1
|
Asadzadeh F, Poursattar Marjani A. Revolutionizing acridine synthesis: novel core-shell magnetic nanoparticles and Co-Zn zeolitic imidazolate framework with 1-aza-18-crown-6-ether-Ni catalysts. Sci Rep 2024; 14:25739. [PMID: 39468209 PMCID: PMC11519366 DOI: 10.1038/s41598-024-75591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
Nanoparticles have emerged as a critical catalyst substrate due to their exceptional features, such as catalytic efficiency, high stability, and easy recovery. In our research, we have developed an innovative and environmentally friendly magnetic mesoporous nanocatalyst. Using the co-precipitation method, we produced magnetic nanoparticles (Fe3O4) and coated them with Zeolitic imidazolate frameworks (ZIFs) to enhance their surface area and chemical stability. The resulting substrate was functionalized with 1-aza-18-crown-6-ether and nickel metal. Our prepared catalyst has been rigorously evaluated using advanced techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmet-Teller (BET), vibrating sample magnetometry (VSM), scanning electron microscopy and energy dispersive X-ray (SEM-EDS), inductively coupled plasma (ICP), elemental mapping analysis (EMA), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). By synthesizing acridine derivatives, we have demonstrated the exceptional efficiency of our catalyst in organic compound synthesis. Through optimization, we have established the ideal parameters for catalytic processes, including catalyst amount, temperature, time, and ultrasonic use. Our catalyst has been proven to exhibit remarkable physical and chemical properties, such as porosity, temperature resistance, and recyclability. Notably, our heterogeneous nanocatalyst has shown outstanding performance and can be recycled six times without any loss in efficiency, affirming its potential in acridine.
Collapse
Affiliation(s)
- Fatemeh Asadzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | |
Collapse
|
2
|
Fonte M, Rôla C, Santana S, Prudêncio M, Almeida J, Ferraz R, Prudêncio C, Teixeira C, Gomes P. Repurposing antiplasmodial leads for cancer: Exploring the antiproliferative effects of N-cinnamoyl-aminoacridines. Bioorg Med Chem Lett 2024; 111:129894. [PMID: 39043264 DOI: 10.1016/j.bmcl.2024.129894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Drug repurposing and rescuing have been widely explored as cost-effective approaches to expand the portfolio of chemotherapeutic agents. Based on the reported antitumor properties of both trans-cinnamic acids and quinacrine, an antimalarial aminoacridine, we explored the antiproliferative properties of two series of N-cinnamoyl-aminoacridines recently identified as multi-stage antiplasmodial leads. The compounds were evaluated in vitro against three cancer cell lines (MKN-28, Huh-7, and HepG2), and human primary dermal fibroblasts. One of the series displayed highly selective antiproliferative activity in the micromolar range against the three cancer cell lines tested, without any toxicity to non-carcinogenic cells.
Collapse
Affiliation(s)
- Mélanie Fonte
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Catarina Rôla
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Sofia Santana
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joana Almeida
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Portugal
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal; Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Portugal
| | - Cristina Prudêncio
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal; Gyros Protein Technologies Inc., Tucson, AZ, USA
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal.
| |
Collapse
|
3
|
Faryabi E, Sheikhhosseini E, Yahyazadehfar M. Synthesis and characterization of bentonite-based NiO nanoparticles as bi-functional heterogeneous catalyst for efficient synthesis of 1,8-dioxo-decahydroacridines. Sci Rep 2024; 14:20696. [PMID: 39237602 PMCID: PMC11377430 DOI: 10.1038/s41598-024-71898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
A straightforward, expeditious, robust, and efficient synthesis of NiO@Bentonite nanocatalyst was done using a simple microwave method. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), thermal behavior analysis, and vibrating sample magnetometer (VSM) techniques were used to characterize the physicochemical properties of the NiO@Bentonite nanocomposites. The outcomes demonstrated that the NiO nanoparticles are evenly distributed throughout the Bentonite surface and that the NiO@Bentonite nanocomposites have a high specific surface area and rich pore structure. The following report details the investigation of this catalyst for the preparation of 1, 8-dioxodecahydroacridine heterocycles in a one-pot, three-component reaction of aromatic aldehydes, dimedone, and aniline. After the conditions were optimized, the results demonstrated that this reaction could be carried out in an aqueous medium with a good yield.
Collapse
Affiliation(s)
- Ehsan Faryabi
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | | | |
Collapse
|
4
|
Hrubaru MM, Draghici C, Ngounoue Kamga FA, Diacu E, Egemonye TC, Ekennia AC, Ungureanu EM. Experiments and Calculation on New N,N- bis-Tetrahydroacridines. Molecules 2024; 29:4082. [PMID: 39274930 PMCID: PMC11396808 DOI: 10.3390/molecules29174082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Tetrahydroacridines arouse particular interest due to the potential possibilities of application in the medical field and protection against corrosion. Bis-tetrahydroacridines were newly synthesized by Pfitzinger condensation of 5,5'-(ethane-1,2-diyl) diindoline-2,3-dione with several cyclanones. NMR, MS, and FT-IR were used to prove their molecular structure. In addition, a computer-aided study was performed for the lowest energy conformers of each structure, in vacuum conditions, at ground state using DFT models to assess their electronic properties. UV-Vis and voltammetric methods (cyclic voltammetry, differential pulse voltammetry, and rotating disk electrode voltammetry) were used to investigate their optical and electrochemical properties. The results obtained for these π-conjugated heteroaromatic compounds lead to the conclusion that they have real potential in applications in different fields such as pharmaceuticals and especially as corrosion inhibitors.
Collapse
Affiliation(s)
- Madalina-Marina Hrubaru
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Bucharest, Sector 6, Splaiul Independentei 202B, P.O. Box 35-108, 060023 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu Street, Sector 1, 011061 Bucharest, Romania
| | - Constantin Draghici
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Bucharest, Sector 6, Splaiul Independentei 202B, P.O. Box 35-108, 060023 Bucharest, Romania
| | - Francis Aurelien Ngounoue Kamga
- Coordination Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde, Yaounde P.O. Box 812, Cameroon
| | - Elena Diacu
- Doctoral School Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu Street, Sector 1, 011061 Bucharest, Romania
| | - ThankGod C Egemonye
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540281, Cross River State, Nigeria
| | - Anthony C Ekennia
- Department of Chemistry, Alex Ekwueme Federal University, Ndufu-Alike, P.M.B. 1010, Abakiliki 482131, Ebonyi State, Nigeria
| | - Eleonora-Mihaela Ungureanu
- Doctoral School Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu Street, Sector 1, 011061 Bucharest, Romania
| |
Collapse
|
5
|
Suresh S, Nawaz Khan FR. One-Pot Sequential Synthesis of Alkenylated Dihydroquinolinones and Hexahydroacridinones in Deep Eutectic Solvent Medium. ACS OMEGA 2024; 9:36198-36219. [PMID: 39220520 PMCID: PMC11360033 DOI: 10.1021/acsomega.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
The sequential synthesis of N-heterocycles from saturated ketones poses significant challenges and has rarely been reported. Herein, an efficient synthesis of alkenylated dihydroquinolinones 7 and hexahydroacridinones 8 is achieved from saturated ketones 1 or 2 via dehydrogenation, cyclization, oxidation, and α-alkenylation in choline chloride-based deep eutectic solvent (DES) medium. This strategy provides alkenylated dihydroquinolinones 7 and hexahydroacridinones 8 in excellent yield from low-cost, readily available starting materials under environmentally benign conditions. Furthermore, the synthesized compounds (4, 5, 7, and 8) were investigated for their photophysical properties through absorption and emission spectral studies.
Collapse
Affiliation(s)
- Sundararajan Suresh
- Organic and Medicinal Chemistry
Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry
Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Ghosh S, Das D, Mandal RD, Das AR. Harnessing the benzyne insertion consequence to enable π-extended pyrido-acridine and quinazolino-phenanthridine. Org Biomol Chem 2024; 22:5591-5602. [PMID: 38898782 DOI: 10.1039/d4ob00533c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Distinct protocols have been devised for the preparation of hybrid heterocyclic scaffolds like π-extended pyrido-acridines and quinazolino-phenanthridines duly materialized through Rh(III)- and Pd(II)-mediated catalytic courses commencing from acridine and quinazolimine scaffolds. Interestingly, the parent compounds (acridines and quinazolimines) are actualized from 2-aminobenzonitrile and anthranilic acid, where 2-aminobenzonitrile acts as the 1,4-dipolarophilic species and anthranilic acid as the benzyne precursor. The molecular assembly of acridine suggests the participation of two benzyne units. In addition, the structural motif of the quinazolimine ring features one benzyne unit. Further, indolizine ring containing the enaminonitrile skeleton upon exposure to benzyne forms an indolizine fused quinoline ring, decorated with three benzyne units.
Collapse
Affiliation(s)
- Swarnali Ghosh
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700009, India.
| | - Dwaipayan Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700009, India.
| | - Rahul Dev Mandal
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700009, India.
| | - Asish R Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
7
|
Abouelenein MG, Mohamed MBI, Elsenety MM, El-Rashedy AA, Ghalib SH, Mohamed FAE, El-Ebiary NMA, Ageeli AA. Facile and Novel Synthetic Approach, Molecular Docking, Molecular Dynamics, and Drug-Likeness Evaluation of 9-Substituted Acridine Derivatives as Dual Anticancer and Antimicrobial Agents. Chem Biodivers 2024; 21:e202301986. [PMID: 38478727 DOI: 10.1002/cbdv.202301986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.
Collapse
Affiliation(s)
- Mohamed G Abouelenein
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Koam, Menofia, Egypt
| | | | - Mohamed M Elsenety
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt, P.O., 11884
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, National Research Center (NRC), Egypt
| | - Samirah H Ghalib
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | | | - Nora M A El-Ebiary
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | - Abeer A Ageeli
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| |
Collapse
|
8
|
Galenko EE, Novikov MS, Bunev AS, Khlebnikov AF. Acridine-Isoxazole and Acridine-Azirine Hybrids: Synthesis, Photochemical Transformations in the UV/Visible Radiation Boundary Region, and Anticancer Activity. Molecules 2024; 29:1538. [PMID: 38611817 PMCID: PMC11013717 DOI: 10.3390/molecules29071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Easy-to-handle N-hydroxyacridinecarbimidoyl chloride hydrochlorides were synthesized as convenient nitrile oxide precursors in the preparation of 3-(acridin-9/2-yl)isoxazole derivatives via 1,3-dipolar cycloaddition with terminal alkynes, 1,1-dichloroethene, and acrylonitrile. Azirines with an acridin-9/2-yl substituent attached directly or via the 1,2,3-triazole linker to the azirine C2 were also synthesized. The three-membered rings of the acridine-azirine hybrids were found to be resistant to irradiation in the UV/visible boundary region, despite their long-wave absorption at 320-420 nm, indicating that the acridine moiety cannot be used as an antenna to transfer light energy to generate nitrile ylides from azirines for photoclick cycloaddition. The acridine-isoxazole hybrids linked at the C9-C3 or C2-C3 atoms under blue light irradiation underwent the addition of such hydrogen donor solvents, such as, toluene, o-xylene, mesitylene, 4-chlorotoluene, THF, 1,4-dioxane, or methyl tert-butyl ether (MTBE), to the acridine system to give the corresponding 9-substituted acridanes in good yields. The synthesized acridine-azirine, acridine-isoxazole, and acridane-isoxazole hybrids exhibited cytotoxicity toward both all tested cancer cell lines (HCT 116, MCF7, and A704) and normal cells (WI-26 VA4).
Collapse
Affiliation(s)
- Ekaterina E. Galenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Mikhail S. Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Alexander S. Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti 445020, Russia;
| | - Alexander F. Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| |
Collapse
|
9
|
Fonte M, Teixeira C, Gomes P. Improved synthesis of antiplasmodial 4-aminoacridines and 4,9-diaminoacridines. RSC Adv 2024; 14:6253-6261. [PMID: 38375018 PMCID: PMC10875606 DOI: 10.1039/d4ra00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Acridines are one of the most important nitrogen-containing heterocycle systems and have many applications in the therapeutic field. However, the synthesis of acridine-based scaffolds is not always straightforward. Herein, we report the optimization of two multi-step synthetic routes towards 4,9-diaminoacridines and 4-aminoacridines, which have shown promising antiplasmodial properties. The improved synthesis pathways make use of greener, simpler, and more efficient methods, with less reaction steps and increased overall yields, which were doubled in some cases. These are impactful results towards future approaches to the chemical synthesis of acridine-based compounds.
Collapse
Affiliation(s)
- Mélanie Fonte
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto Portugal
| |
Collapse
|
10
|
Shirisha T, Majhi S, Balasubramanian S, Kashinath D. Metal-free C(sp 3)-H functionalization (C-C and C-N bond formation) of 1,2,3,4-tetrahydroacridines using deep eutectic solvents as catalyst and reaction medium. Org Biomol Chem 2024; 22:1434-1440. [PMID: 38265125 DOI: 10.1039/d3ob01752d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Herein, we report a metal-free and efficient method for the C(sp3)-H functionalization of 1,2,3,4-tetrahydroacridines at the C4-position by the addition of azodicarboxylates (C-N bond) and maleimides (C-C bond) using deep eutectic solvents (DESs) at 80 °C. The C4-functionalized 1,2,3,4-tetrahydroacridines were achieved with high atom efficiency, precise regioselectivity, and yields ranging from 70-96%. The practicality of the developed method has been demonstrated through gram-scale synthesis. Also the green-metrics were calculated for the developed method and it was found that the metrics are near to the ideal values.
Collapse
Affiliation(s)
| | - Subir Majhi
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| | - Sridhar Balasubramanian
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad-500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| |
Collapse
|
11
|
Pawlędzio S, Ziemniak M, Trzybiński D, Arhangelskis M, Makal A, Woźniak K. Influence of N-protonation on electronic properties of acridine derivatives by quantum crystallography. RSC Adv 2024; 14:5340-5350. [PMID: 38348299 PMCID: PMC10859733 DOI: 10.1039/d3ra08081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Applications of 9-aminoacridine (9aa) and its derivatives span fields such as chemistry, biology, and medicine, including anticancer and antimicrobial activities. Protonation of such molecules can alter their bioavailability as weakly basic drugs like aminoacridines exhibit reduced solubility at high pH levels potentially limiting their effectiveness in patients with elevated gastric pH. In this study, we analyse the influence of protonation on the electronic characteristics of the molecular organic crystals of 9-aminoacridine. The application of quantum crystallography, including aspherical atom refinement, has enriched the depiction of electron density in the studied systems and non-covalent interactions, providing more details than previous studies. Our experimental results, combined with a topological analysis of the electron density and its Laplacian, provided detailed descriptions of how protonation changes the electron density distribution around the amine group and water molecule, concurrently decreasing the electron density at bond critical points of N/O-H bonds. Protonation also alters the molecular architecture of the systems under investigation. This is reflected in different proportions of the N⋯H and O⋯H intermolecular contacts for the neutral and protonated forms. Periodic DFT calculations of the cohesive energies of the crystal lattice, as well as computed interaction energies between molecules in the crystal, confirm that protonation stabilises the crystal structure due to a positive synergy between strong halogen and hydrogen bonds. Our findings highlight the potential of quantum crystallography in predicting crystal structure properties and point to its possible applications in developing new formulations for poorly soluble drugs.
Collapse
Affiliation(s)
- Sylwia Pawlędzio
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Marcin Ziemniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Damian Trzybiński
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Mihails Arhangelskis
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Anna Makal
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Krzysztof Woźniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| |
Collapse
|
12
|
Shirisha T, Majhi S, Divakar K, Kashinath D. Metal-free synthesis of functionalized tacrine derivatives and their evaluation for acetyl/butyrylcholinesterase and α-glucosidase inhibition. Org Biomol Chem 2024; 22:790-804. [PMID: 38167698 DOI: 10.1039/d3ob01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A mild and greener protocol was developed for C-C (C(sp3)-H functionalization) and C-N bond formation to synthesize functionalized tacrine derivatives using a biodegradable and reusable deep eutectic solvent [(DES) formed from N,N'-dimethyl urea and L-(+)-tartaric acid in a 3 : 1 ratio at 80 °C]. The condensation of 9-chloro-1,2,3,4-tetrahydroacridines with a variety of aromatic aldehydes gave unsaturated compounds via C(sp3)-H functionalization (at the C-4 position) with good yields. The substituted N-aryl tacrine derivatives were obtained from the condensed products of 9-chloro-1,2,3,4-tetrahydroacridine with substituted anilines via the nucleophilic substitution reaction (SN2 type) in the DES with good yields. This is the first example of C4-functionalized tacrine derivatives, highlighting the dual capacity of the DES to serve as both a catalyst and a solvent for facilitating C-N bond formation on acridine. The generated compounds were evaluated for acetyl/butyrylcholinesterase (AChE/BChE) and α-glucosidase inhibitory activity. It was found that the majority of the compounds reported here were significantly more potent inhibitors than the standard inhibitor tacrine (AChE IC50 = 203.51 nM; BChE IC50 = 204.01 nM). Among the compounds screened, 8m was found to be more potent with IC50 = 125.06 nM and 119.68 nM towards AChE and BChE inhibition respectively. The α-glucosidase inhibitory activity of the compounds was tested using acarbose as a standard drug (IC50 = 23 100 nM) and compound 8j was found to be active with IC50 = 19 400 nM.
Collapse
Affiliation(s)
| | - Subir Majhi
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| | - Kalivarathan Divakar
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous), Sriperumbudur, Tamilnadu-602 117, India.
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| |
Collapse
|
13
|
Saivish MV, Menezes GDL, da Silva RA, de Assis LR, Teixeira IDS, Fulco UL, Avilla CMS, Eberle RJ, Santos IDA, Korostov K, Webber ML, da Silva GCD, Nogueira ML, Jardim ACG, Regasin LO, Coronado MA, Pacca CC. Acridones as promising drug candidates against Oropouche virus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100217. [PMID: 38234431 PMCID: PMC10792649 DOI: 10.1016/j.crmicr.2023.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Oropouche virus (OROV) is an emerging vector-borne arbovirus found in South America that causes Oropouche fever, a febrile infection similar to dengue fever. It has a high epidemic potential, causing illness in over 500,000 cases diagnosed since the virus was first discovered in 1955. Currently, the prevention of human viral infection depends on vaccination, but availability for many viruses is limited, and they are classified as neglected viruses. At present, there are no vaccines or antiviral treatments available. An alternative approach to limiting the spread of the virus is to selectively disrupt viral replication mechanisms. Here, we demonstrate the inhibitory effect of acridones, which efficiently inhibited viral replication by 99.9 % in vitro. To evaluate possible mechanisms of action, we conducted tests with dsRNA, an intermediate in virus replication, as well as MD simulations, docking, and binding free energy analysis. The results showed a strong interaction between FAC21 and the OROV endonuclease, which possibly limits the interaction of viral RNA with other proteins. Therefore, our results suggest a dual mechanism of antiviral action, possibly caused by ds-RNA intercalation. In summary, our findings demonstrate that a new generation of antiviral drugs could be developed based on the selective optimization of molecules.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
| | - Gabriela de Lima Menezes
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí, GO 75801-615, Brazil
- Bioinformatics Multidisciplinary Environment, Programa de Pós-graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal 59078-400, RN, Brazil
| | | | - Leticia Ribeiro de Assis
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Igor da Silva Teixeira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
| | - Umberto Laino Fulco
- Bioinformatics Multidisciplinary Environment, Programa de Pós-graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal 59078-400, RN, Brazil
| | - Clarita Maria Secco Avilla
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Raphael Josef Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstraße, Düsseldorf 40225, Germany
| | - Igor de Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil
| | - Karolina Korostov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Mayara Lucia Webber
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil
| | - Luis Octavio Regasin
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Mônika Aparecida Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| |
Collapse
|
14
|
Bhatta S, Senapati BK, Patra SK, Nanda S. A sequential Friedländer and anionic benzannulation strategy for the regiodefined assembly of unsymmetrical acridines. Org Biomol Chem 2023; 21:8727-8738. [PMID: 37870846 DOI: 10.1039/d3ob01470c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An efficient sequential double-annulation strategy has been developed to afford a series of unsymmetrical acridines with high yield and regioselectivity for the first time. This simple protocol enables the sequential assembly of two aromatic rings from simple starting materials. The reaction proceeds via modified Friedländer annulation and subsequent base-mediated benzannulation with acrylates as Michael acceptors. A range of substrate scope and functional group tolerance is observed. Late-stage synthetic modification is also explored to access novel unsymmetrical acridines in good yield.
Collapse
Affiliation(s)
- Suman Bhatta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Bidyut Kumar Senapati
- Department of Chemistry, Midnapore College (Autonomous), Midnapore, West Bengal, 721101, India
| | - Sanjib Kumar Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Samik Nanda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
15
|
Echeverri A, Botuha C, Gómez T, Luppi E, Contreras-García J, Cárdenas C. In silico design of bio-marker detection fluorescent probes. Phys Chem Chem Phys 2023; 25:28603-28611. [PMID: 37853765 DOI: 10.1039/d3cp03476c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Fluorescent probes capable of sensing the biological medium are of utmost importance in medical diagnostics. However, the optical spectrum of such probes needs to be tuned with care for compatibility with living tissues. More specifically, fluorescent bioprobes must be adjusted so as to avoid light interference with pigments (e.g. hemoglobin), tissue photodamage, scattering of the emitted light, and autofluorescence. This leads to two important conditions on the optical spectrum of the probes. On the one hand, the emission wavelength must be in an optical window of 650 to 950 nm. On the other hand, the Stokes shift must be large, ideally greater than 150 nm. In this paper, we showcase the in-silico design of potential fluorescent biomarkers fulfilling these two conditions by means of heteroatomic substitution and conjugation on a 1,2,4-triazole core initially far away from biological standards.
Collapse
Affiliation(s)
- Andrea Echeverri
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 635, Santiagio, Chile.
- Laboratoire de Chimie Théorique, Sorbonne Université, 4 Pl Jussieu, 75005, Paris, France
| | - Candice Botuha
- IPCM, Sorbonne Université and CNRS, 4 Pl Jussieu, 75005, Paris, France
| | - Tatiana Gómez
- Theoretical and Computational Chemistry Center, Institute of Applied Sciences, Faculty of Engineering, Universidad Autonoma de Chile, El Llano Subercaceaux 2801, Santiago, Chile
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, 4 Pl Jussieu, 75005, Paris, France
| | - Julia Contreras-García
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, 4 Pl Jussieu, 75005, Paris, France
| | - Carlos Cárdenas
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 635, Santiagio, Chile.
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago, Chile
| |
Collapse
|
16
|
Li M, Tadfie H, Darnell CG, Holland CK. Biochemical investigation of the tryptophan biosynthetic enzyme anthranilate phosphoribosyltransferase in plants. J Biol Chem 2023; 299:105197. [PMID: 37659723 PMCID: PMC10520873 DOI: 10.1016/j.jbc.2023.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
While mammals require the essential amino acid tryptophan (Trp) in their diet, plants and microorganisms synthesize Trp de novo. The five-step Trp pathway starts with the shikimate pathway product, chorismate. Chorismate is converted to the aromatic compound anthranilate, which is then conjugated to a phosphoribosyl sugar in the second step by anthranilate phosphoribosyltransferase (PAT1). As a single-copy gene in plants, all fixed carbon flux to indole and Trp for protein synthesis, specialized metabolism, and auxin hormone biosynthesis proceeds through PAT1. While bacterial PAT1s have been studied extensively, plant PAT1s have escaped biochemical characterization. Using a structure model, we identified putative active site residues that were variable across plants and kinetically characterized six PAT1s (Arabidopsis thaliana (thale cress), Citrus sinensis (sweet orange), Pistacia vera (pistachio), Juglans regia (English walnut), Selaginella moellendorffii (spike moss), and Physcomitrium patens (spreading earth-moss)). We probed the catalytic efficiency, substrate promiscuity, and regulation of these six enzymes and found that the C. sinensis PAT1 is highly specific for its cognate substrate, anthranilate. Investigations of site-directed mutants of the A. thaliana PAT1 uncovered an active site residue that contributes to promiscuity. While Trp inhibits bacterial PAT1 enzymes, the six plant PAT1s that we tested were not modulated by Trp. Instead, the P. patens PAT1 was inhibited by tyrosine, and the S. moellendorffii PAT1 was inhibited by phenylalanine. This structure-informed biochemical examination identified variations in activity, efficiency, specificity, and enzyme-level regulation across PAT1s from evolutionarily diverse plants.
Collapse
Affiliation(s)
- Miriam Li
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Hisham Tadfie
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Cameron G Darnell
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Cynthia K Holland
- Department of Biology, Williams College, Williamstown, Massachusetts, USA.
| |
Collapse
|
17
|
Das A, Debnath S, Hota P, Das T, Maiti DK. K 2CO 3-Catalyzed Dual C-C-Coupled Cyclization to 3-Amino-4-benzoylbiphenyls and In Situ I 2-Catalyzed C-N Bond Forming Annulation: A Metal-Free Synthesis of Arylacridones. J Org Chem 2023; 88:12986-12996. [PMID: 37659070 DOI: 10.1021/acs.joc.3c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Unprecedented metal-free cyclization catalysis reactions are developed in a highly regioselective fashion to synthesize 3-amino-4-benzoyl biphenyls and arylacridones with high atom economy. Catalytic K2CO3 is utilized as the only reagent for the unusual rapid dual C-C-coupled cyclization between β-keto enamines and cinnamaldehydes to furnish the functionalized biphenyls. Its C(sp2)-H functionalized C-N bond-forming cyclization was performed in situ using molecular I2 as a catalyst to furnish valuable arylacridones. Plausible mechanisms for the new cyclization reactions are predicted by conducting various control experiments and ESI-MS analyses.
Collapse
Affiliation(s)
- Aranya Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sudipto Debnath
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Govt. of India, 4-CN Block, Bidhannagar, Sector-V, Kolkata 700091, India
| | - Poulami Hota
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Tuluma Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
18
|
El-Sayed NS, Hashem AH, Khattab TA, Kamel S. New antibacterial hydrogels based on sodium alginate. Int J Biol Macromol 2023; 248:125872. [PMID: 37482158 DOI: 10.1016/j.ijbiomac.2023.125872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Nowadays, the combined knowledge and experience in biomedical research and material sciences results in the innovation of smart materials that could efficiently overcome the problems of microbial contaminations. Herein, a new drug delivery platform prepared by grafting sodium alginate with β-carboxyethyl acrylate and acrylamide was described and characterized. 9-Aminoacridine (9-AA), and kanamycin sulfate (KS) were separately loaded into the hydrogel in situ during graft polymerization. The grafting efficiency for the resulting hydrogels was 70.01-78.08 %. The chemical structure of the hydrogels, thermogravimetric analysis, and morphological features were investigated. The swelling study revealed that the hydrogel without drugs achieved a superior swelling rate compared to drug-loaded hydrogels. The hydrogel tuned the drug-release rate in a pH-dependent manner. Furthermore, the antibacterial study suggested that the hydrogels encapsulating 9-AA (88.6 %) or KS (89.3 %) exhibited comparable antibacterial activity against Gram-positive and Gram-negative bacterial strains. Finally, the cytocompatibility study conducted on normal lung cell line (Vero cells) demonstrated neglectable to tolerable toxicity for the drug-loaded hydrogel. More interestingly, the cell viability for the blank hydrogel was 92.5 %, implying its suitability for biomedical applications.
Collapse
Affiliation(s)
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, P.O. 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo, P.O. 12622, Egypt
| |
Collapse
|
19
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
20
|
Yadav TT, Patil PD, Shaikh GM, Kumar MS, Chintamaneni M, YC M. Evaluation of N 10 -substituted acridone-based derivatives as AKT inhibitors against breast cancer cells: in vitro and molecular docking studies. 3 Biotech 2023; 13:111. [PMID: 36879888 PMCID: PMC9984606 DOI: 10.1007/s13205-023-03524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
A series of N 10 -substituted acridone-2-carboxamide derivatives were synthesized and evaluated for their potent anti-cancer agents targeting AKT kinase. In vitro cytotoxicity activity of the target compounds was tested against breast cancer cell lines (MCF-7 and MDA-MB-231). Among the tested compounds, four compounds (7f, 8d, 8e, and 8f) exhibited promising anti-cancer activity against both cancer cell lines. Notably, compound 8f demonstrated the highest activity against MCF-7 and MDA-MB-231 at IC50 values of 4.72 and 5.53 μM, respectively. In vitro AKT kinase activity revealed that compounds 7f and 8f were the most potent AKT inhibitors with IC50 values of 5.38 and 6.90 μM, respectively. In addition, the quantitative ELISA method of testing confirmed that compound 8f effectively inhibited cell proliferation by suppressing the activation of p-AKT Ser473. Furthermore, molecular docking studies revealed that compound 8f can bind well to the active site of the AKT enzyme. The in silico ADME studies suggested that all synthesized molecules showed good oral bioavailability with a low-toxicity profile and can be used for further optimization as AKT kinase inhibitors in the treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03524-z.
Collapse
Affiliation(s)
- Tanuja T. Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Piyush D. Patil
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Gulam Moin Shaikh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Maushmi S. Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Meena Chintamaneni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Mayur YC
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Mumbai, 400077 India
| |
Collapse
|
21
|
Structure-Activity Relationship Studies of 9-Alkylamino-1,2,3,4-tetrahydroacridines against Leishmania ( Leishmania) infantum Promastigotes. Pharmaceutics 2023; 15:pharmaceutics15020669. [PMID: 36839991 PMCID: PMC9965875 DOI: 10.3390/pharmaceutics15020669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Leishmaniasis is one of the most neglected diseases in modern times, mainly affecting people from developing countries of the tropics, subtropics and the Mediterranean basin, with approximately 350 million people considered at risk of developing this disease. The incidence of human leishmaniasis has increased over the past decades due to failing prevention and therapeutic measures-there are no vaccines and chemotherapy, which is problematic. Acridine derivatives constitute an interesting group of nitrogen-containing heterocyclic compounds associated with numerous bioactivities, with emphasis to their antileishmanial potential. The present work builds on computational studies focusing on a specific enzyme of the parasite, S-adenosylmethionine decarboxylase (AdoMet DC), with several 1,2,3,4-tetrahydro-acridines emerging as potential inhibitors, evidencing this scaffold as a promising building block for novel antileishmanial pharmaceuticals. Thus, several 1,2,3,4-tetrahydroacridine derivatives have been synthesized, their activity against Leishmania (Leishmania) infantum promastigotes evaluated and a structure-activity relationship (SAR) study was developed based on the results obtained. Even though the majority of the 1,2,3,4-tetrahydroacridines evaluated presented high levels of toxicity, the structural information gathered in this work allowed its application with another scaffold (quinoline), leading to the obtention of N1,N12-bis(7-chloroquinolin-4-yl)dodecane-1,12-diamine (12) as a promising novel antileishmanial agent (IC50 = 0.60 ± 0.11 μM, EC50 = 11.69 ± 3.96 μM and TI = 19.48).
Collapse
|
22
|
Różycka D, Kowalczyk A, Denel-Bobrowska M, Kuźmycz O, Gapińska M, Stączek P, Olejniczak AB. Acridine/Acridone-Carborane Conjugates as Strong DNA-Binding Agents with Anticancer Potential. ChemMedChem 2023; 18:e202200666. [PMID: 36734215 DOI: 10.1002/cmdc.202200666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Synthesis of acridine derivatives that act as DNA-targeting anticancer agents is an evolving field and has resulted in the introduction of several drugs into clinical trials. Carboranes can be of importance in designing biologically active compounds due to their specific properties. Therefore, a series of novel acridine analogs modified with carborane clusters were synthesized. The DNA-binding ability of these analogs was evaluated on calf thymus DNA (ct-DNA). Results of these analyses showed that 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propylamino]acridine (30) interacted strongly with ct-DNA, indicating its ability to intercalate into DNA, whereas 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propanamido]acridine (29) changed the B-form of ct-DNA to the Z form. Compound 30 demonstrated cytotoxicity, was able to inhibit cell proliferation, arrest the cell cycle in the S phase in the HeLa cancer cell line, and induced the production of reactive oxygen species (ROS). In addition, it was specifically localized in lysosomes and was a weak inhibitor of Topo IIα.
Collapse
Affiliation(s)
- Daria Różycka
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Marta Denel-Bobrowska
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| | - Olga Kuźmycz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Agnieszka B Olejniczak
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| |
Collapse
|
23
|
Komori T, Tsurumaki E, Toyota S. Synthesis, Structures, and Complexation with Phenolic Guests of Acridone-Incorporated Arylene-Ethynylene Macrocyclic Compounds. Chem Asian J 2023; 18:e202201003. [PMID: 36380477 PMCID: PMC10107286 DOI: 10.1002/asia.202201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Acridone units were incorporated into the arylene-ethynylene structure as polar arene units. Cyclic trimers consisting of three acridone-2,7-diyl units and three 1,3-phenylene units were synthesized by Sonogashira couplings via stepwise or direct route. X-ray analysis revealed that the trimer had a nearly planar macrocyclic framework with a cavity surrounded by three carbonyl groups. In contrast, the corresponding tetramer had a nonplanar macrocyclic framework. 1 H NMR measurements showed that the trimer formed a 1 : 1 complex as a macrocyclic host with dihydric phenol guests, and the association constants were determined to be ca. 1.0×103 L mol-1 for hydroquinone or resorcinol guests in CDCl3 at 298 K. The calculated structures of these complexes by the DFT method supported the presence of two sets of OH⋅⋅⋅O=C hydrogen bonds between the host and guest molecules. The spectroscopic data of the cyclic trimers and tetramers are compared with those of reference acridone compounds.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
| |
Collapse
|
24
|
Li Y, Xu L, Wei Y. Synthesis of acridines via copper-catalyzed amination/annulation cascades between arylboronic acids and anthranils. Org Biomol Chem 2022; 20:9742-9745. [PMID: 36441231 DOI: 10.1039/d2ob01705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Copper-catalyzed tandem cyclization reactions between arylboronic acids and anthranils have been established, providing new approaches for one-pot assembly of azacycle acridines. This one-pot protocol features simple operation, precious-metal-free conditions and good functional group compatibility, thus providing an efficient approach for the synthesis of a variety of acridines in moderate to good yields.
Collapse
Affiliation(s)
- Yuge Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
25
|
Abdel-Hafez GA, Mohamed AMI, Youssef AF, Simons C, Aboraia AS. Synthesis, computational study and biological evaluation of 9-acridinyl and 1-coumarinyl-1,2,3-triazole-4-yl derivatives as topoisomerase II inhibitors. J Enzyme Inhib Med Chem 2022; 37:502-513. [PMID: 35012398 PMCID: PMC8757608 DOI: 10.1080/14756366.2021.2021898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022] Open
Abstract
Topoisomerase (IIB) inhibitors have been involved in the therapies of tumour progression and have become a major focus for the development of anticancer agents. New three-component hybridised ligands, 1,4-disubstituted-1,2,3-triazoles (8-17), were synthesised via a 1,3-dipolar cycloaddition reaction of 9-azidoacridine/3-azidocoumarin with N/O-propargyl small molecules under click reaction conditions. Cancer cell growth inhibition of the synthesised triazoles was tested against human cell-lines in the NCI-60-cell-panel, and the most active compounds tested against topoisomerase (IIB)-enzymes. The acridinyl ligands (8-10) revealed 60-97% cell growth inhibition in six cancer cell-panels. Cell-cycle analysis of MCF7 and DU-145 cells treated with the active acridinyl ligands exhibited cell-cycle arrest at G2/M phase and proapoptotic activity. In addition, compound 8 displayed greater inhibitory activity against topoisomerase (IIB) (IC50 0.52 µM) compared with doxorubicin (IC50 0.83 µM). Molecular dynamics simulation studies showed the acridine-triazole-pyrimidine hybrid pharmacophore was optimal with respect to protein-ligand interaction and fit within the binding site, with optimal orientation to allow for intercalation with the DNA bases (DG13, DC14, and DT9).
Collapse
Affiliation(s)
| | - Abdel-Maaboud I Mohamed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Adel F Youssef
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Ahmed S Aboraia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
26
|
Goni LKMO, Jafar Mazumder MA, Tripathy DB, Quraishi MA. Acridine and Its Derivatives: Synthesis, Biological, and Anticorrosion Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7560. [PMID: 36363152 PMCID: PMC9658428 DOI: 10.3390/ma15217560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The phenomenon of corrosion threatens metallic components, human safety, and the economy. Despite being eco-friendly and promising as a corrosion inhibitor, acridine has not been explored to its full potential. In this review, we have discussed multiple biological activities that acridines have been found to show in a bid to prove that they are environmentally benign and much less toxic than many inhibitors. Some synthetic routes to acridines and substituted acridines have also been discussed. Thereafter, a multitude of acridines and substituted acridines as corrosion inhibitors of different metals and alloys in various corrosive media have been highlighted. A short mechanistic insight into how acridine-based compounds function as corrosion inhibitors have also been included. We believe this review will generate an impression that there is still much to learn about previously reported acridines. In the wake of recent surges to find efficient and non-toxic corrosion inhibitors, acridines and their analogs could be an appropriate answer.
Collapse
Affiliation(s)
- Lipiar K. M. O. Goni
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammad A. Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Divya B. Tripathy
- School of Basic and Applied Sciences, Galgotias University, Greater Noida 210310, India
| | - Mumtaz A. Quraishi
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
27
|
Komori T, Tsurumaki E, Toyota S. Iterative synthesis, structures, and properties of acyclic and cyclic acridone oligomers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Shinji Toyota
- Tokyo Institute of Technology Department of Chemistry 2-12-1-E1-4 OokayamaMeguro-ku 152-8551 Tokyo JAPAN
| |
Collapse
|
28
|
Development and validation of a high-performance thin-layer chromatography densitometric method for the simultaneous determination of novel 1-acridinyl-1,2,3-triazole derivatives. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractHigh-performance thin-layer chromatographic (HPTLC) method provides a simple, sensitive, and accurate analytical method for the simultaneous determination of certain synthesized 1-acridinyl-1,2,3-triazole derivatives without interference from starting materials and intermediates. Separation was carried out on Merck HPTLC silica gel 60F254 plates, using chloroform‒methanol (9:1, V/V) and hexane‒ethyl acetate (3:2, V/V) as mobile phases. Validation of the method was performed based on the basis of the International Council for Harmonisation (ICH) guidelines in terms of linearity, sensitivity, limit of detection, limit of quantification, precision, selectivity, and specificity. Least-square equations were calculated for the studied compounds in the ranges of 25–500 and 10–500 ng/spot for ultraviolet (UV) and fluorescence measurements, respectively. Correlation coefficients (r) values were found ranging from 0.9913 to 0.9992 for analytes. The method provides selectivity and specificity which ensure that synthesized compounds are in the pure form without the interference of starting materials and intermediates. The detection limits for the studied compounds ranged from 11.02 to 51.09 ng/spot and 3.84 to 31.95 ng/spot and quantification limits were 33.39–154.82 ng/spot and 11.63–73.67 ng/spot for both spectrophotometric and spectrofluorimetric methods, respectively, indicating applicability for good qualitative and quantitative determination of members of this series at the nanogram concentration levels in biological fluids.
Collapse
|
29
|
Nikitina LP, Belyaeva KV, Gen’ VS, Afonin AV, Trofimov BA. Concurrent N- and C-Functionalization of Acridine with Ethyl Aryl-2-oxobut-3-ynoates in the Presence of Water: Synthesis of N-Alkenylacridin-9-ones. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
30
|
Iniyavan P, Avadhani A, Kumar Y, Chakravarthy ASJ, Palluruthiyil MA, Ila H. Synthesis of Novel
9‐Amino
/aryl/oxo‐2‐(het)arylthiazolo[4,5‐
b
]quinolines via Palladium Catalyzed
N
‐Arylation
‐cyclization Protocol. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Anusha Avadhani
- Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Yogendra Kumar
- Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | | | | | - Hiriyakkanavar Ila
- Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| |
Collapse
|
31
|
Petkevich SK, Zvereva TD, Shabunya PS, Zhou H, Nikitina EV, Ershova AА, Zaytsev VP, Khrustalev VN, Romanycheva AА, Shetnev AА, Potkin VI. Preparative synthesis of polysubstituted 4-(5-arylisoxazol-3-yl)-1,4-dihydropyridines and -pyridines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
A comprehensive review on acridone based derivatives as future anti-cancer agents and their structure activity relationships. Eur J Med Chem 2022; 239:114527. [PMID: 35717872 DOI: 10.1016/j.ejmech.2022.114527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
The development of drug resistance and severe side-effects has reduced the clinical efficacy of the existing anti-cancer drugs available in the market. Thus, there is always a constant need to develop newer anti-cancer drugs with minimal adverse effects. Researchers all over the world have been focusing on various alternative strategies to discover novel, potent, and target specific molecules for cancer therapy. In this direction, several heterocyclic compounds are being explored but amongst them one promising heterocycle is acridone which has attracted the attention of medicinal chemists and gained huge biological importance as acridones are found to act on different therapeutically proven molecular targets, overcome ABC transporters mediated drug resistance and DNA intercalation in cancer cells. Some of these acridone derivatives have reached clinical studies as these heterocycles have shown huge potential in cancer therapeutics and imaging. Here, the authors have attempted to compile and make some recommendations of acridone based derivatives concerning their cancer biological targets and in vitro-cytotoxicity based on drug design and novelty to increase their therapeutic potential. This review also provides some important insights on the design, receptor targeting and future directions for the development of acridones as possible clinically effective anti-cancer agents.
Collapse
|
33
|
Del Río-Rodríguez R, Fragoso-Jarillo L, Garrido-Castro AF, Maestro MC, Fernández-Salas JA, Alemán J. General electrochemical Minisci alkylation of N-heteroarenes with alkyl halides. Chem Sci 2022; 13:6512-6518. [PMID: 35756520 PMCID: PMC9172443 DOI: 10.1039/d2sc01799g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Herein, we report, a general, facile and environmentally friendly Minisci-type alkylation of N-heteroarenes under simple and straightforward electrochemical conditions using widely available alkyl halides as radical precursors. Primary, secondary and tertiary alkyl radicals have been shown to be efficiently generated and coupled with a large variety of N-heteroarenes. The method presents a very high functional group tolerance, including various heterocyclic-based natural products, which highlights the robustness of the methodology. This applicability has been further proved in the synthesis of various interesting biologically valuable building blocks. In addition, we have proposed a mechanism based on different proofs and pieces of electrochemical evidence.
Collapse
Affiliation(s)
| | - Lorena Fragoso-Jarillo
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
| | | | - M Carmen Maestro
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
| | - Jose A Fernández-Salas
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid Spain
| |
Collapse
|
34
|
Synthesis of fluoro and trifluoromethyl substituents containing novel tetracyclic N-benzylated benzopiperazine fused acridone regioisomers using a greener solvent 2-MeTHF and their DFT studies. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Duarte SS, Silva DKF, Lisboa TMH, Gouveia RG, de Andrade CCN, de Sousa VM, Ferreira RC, de Moura RO, Gomes JNS, da Silva PM, de Lourdes Assunção Araújo de Azevedo F, Keesen TSL, Gonçalves JCR, Batista LM, Sobral MV. Apoptotic and antioxidant effects in HCT-116 colorectal carcinoma cells by a spiro-acridine compound, AMTAC-06. Pharmacol Rep 2022; 74:545-554. [PMID: 35297003 DOI: 10.1007/s43440-022-00357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Acridine compounds have been described as promising anticancer agents. Previous studies showed that (E)-1'-((4-chlorobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-06), a spiro-acridine compound, has antitumor activity on Ehrlich tumor and low toxicity. Herein, we investigated its antitumor effect against human cells in vitro. METHODS MTT assay was used to assess cytotoxicity of AMTAC-06 (3.125-200 µM) against tumor and non-tumor cells, and the half-maximal inhibitory concentration (IC50) and the selectivity index (SI) were calculated. The effects on the cell cycle (propidium iodide-PI-staining), apoptosis (Annexin V-FITC/PI double staining by flow cytometry), and production of reactive oxygen species, ROS (DCFH assay) were also evaluated. Statistical analysis was achieved using ANOVA followed by Tukey's post-test. RESULTS AMTAC-06 showed higher cytotoxicity against colorectal carcinoma HCT-116 cells (IC50: 12.62 µM). The SI showed that AMTAC-06 was more selective for HCT-116 cells (HaCaT SI: 1.41; PBMC SI: 0.62) than doxorubicin (HaCaT SI: 0.10; PBMC SI: 0.01). AMTAC-06 (15 and 30 µM) induced an increase in the sub-G1 peak (p < 0.000001) and cell cycle arrest in S phase (p = 0.003547). Moreover, treatment with this compound (15 and 30 µM) resulted in increased early (p < 0.000001) and late apoptotic cells (p < 0.000001). In addition, there was a reduction on ROS production (p < 0.000001). CONCLUSIONS AMTAC-06 presents anticancer activity against HCT-116 cells by regulating the cell cycle, inducing apoptosis and an antioxidant action.
Collapse
Affiliation(s)
- Sâmia Sousa Duarte
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daiana Karla Frade Silva
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thaís Mangeon Honorato Lisboa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rawny Galdino Gouveia
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Valgrícia Matias de Sousa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Carlos Ferreira
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricardo Olimpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Joilly Nilce Santana Gomes
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Leônia Maria Batista
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marianna Vieira Sobral
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil. .,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil. .,Laboratório de Oncofarmacologia (Oncofar), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM). Cidade Universitária, Campus I, João Pessoa, Paraíba, 58051-900, Brazil.
| |
Collapse
|
36
|
Synthesis of novel 1,2,3-triazole based acridine and benzothiazole scaffold N-glycosides with anti-proliferative activity, docking studies, and comparative computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
38
|
Tilekar K, Shelke O, Upadhyay N, Lavecchia A, Ramaa CS. Current status and future prospects of molecular hybrids with thiazolidinedione (TZD) scaffold in anticancer drug discovery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
El-Sayed NS, Hashem AH, Kamel S. Preparation and characterization of Gum Arabic Schiff's bases based on 9-aminoacridine with in vitro evaluation of their antimicrobial and antitumor potentiality. Carbohydr Polym 2022; 277:118823. [PMID: 34893240 DOI: 10.1016/j.carbpol.2021.118823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 01/24/2023]
Abstract
The conjugation between drug and biopolymers through an easily hydrolysable bond such as ester linkage, disulfide linkage, or imine-bond have been extensively employed to control the drug release pattern and improve its bioavailability. This work described the conjugation of 9-aminoacridine (9-AA) to Gum Arabic (GA) via Schiff's base, as a pH-responsive bond. First, GA was oxidized to Arabic Gum dialdehyde (AGDA), then a different amount of 9-AA (10, 25, and 50 mg 9-AA) was coupled to defined amount of AGDA, the coupling was confirmed by elemental analysis and different spectroscopic tools. In addition, the physical features of Schiff's base conjugates including surface morphology, thermal stability, and crystalline structure were examined. The thermogravimetric analysis revealed that the incorporation of 9-AA slightly improved the thermal stability. The coupling of 9-AA to AGDA dramatically enhanced its in vitro antimicrobial and antitumor activities. All conjugates exhibited broad-spectrum activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Moreover, AGA 25 and AGA 50 demonstrated promising capability to suppress the proliferation of human colon cancer cell line (Caco-2), with IC50 190.10 and 180.80 μg/mL respectively.
Collapse
Affiliation(s)
- Naglaa Salem El-Sayed
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. Former (El-Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Samir Kamel
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. Former (El-Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| |
Collapse
|
40
|
Silva CFM, Pinto DCGA, Fernandes PA, Silva AMS. Evolution of Acridines and Xanthenes as a Core Structure for the Development of Antileishmanial Agents. Pharmaceuticals (Basel) 2022; 15:ph15020148. [PMID: 35215261 PMCID: PMC8879592 DOI: 10.3390/ph15020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, leishmaniasis constitutes a public health issue in more than 88 countries, affecting mainly people from the tropics, subtropics, and the Mediterranean area. Every year, the prevalence of this infectious disease increases, with the appearance of 1.5–2 million new cases of cutaneous leishmaniasis and 500,000 cases of visceral leishmaniasis, endangering approximately 350 million people worldwide. Therefore, the absence of a vaccine or effective treatment makes the discovery and development of new antileishmanial therapies one of the focuses for the scientific community that, in association with WHO, hopes to eradicate this disease shortly. This paper is intended to highlight the relevance of nitrogen- and oxygen-containing tricyclic heterocycles, particularly acridine and xanthene derivatives, for the development of treatments against leishmaniasis. Thus, in this review, a thorough compilation of the most promising antileishmanial acridine and xanthene derivatives is performed from both natural and synthetic origins. Additionally, some structure–activity relationship studies are also depicted and discussed to provide insight into the optimal structural features responsible for these compounds’ antileishmanial activity.
Collapse
Affiliation(s)
- Carlos F. M. Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.F.M.S.); (A.M.S.S.)
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.F.M.S.); (A.M.S.S.)
- Correspondence:
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.F.M.S.); (A.M.S.S.)
| |
Collapse
|
41
|
Majhi S. Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Cancer is the uncontrolled growth and development of abnormal cells which is a major cause of death in both advanced and emerging countries. Although currently chemotherapy is most broadly used among an extensive range of anti-cancer therapies, it includes many demerits, such as highly toxic, side-effects, expensive and partial lack of targeting specificity. So the design and synthesis of new molecules that perform specifically on target proteins in tumor cells is a focus of contemporary research. So many researchers aim for new drugs that will be more efficient, more selective, and less toxic. Because of the interesting structures and significant biological profile, naturally occurring acridines and xanthines as well as their analogues have attracted considerable interest in researchers and technologists. Natural and synthetic acridine derivatives form a significant category of heterocycles having nitrogen that is of considerable interest for organic chemists and biological communities due to their attractive anti-cancer activity. Another important class of therapeutic agents with diverse biological properties including cytotoxic effects is xanthine derivatives which are collectively called xanthines (a group of alkaloids). Among many significant molecules based on the structure of the purine, there is a group of natural xanthines, involving theobromine, caffeine, and theophylline and analogues of xanthine display anti-cancer activity. Hence the present chapter wishes to concentrate the attention on the synthesis and anti-cancer activity of acridine and xanthine-based compounds brilliantly.
Collapse
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG Dept.) , Triveni Devi Bhalotia College, Kazi Nazrul University , Raniganj , West Bengal 713347 , India
| |
Collapse
|
42
|
Vinoth N, Lalitha A. Synthesis of new
1
H
‐spiro[acridine‐9,3′‐indoline]‐1,2′(
2
H
,
10
H
)‐dione derivatives using aqueous ethanol as a reaction medium. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Gui J, Sun M, Wu H, Li J, Yang J, Wang Z. Direct benzylic C–H difluoroalkylation with difluoroenoxysilanes by transition metal-free photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light promoted direct benzylic C–H difluoroalkylation with difluoroenoxysilanes catalyzed by Na2-eosin Y via a HAT-ORPC pathway has been developed, providing an efficient and atom-economic method for production of α-benzyl-α,α-difluoroketones.
Collapse
Affiliation(s)
- Jing Gui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jianguo Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zhiming Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
44
|
Sarkar R, Samanta SK, Hasija A, Chopra D, Ganguly D, Bera MK. A practical route to arylated dihydroacridine derivatives via nickel boride mediated intramolecular reductive cyclization-concomitant dehydration. NEW J CHEM 2022. [DOI: 10.1039/d1nj05196b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and highly efficient route towards 3-aryl-1,2-dihydroacridine derivatives from an aldol adduct of o-nitrobenzaldehyde and cyclohexenone derivatives has been described.
Collapse
Affiliation(s)
- Rumpa Sarkar
- Department of Chemistry Indian Institute of Engineering Science and Technology (IIEST), Shibpur PO-Botanic Garden, Howrah, 711 103 (WB), India
| | - Surya Kanta Samanta
- Department of Chemistry Indian Institute of Engineering Science and Technology (IIEST), Shibpur PO-Botanic Garden, Howrah, 711 103 (WB), India
| | - Avantika Hasija
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, India
| | - Mrinal K. Bera
- Department of Chemistry Indian Institute of Engineering Science and Technology (IIEST), Shibpur PO-Botanic Garden, Howrah, 711 103 (WB), India
| |
Collapse
|
45
|
Chaithanya B, PrabhakaraChary D, Kasiviswanath IV. Design, Synthesis and Biological Screening of Novel 1,2,4-Thiadiazole Linked Acridine Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2008456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- B. Chaithanya
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - D. PrabhakaraChary
- Department of Physical Sciences, Kakatiya Institute of Technology & Science, Warangal, Telangana, India
| | - I. V. Kasiviswanath
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| |
Collapse
|
46
|
Jafarian Z, Nikpassand M, Pourahmad A, Fekri LZ. Synthesis of Novel fused Azo-linked acridine derivatives using GO-ZnO nanocomposite. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Mandal T, Karmakar S, Kapat A, Dash J. Studies Directed towards the Synthesis of the Acridone Family of Natural Products: Total Synthesis of Acronycines and Atalaphyllidines. ACS OMEGA 2021; 6:27062-27069. [PMID: 34693126 PMCID: PMC8529601 DOI: 10.1021/acsomega.1c03629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 06/13/2023]
Abstract
A modular and flexible three-step synthetic strategy has been developed for the synthesis of acridone natural products of biological significance. The tetracyclic core of acridone derivatives has been achieved efficiently in high yield from commercially available anthranilic acid and phenol derivatives via condensation reaction, followed by regioselective annulation. Acridone alkaloids acronycine and noracronycine are synthesized in improved overall yields in fewer steps than the previously reported approaches. The method has further been used for the synthesis of atalaphyllidine and 5-hydroxynoracronycine in excellent yields for the first time. Moreover, the synthetic utility of the present strategy has been showcased by the synthesis of oxa and thia analogues of acronycine alkaloid.
Collapse
Affiliation(s)
| | | | | | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
48
|
Jiang CY, Xie H, Huang ZJ, Liang JY, Huang YX, Liang QP, Zeng JY, Zhou B, Zhang SS, Shu B. Access to acridones by tandem copper(I)-catalyzed electrophilic amination/Ag(I)-mediated oxidative annulation of anthranils with arylboronic acids. Org Biomol Chem 2021; 19:8487-8491. [PMID: 34545904 DOI: 10.1039/d1ob01586a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient and practical approach for the synthesis of medicinally important acridones was developed from anthranils and commercially available arylboronic acids by a tandem copper(I)-catalyzed electrophilic amination/Ag(I)-mediated oxidative annulation strategy. This new and straightforward protocol displayed a broad substrate scope (25 examples) and high functional group tolerance. What's more, a possible mechanistic proposal was also presented.
Collapse
Affiliation(s)
- Chun-Yong Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, P. R. China
| | - Hui Xie
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Zhuo-Jun Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jing-Yi Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Yan-Xia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Qiu-Ping Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jun-Yi Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Binhua Zhou
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, P. R. China
| | - Shang-Shi Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
49
|
Ravichandiran P, Prabakaran DS, Maroli N, Kim AR, Park BH, Han MK, Ramesh T, Ponpandian S, Yoo DJ. Mitochondria-targeted acridine-based dual-channel fluorescence chemosensor for detection of Sn 4+ and Cr 2O 72- ions in water and its application in discriminative detection of cancer cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126409. [PMID: 34171666 DOI: 10.1016/j.jhazmat.2021.126409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The goal of the present work was to fabricate a new low-cost, easy-to-prepare, dual-channel fluorescence chemosensor comprised of acridine-diphenylacetyl moieties (NDA) to enable remarkable Sn4+ detection in water and biological medium. The resulting NDA-Sn4+ complex was utilized for the distinguished identification of Cr2O72- ions from other anions and biomolecules. These investigations involve the absorption, fluorescence, and electrochemical methods for the detection of Sn4+ and Cr2O72- ions in pure water. The mechanism for NDA-mediated Sn4+ detection was experimentally determined by FT-IR, NMR titrations, mass (ESI) analyses, and DFT calculations. The obtained results indicate that the NDA chemosensor possessed excellent performance characteristics including good water solubility and compatibility, quick response time (less than 10 s), high sensitivity (Sn4+ = 0.268 μM and Cr2O72- = 0.160 μM), and selectivity against coexisting metals, anions, amino acids, and peptides. The chemosensor NDA induced negligible toxicity in live cells and was successfully utilized as a biomarker for the tracking of Sn4+ in human normal and cancer cells. More importantly, NDA demonstrates distinguished recognition of Sn4+ in human cancer cells rather than in normal live cells. Additionally, NDA was shown to act as a mitochondria-targeted probe in FaDu cells.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea; Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Nikhil Maroli
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Ae Rhan Kim
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Samuel Ponpandian
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
50
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|