1
|
Kaur M. Imine-Decorated Copper-Based Metal-Organic Framework for the Photodegradation of Methylene Blue. J Fluoresc 2024; 34:1119-1129. [PMID: 37486559 DOI: 10.1007/s10895-023-03346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
A low cost imine-decorated linker, 4,4'-(hydrazine-1,2-diylidenedimethylylidene)dibenzoic acid was utilized for the preparation of copper-based metal-organic framework (MOF) denoted as Cu-L via a solvothermal technique. The synthesized MOF material has been fully characterized by different analytical techniques such as Fourier-transform infrared (FT-IR) spectroscopy, powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDX), nitrogen adsorption-desorption isotherm analysis, and thermogravimetric analysis (TGA). It has been found that the coordination of Cu2+ with L considerably reduced the band gap of the L of nearly about 1 eV, which is approximately 26% decline in total. Notably, a narrow band gap of the photocatalyst is an essential requirement for the proficient photodegradation of organic contaminants. An excellent optical properties and narrow band gap of (2.8 eV) of Cu-L ensure their suitability as a photocatalyst for the degradation of methylene blue (MB) dye. In the presence of Cu-L photocatalyst, 84.22% degradation of MB dye was observed after 150 min under sunlight exposure. It is the first time that imine-functionalized MOF was utilized for the degradation of MB dye under sunlight irradiation. For understanding the photodegradation of MB dye by the Cu-L photocatalyst, all the plausible mechanistic studies have been carried out in detail. Both theoretical (with the help of density functional theory (DFT) calculations) as well as experimental studies have been conducted to justify the possible mechanisms for the photodegradation of MB dye by Cu-L. The current work may open a new opportunity to construct a cheap MOF-based photocatalysts for fast degradation of dye contaminants.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India.
| |
Collapse
|
2
|
Birsa ML, Sarbu LG. An Improved Synthetic Method for Sensitive Iodine Containing Tricyclic Flavonoids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238430. [PMID: 36500522 PMCID: PMC9740535 DOI: 10.3390/molecules27238430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
The synthesis of new iodine containing synthetic tricyclic flavonoids is reported. Due to the sensitivity of the precursors to the heat and acidic conditions required for the ring closure of the 1,3-dithiolium core, a new cyclization method has been developed. It consists in the treatment of the corresponding iodine-substituted 3-dithiocarbamic flavonoids with a 1:1 (v/v) mixture of glacial acetic acid-concentrated sulfuric acid at 40 °C. The synthesis of the iodine-substituted 3-dithiocarbamic flavonoids has also been tuned in terms of reaction conditions.
Collapse
|
3
|
Liu X, Yang H, Diao Y, He Q, Lu C, Singh A, Kumar A, Liu J, Lan Q. Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives. CHEMOSPHERE 2022; 307:135729. [PMID: 35931255 DOI: 10.1016/j.chemosphere.2022.135729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Nickel-based metal-organic skeletal materials (Ni-MOFs) are a new class of inorganic materials that have aroused attention of investigators during past couple of years. They offer advantages such as high specific surface area, structural diversity, tunable framework etc. This assorted class of materials exhibited catalytic activity and electrochemical properties and display wide range of applications in the fields of electrochemical sensing, electrical energy storage and electrocatalysis. In this context, the presented review focuses on strategies to improve the electrochemical performance and stability of Ni-MOFs through the optimization of synthesis conditions, the construction of composite materials, and the preparation of derivatives of precursors. The review also presents the applications of Ni-MOFs and their derivatives as electrochemical sensors, energy storage devices, and electrocatalysts. In addition, the challenges and further electrochemical development prospects of Ni-MOFs have been discussed.
Collapse
Affiliation(s)
- Xuezhang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Hanping Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yingyao Diao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Qi He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Ayushi Singh
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Qian Lan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
4
|
New Cu(II)-based three dimensional supramolecular coordination polymer as photocatalyst for the degradation of methylene blue. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Sensing and photocatalytic properties of a new 1D Zn(II)-based coordination polymer derived from the 3,5-dibromosalicylaldehyde nicotinoylhydrazone ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Liu L, Doucet H. One Pot Access to 2'‐Aryl‐2,3'‐Bithiophenes via Twofold Palladium‐Catalyzed C‐X/C‐H Coupling Associated to a Pd‐1,4‐Migration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Liu H, Tao YD, Wang LH, Ye DN, Huang XM, Chen N, Li CZ, Liu SY. C-H Direct Arylation: A Robust Tool to Tailor the π-Conjugation Lengths of Non-Fullerene Acceptors. CHEMSUSCHEM 2022; 15:e202200034. [PMID: 35344269 DOI: 10.1002/cssc.202200034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Facile synthesis without involvement of toxic reagents is of great significance in the practical application of photovoltaic materials. In this work, four acceptor-donor-acceptor (A-D-A) type unfused-ring acceptors (UFRAs) with stepwise extension in π-conjugation, i. e., CPFB-IC-n (n=1-4), involving cyclopentadithiophene (CPDT) and 1,4-difluorobenzene (DFB) as cores, are facilely synthesized by an atom-, step-economic and labor-saving method through direct arylation of C-H bond (DACH). Among them, CPFB-IC-4 has the longest conjugation lengths among the molecular UFRA ever reported. The dependence of optoelectronic properties and photovoltaic performances of CPFB-IC-n (n=1-4) on conjugation length were systematically investigated. CPFB-IC-2 with near zero highest occupied molecular orbital (HOMO) offsets (ΔEHOMO =0.06 eV) achieves the highest power conversion efficiency (PCE), due to the significantly enhanced open voltage (VOC ) and short current (JSC ) caused by the balanced frontier molecular orbitals (FMOs) and complementary light absorption. Our work demonstrates that the optical properties and FMOs of UFRAs can be finely tuned by the stepwise elongation of conjugation lengths. Meanwhile, DACH coupling as a powerful tool here established will be a promising candidate for synthesizing high-performance oligomeric UFRAs.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yang-Dan Tao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Li-Hong Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Dong-Nai Ye
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xu-Min Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Na Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chang-Zhi Li
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
8
|
Zheng R, Guo J, Cai X, Bin L, Lu C, Singh A, Trivedi M, Kumar A, Liu J. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids Surf B Biointerfaces 2022; 213:112432. [PMID: 35259704 DOI: 10.1016/j.colsurfb.2022.112432] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
Abstract
Manganese-based Metal-organic Frameworks (Mn-MOFs) represents a unique sub-class of MOFs with low toxicity, oxidative ability, and biocompatibility, which plays vital role in the application of this class of MOFs in medical field. Mn-MOFs show great potential in biomedical applications, and has been extensively studied as compared to other MOFs in transition metal series. They are important in medical applications because Mn(II) possess large electron spin number and longer electron relaxation time. They display fast water exchange rate and could be employed as a potential MRI contrast agent because of their strong targeting ability. Manganese complexes with different ligands also display prospective applications in area such as carrier for drug targeting in anti-tumor and antimicrobial therapy. In the review presented herewith, the application of Mn-based complexes and Mn-MOFs have been emphasized in the area such as imaging viz. MRI, multimodal imaging, antitumor activities such as chemodynamic therapy, photodynamic therapy, sonodynamic therapy and antimicrobial applications. Also, how rational designing and syntheses of targeted Mn-based complexes and Mn-MOFs can engender desired applications.
Collapse
Affiliation(s)
- Rouqiao Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Junru Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinyi Cai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lianjie Bin
- Department of General Surgery, Dongguan People's Hospital, Wanjiang District, Dongguan 523000, China.
| | - Chengyu Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Amita Singh
- Department of Chemistry, Dr. Ram Manohar Lohiya Awadh University, Ayodhya, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
9
|
Tan ZR, Xing YQ, Cheng JZ, Zhang G, Shen ZQ, Zhang YJ, Liao G, Chen L, Liu SY. EDOT-based conjugated polymers accessed via C-H direct arylation for efficient photocatalytic hydrogen production. Chem Sci 2022; 13:1725-1733. [PMID: 35282637 PMCID: PMC8826507 DOI: 10.1039/d1sc05784g] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
3,4-Ethylene dioxythiophene (EDOT), as a monomer of commercial conductive poly(3,4-ethylene dioxythiophene) (PEDOT), has been facilely incorporated into a series of new π-conjugated polymer-based photocatalysts, i.e., BSO2-EDOT, DBT-EDOT, Py-EDOT and DFB-EDOT, through atom-economic C-H direct arylation polymerization (DArP). The photocatalytic hydrogen production (PHP) test shows that donor-acceptor (D-A)-type BSO2-EDOT renders the highest hydrogen evolution rate (HER) among the linear conjugated polymers (CPs) ever reported. A HER up to 0.95 mmol h-1/6 mg under visible light irradiation and an unprecedented apparent quantum yield of 13.6% at 550 nm are successfully achieved. Note that the photocatalytic activities of the C-H/C-Br coupling-derived EDOT-based CPs are superior to those of their counterparts derived from the classical C-Sn/C-Br Stille coupling, demonstrating that EDOT is a promising electron-rich building block which can be facilely integrated into CP-based photocatalysts. Systematic studies reveal that the enhanced water wettability by the integration of polar BSO2 with hydrophilic EDOT, the increased electron-donating ability by O-C p-π conjugation, the improved electron transfer by D-A architecture, broad light harvesting, and the nano-sized colloidal character in a H2O/NMP mixed solvent rendered BSO2-EDOT as one of the best CP photocatalysts toward PHP.
Collapse
Affiliation(s)
- Zhi-Rong Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yu-Qin Xing
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Jing-Zhao Cheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Zhao-Qi Shen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yu-Jie Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences Wuhan 430074 China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| |
Collapse
|
10
|
Wang LH, Chen XJ, Ye DN, Liu H, Chen Y, Zhong AG, Li CZ, Liu SY. Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors via C–H direct arylation. Polym Chem 2022. [DOI: 10.1039/d2py00139j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three long-chain oligomeric acceptors with a stepwise increase in conjugation length are obtained via three successive one-pot reactions and a systematic structure–property–performance relationship study was carried out.
Collapse
Affiliation(s)
- Li-Hong Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Xian-Jie Chen
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dong-Nai Ye
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hui Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yan Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Ai-Guo Zhong
- Department of Pharmacy & Chemistry, Taizhou University, 317000, PR China
| | - Chang-Zhi Li
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
11
|
Liu JQ, Kumar A, Srivastava D, Pan Y, Dai Z, Zhang W, Liu Y, Qiu Y, Liu S. Recent advances on bimetallic metal-organic frameworks (BMOFs): Syntheses, applications and challenges. NEW J CHEM 2022. [DOI: 10.1039/d2nj01994a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic metal-organic frameworks (MOFs) possess two different metal ions as nodes in their molecular frameworks. They are prepared by either using one-pot syntheses wherein different metals are mixed with suitable...
Collapse
|
12
|
Mishra A, Gupta S, Patra A. Synthesis and properties of 3,4‐dioxythiophene and 1,4‐dialkoxybenzene based copolymers via direct
CH
arylation: Dopant‐free hole transport material for perovskite solar cells. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anamika Mishra
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division CSIR‐National Physical Laboratory Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sonal Gupta
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division CSIR‐National Physical Laboratory Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Asit Patra
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division CSIR‐National Physical Laboratory Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
13
|
Liu H, Zhang X, Wang L, Chen Y, Ye D, Chen L, Wen H, Liu S. One‐Pot
Synthesis of 3‐ to
15‐Mer π‐Conjugated
Discrete Oligomers with Widely Tunable Optical Properties. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Xiao‐Feng Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Li‐Hong Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Yan Chen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Dong‐Nai Ye
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Long Chen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - He‐Rui Wen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Shi‐Yong Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| |
Collapse
|
14
|
Naqvi S, Chaudhary N, Singhal S, Yadav P, Patra A. Hole Transport Materials by Direct C‐H Arylation for Organic Solar Cells: Effect of Structure and Conjugation on Electrical, Optical and Computational Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202004241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sheerin Naqvi
- Photovoltaic Metrology Section Advanced Materials and Device Metrology Division CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Neeraj Chaudhary
- Photovoltaic Metrology Section Advanced Materials and Device Metrology Division CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi 110012 India
| | - Sanchita Singhal
- Photovoltaic Metrology Section Advanced Materials and Device Metrology Division CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Preeti Yadav
- Photovoltaic Metrology Section Advanced Materials and Device Metrology Division CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Asit Patra
- Photovoltaic Metrology Section Advanced Materials and Device Metrology Division CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
15
|
Gońka E, Yang L, Steinbock R, Pesciaioli F, Kuniyil R, Ackermann L. π-Extended Polyaromatic Hydrocarbons by Sustainable Alkyne Annulations through Double C-H/N-H Activation. Chemistry 2019; 25:16246-16250. [PMID: 31820511 PMCID: PMC6973059 DOI: 10.1002/chem.201905023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 12/12/2022]
Abstract
The widespread applications of substituted diketopyrrolopyrroles (DPPs) call for the development of efficient methods for their modular assembly. Herein, we present a π-expansion strategy for polyaromatic hydrocarbons (PAHs) by C-H activation in a sustainable fashion. Thus, twofold C-H/N-H activations were accomplished by versatile ruthenium(II)carboxylate catalysis, providing step-economical access to diversely decorated fluorogenic DPPs that was merged with late-stage palladium-catalyzed C-H arylation on the thus-assembled DPP motif.
Collapse
Affiliation(s)
- Elżbieta Gońka
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Ralf Steinbock
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Fabio Pesciaioli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
16
|
Novel Diketopyrrolopyrrole-Based π-Conjugated Molecules Synthesized Via One-Pot Direct Arylation Reaction. Molecules 2019; 24:molecules24091760. [PMID: 31067638 PMCID: PMC6539255 DOI: 10.3390/molecules24091760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/17/2022] Open
Abstract
Diketopyrrolopyrrole (DPP) is an important type of π-conjugated building block for high-performance organic electronic materials. DPP-based conjugated materials are usually synthesized via Suzuki, Stille, or Negishi cross-coupling reactions, which require organometallic precursors. In this paper, a series of novel phenyl-cored DPP molecules, including five meta-phenyl-cored molecules and four para-phenyl-cored molecules, have been synthesized in moderate to good yields, in a facile manner, through the Pd-catalyzed direct arylation of C–H bonds, and their optoelectrical properties have been investigated in detail. All new molecules have been fully characterized by NMR, MALDI-TOF MS, elemental analysis, UV–visible spectroscopy, and cyclic voltammetry. This synthetic strategy has evident advantages of atom- and step-economy and low cost, compared with traditional cross-coupling reactions.
Collapse
|
17
|
Casutt M, Dittmar B, Makowska H, Marszalek T, Kushida S, Bunz UHF, Freudenberg J, Jänsch D, Müllen K. A Diketopyrrolopyrrole‐Based Dimer as a Blue Pigment. Chemistry 2019; 25:2723-2728. [DOI: 10.1002/chem.201806121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/07/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Manuela Casutt
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab Speyerer Straße 4 69115 Heidelberg Germany
| | - Benedikt Dittmar
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hanna Makowska
- Department of Molecular Physics, Faculty of Chemistry Lodz University of Technology Zeromskiego 116 90–924 Lodz Poland
| | - Tomasz Marszalek
- Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Soh Kushida
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre of Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab Speyerer Straße 4 69115 Heidelberg Germany
| | - Daniel Jänsch
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab Speyerer Straße 4 69115 Heidelberg Germany
| | - Klaus Müllen
- Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
18
|
Liu SY, Cheng JZ, Zhang XF, Liu H, Shen ZQ, Wen HR. Single-step access to a series of D–A π-conjugated oligomers with 3–10 nm chain lengths. Polym Chem 2019. [DOI: 10.1039/c8py01478g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of five D–A π-conjugated oligo(DPP-co-fluorene)s progressively consisting of 3, 5, 7, 9 and 11 monomers and with chain lengths ranging between 3 and 10 nm have all been synthesized in a single step by direct C–H arylated coupling.
Collapse
Affiliation(s)
- Shi-Yong Liu
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Jing-Zhao Cheng
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Xiao-Feng Zhang
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Hui Liu
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Zhao-Qi Shen
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - He-Rui Wen
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| |
Collapse
|