeded by endo- and exo-cyclometallation.
Collapse
Affiliation(s)
- Jian Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiunan Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Cong Shen
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liangyao Xu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liyuan Ding
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
20
|
Shen H, Cheng D, Li Y, Liu T, Yi X, Liu L, Ling F, Zhong W. Late-stage diversification by rutheniumelectro-catalyzed C–H mono- and di-acyloxylation. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
21
|
Xiong X, Mao YJ, Hao HY, He YT, Xu ZY, Luo G, Lou SJ, Xu DQ. Nitrate promoted mild and versatile Pd-catalysed C(sp 2)-H oxidation with carboxylic acids. Org Biomol Chem 2020; 18:6732-6737. [PMID: 32832956 DOI: 10.1039/d0ob01124j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitrate-promoted Pd-catalysed mild cross-dehydrogenative C(sp2)-H bond oxidation of oximes or azobenzenes with diverse carboxylic acids has been developed. In contrast to the previous catalytic systems, this protocol features mild conditions (close to room temperature for most cases) and a broad substrate scope (up to 64 examples), thus constituting a versatile method to directly prepare diverse O-aryl esters. Moreover, the superiority of the nitrate additive in this mild transformation was further determined by experimental and computational evidence.
Collapse
Affiliation(s)
- Xue Xiong
- College of Chemical Engineering, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen YK, Kang YS, Xu HJ, Zhang P, Zhao J, Li T, Sun WY, Lu Y. Rh(III)-Catalyzed C(sp 3)-H Acetoxylation of 8-Methylquinolines. Org Lett 2020; 22:5390-5395. [PMID: 32628855 DOI: 10.1021/acs.orglett.0c01715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A mild and efficient Rh(III)-catalyzed aliphatic C-H acetoxylation directed by quinolines has been developed with widespread functional groups, including various halogens, which usually can provide precursors for further organic synthesis but easily results in selectivity issues in the Pd- and Ni-catalyzed reaction. Interestingly, Ac2O plays an essential role in promoting the transformation.
Collapse
Affiliation(s)
- You-Ke Chen
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yan-Shang Kang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Hua-Jin Xu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Tiantian Li
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Chen L, Zhang L, Yan G, Huang D. Recent Advances of Cinnamic Acids in Organic Synthesis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lihua Chen
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Ling Zhang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| |
Collapse
|
24
|
Yong JY, Vu HM, Li XQ, Gong AJ. Palladium (0)-catalyzed C(sp)-H oxygenation with carboxylic acids. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Gou Q, Tan X, Zhang M, Ran M, Yuan T, He S, Zhou L, Cao T, Luo F. Cobalt-Catalyzed C-H Acetoxylation of Phenols with Removable Monodentate Directing Groups: Access to Pyrocatechol Derivatives. Org Lett 2020; 22:1966-1971. [PMID: 32073867 DOI: 10.1021/acs.orglett.0c00312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An efficient cobalt-catalyzed C-H acetoxylation of phenols has been developed by using PIDA (phenyliodine diacetate) as a sole acetoxy source to synthesize pyrocatechol derivatives for the first time. The key feature of this method is the use of earth-abundant metal cobalt as the green and inexpensive catalyst for the acetoxylation of C(sp2)-H bonds under neutral reaction conditions. Furthermore, the gram-scale reaction and late-stage functionalization demonstrated the usefulness of this method.
Collapse
Affiliation(s)
- Quan Gou
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Xiaoping Tan
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Mingzhong Zhang
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Man Ran
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Tengrui Yuan
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium
| | - Shuhua He
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Linzong Zhou
- School of Geographical Science and Tourism Management, Chuxiong Normal University, Chuxiong 675000, China
| | - Tuanwu Cao
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Feihua Luo
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|
26
|
Lin J, Guo Z, Lin C, Gao F, Shen L. Nickel‐Catalyzed
ortho
‐Acyloxylation of Benzamides and Acrylamides with Carboxylic Acids. ChemistrySelect 2020. [DOI: 10.1002/slct.201904651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jingyi Lin
- Jiangxi Engineering Laboratory of Waterborne Coatings College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Zhao Guo
- Jiangxi Engineering Laboratory of Waterborne Coatings College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Cong Lin
- Jiangxi Engineering Laboratory of Waterborne Coatings College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coatings College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coatings College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University Nanchang 330013 China
| |
Collapse
|
27
|
Rawat D, Kumar R, Adimurthy S. Pd-Catalyzed ortho
Selective C-H Acyloxylation and Hydroxylation of Pyridotriazoles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deepa Rawat
- CSIR-Central Salt & Marine Chemicals Research Institute; G.B. Marg; Academy of Scientific & Innovative Research; 364 002 Bhavnagar Gujarat India
| | - Rahul Kumar
- CSIR-Central Salt & Marine Chemicals Research Institute; G.B. Marg; Academy of Scientific & Innovative Research; 364 002 Bhavnagar Gujarat India
| | - Subbarayappa Adimurthy
- CSIR-Central Salt & Marine Chemicals Research Institute; G.B. Marg; Academy of Scientific & Innovative Research; 364 002 Bhavnagar Gujarat India
| |
Collapse
|
28
|
Arshadi S, Banaei A, Monfared A, Ebrahimiasl S, Hosseinian A. Cross-dehydrogenative coupling reactions between arenes (C-H) and carboxylic acids (O-H): a straightforward and environmentally benign access to O-aryl esters. RSC Adv 2019; 9:17101-17118. [PMID: 35519864 PMCID: PMC9064605 DOI: 10.1039/c9ra01941c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
Transition-metal catalyzed cross-dehydrogenative-coupling reactions encompass highly versatile and atom economical methods for the construction of various carbon-carbon and carbon-heteroatom bonds by combining two C(X)-H (X = heteroatom) bonds. Along this line, direct acyloxylation of C-H bonds with carboxylic acids has emerged as a powerful and green approach for the synthesis of structurally diverse esters. In this focus-review we will describe recent progress in direct esterification of aromatic C-H bonds with special emphasis on the mechanistic features of the reactions. Literature has been surveyed until the end of February 2019.
Collapse
Affiliation(s)
- Sattar Arshadi
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Alireza Banaei
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Aazam Monfared
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Saeideh Ebrahimiasl
- Department of Chemistry, Ahar Branch, Islamic Azad University Ahar Iran
- Industrial Nanotechnology Research Center, Tabriz Branch, Islamic Azad University Tabriz Iran
| | - Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran P. O. Box 11365-4563 Tehran Iran
| |
Collapse
|
29
|
Affiliation(s)
- Shanshan Gao
- Materials Science and Chemical EngineeringNingbo University, Ningbo, P. R. China 315211
| | - Xing Xu
- Materials Science and Chemical EngineeringNingbo University, Ningbo, P. R. China 315211
| | - Hao Tang
- Materials Science and Chemical EngineeringNingbo University, Ningbo, P. R. China 315211
| | - Jia‐Qiang Wu
- School of Biotechnology and Health SciencesWuyi University, Jiangmen, P. R. China 529020
| | - Junfei Luo
- Materials Science and Chemical EngineeringNingbo University, Ningbo, P. R. China 315211
| |
Collapse
|
30
|
De PB, Banerjee S, Pradhan S, Punniyamurthy T. Ru(ii)-Catalyzed C7-acyloxylation of indolines with carboxylic acids. Org Biomol Chem 2019; 16:5889-5898. [PMID: 30070289 DOI: 10.1039/c8ob01603h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium(ii)-catalyzed site-selective C7-acyloxylation of indolines with carboxylic acids is presented. The substrate scope and functional group tolerance are important practical features. The kinetic isotope studies suggest that C-H bond activation may be the rate-determining step.
Collapse
Affiliation(s)
- Pinaki Bhusan De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | | | | | |
Collapse
|
31
|
Kim J, Shin K, Jin S, Kim D, Chang S. Oxidatively Induced Reductive Elimination: Exploring the Scope and Catalyst Systems with Ir, Rh, and Ru Complexes. J Am Chem Soc 2019; 141:4137-4146. [DOI: 10.1021/jacs.9b00364] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Kwangmin Shin
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Seongho Jin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
32
|
Kianmehr E, Nasab SB. Ruthenium-Catalyzed Regioselective Direct Ortho
-Acyloxylation of Azoarenes with Carboxylic Acids via C-H Bond Activation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | | |
Collapse
|
33
|
Li ZL, Wu PY, Cai C. Cobalt catalyzed regioselective C–H methylation/acetoxylation of anilides: new routes for C–C and C–O bond formation. Org Chem Front 2019. [DOI: 10.1039/c9qo00411d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first cobalt-catalyzed regioselective C–H methylation/acetoxylation reactions of anilides using peroxides and acetic acid respectively as attacking reagents have been developed herein.
Collapse
Affiliation(s)
- Ze-lin Li
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Peng-Yu Wu
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Chun Cai
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| |
Collapse
|
34
|
Chen C, Pan Y, Zhao H, Xu X, Luo Z, Cao L, Xi S, Li H, Xu L. Ruthenium(II)-Catalyzed Regioselective C-8 Hydroxylation of 1,2,3,4-Tetrahydroquinolines. Org Lett 2018; 20:6799-6803. [PMID: 30351962 DOI: 10.1021/acs.orglett.8b02926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ru(II)-catalyzed chelation-assisted highly regioselective C8-hydroxylation of 1,2,3,4-tretrahydroquinolines has been developed. Various 1,2,3,4-tetrahydroquinolines underwent smooth C8-H hydroxylation with cheap and safe K2S2O8 as the oxidant and oxygen source to furnish the corresponding products in good to excellent yields with high tolerance of the functional groups. The choice of a readily installable and removable N-pyrimidyl directing group is the key to catalysis. Mechanistic studies suggest the involvement of a six-membered ruthenacycle intermediate in the catalytic cycle. The method can also be extended to the direct hydroxylation of other (hetero)arene C-H bonds.
Collapse
Affiliation(s)
- Changjun Chen
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Yixiao Pan
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Haoqiang Zhao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Xin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Zhenli Luo
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Lei Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Siqi Xi
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Huanrong Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Lijin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| |
Collapse
|
35
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
36
|
Zhai W, Li B, Wang B. RhIII
-Catalyzed Directed Selective C7-Hydroxylation and Acetoxylation of Indolines. ChemistrySelect 2018. [DOI: 10.1002/slct.201801425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Wenchao Zhai
- State Key Laboratory of Elemento-Organic Chemistry; College Chemistry; Nankai University; Tianjin 300071 (P. R. China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry; College Chemistry; Nankai University; Tianjin 300071 (P. R. China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry; College Chemistry; Nankai University; Tianjin 300071 (P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 (P. R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Insti-tute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 (P. R. China
| |
Collapse
|
37
|
Xu X, Zhao H, Xu J, Chen C, Pan Y, Luo Z, Zhang Z, Li H, Xu L. Rhodium(III)-Catalyzed Oxidative Annulation of 2,2′-Bipyridine N-Oxides with Alkynes via Dual C–H Bond Activation. Org Lett 2018; 20:3843-3847. [DOI: 10.1021/acs.orglett.8b01434] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jianbin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Changjun Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yixiao Pan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhenli Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zongyao Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
38
|
Sarkar T, Pradhan S, Punniyamurthy T. Ruthenium(II)-Catalyzed Positional Selective C-H Oxygenation of N-Aryl-2-pyrimidines. J Org Chem 2018; 83:6444-6453. [PMID: 29761702 DOI: 10.1021/acs.joc.8b00714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient Ru-catalyzed regioselective C-H oxygenation of N-aryl-2-pyrimidines is described with aryl carboxylic acids in the presence of AgSbF6 as an additive and Ag2CO3 as an oxidant. The reaction can be extended to alkyl, heteroaryl, and α,β-unsaturated carboxylic acids. The regioselectivity, broad substrate scope, and functional group tolerance are the significant practical advantages.
Collapse
Affiliation(s)
- Tanumay Sarkar
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Sourav Pradhan
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | | |
Collapse
|
39
|
Wang F, Lin Z, Yu W, Hu Q, Shu C, Zhang W. Copper-catalyzed C–H acyloxylation of 2-phenylpyridine using oxygen as the oxidant. RSC Adv 2018; 8:16378-16382. [PMID: 35542218 PMCID: PMC9080246 DOI: 10.1039/c8ra01974f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
An efficient copper-catalyzed direct o-acyloxylation of 2-phenylpyridine with carboxylic acids using oxygen as the oxidant has been developed. Various acids including aromatic acids, cinnamic acids and aliphatic acids are effective acyloxylation reagents and provide the desired products in moderate to excellent yields. The reaction proceeds well under an oxygen atmosphere, making this method potentially practical. A copper catalyzed direct o-acyloxylation of 2-phenylpyridine with various carboxylic acids using oxygen as oxidant has been developed.![]()
Collapse
Affiliation(s)
- Feifan Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Zhiyang Lin
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Weisheng Yu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Qingdong Hu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Chao Shu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Wu Zhang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|