1
|
Liang J, Liang Y, Yan F, Zhang M, Wu W. Novel targeting liposomes with enhanced endosomal escape for co-delivery of doxorubicin and curcumin. Colloids Surf B Biointerfaces 2024; 245:114267. [PMID: 39326226 DOI: 10.1016/j.colsurfb.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Effective endosomal escape is crucial for enhancing the efficiency of nanodrug delivery systems. In this study, we developed a novel liposomal system utilizing acid-sensitive N-(3-amino-propyl) imidazole cholesterol (IM-Chol), specifically designed for the targeted co-delivery of doxorubicin (DOX) and curcumin (CUR) to hepatocellular carcinoma (HCC). Designated as GA-IM-LIP@DOX/CUR, this liposomal system incorporates glycyrrhetinic acid (GA) to improve target specificity toward HCC cells. Notably, both drugs exhibited pH-sensitive release profiles, facilitating precise drug release within acidic environments. Our investigation into cellular uptake demonstrated that modified liposomes, GA-IM-LIP@FITC and IM-LIP@FITC, achieved progressively enhanced intracellular accumulation of FITC compared to unmodified liposomes. Competitive inhibition assays utilizing free GA further validated the targeting efficacy of GA. Moreover, the GA-IM-LIP@FITC and IM-LIP@FITC groups exhibited rapid endosomal escape of FITC within the first two hours, in contrast to delayed escape observed in the LIP@FITC group, confirming that the protonation of IM-Chol promotes drug release into the cytosol. In vivo studies substantiated that GA-IM-LIP@DOX/CUR effectively inhibited tumor growth. This research provides significant insights into the design and functionality of the GA-IM-LIP@DOX/CUR liposomal system, underscoring its potential to enhance drug delivery strategies in the treatment of HCC.
Collapse
Affiliation(s)
- Ju Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Fuqing Yan
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
2
|
Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for efficient nuclear targeting. Adv Drug Deliv Rev 2024; 211:115354. [PMID: 38857762 DOI: 10.1016/j.addr.2024.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.
Collapse
Affiliation(s)
- Michal Skowicki
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Manuel Kraus
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
3
|
Chen S, Cao R, Xiang L, Li Z, Chen H, Zhang J, Feng X. Research progress in nucleus-targeted tumor therapy. Biomater Sci 2023; 11:6436-6456. [PMID: 37609783 DOI: 10.1039/d3bm01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nucleus is considered the most important organelle in the cell as it plays a central role in controlling cell reproduction, metabolism, and the cell cycle. The successful delivery of drugs into the nucleus can achieve excellent therapeutic effects, which reveals the potential of nucleus-targeted therapy in precision medicine. However, the transportation of therapeutics into the nucleus remains a significant challenge due to various biological barriers. Herein, we summarize the recent progress in the nucleus-targeted drug delivery system (NDDS). The structures of the nucleus and nuclear envelope are first described in order to understand the mechanisms by which drugs cross the nuclear envelope. Then, various drug delivery strategies based on the mechanisms and their applications are discussed. Finally, the challenges and solutions in the field of nucleus-targeted drug delivery are raised for developing a more efficient NDDS and promoting its clinical transformation.
Collapse
Affiliation(s)
- Shaofeng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Rumeng Cao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ling Xiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ziyi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Jiumeng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
4
|
Wu Y, Sun Z, Song J, Mo L, Wang X, Liu H, Ma Y. Preparation of multifunctional mesoporous SiO 2nanoparticles and anti-tumor action. NANOTECHNOLOGY 2022; 34:055101. [PMID: 36317264 DOI: 10.1088/1361-6528/ac9e5f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
A targeted drug delivery system was developed to accumulate specific drugs around tumor cells based on the redox, temperature, and enzyme synergistic responses of mesoporous silica nanoparticles. Mesoporous silica nanoparticles (MSN-NH2) and Doxorubicin (DOX) for tumor therapy were prepared and loaded into the pores of MSN- NH2 to obtain DOX@MSN(DM NPs). Hyaluronic acid (HA) was used as the backbone and disulfide bond was used as the linker arm to graft carboxylated poly (N-isopropylacrylamide)(PNIPAAm-COOH) to synthesize the macromolecular copolymer (HA-SS-PNIPAAm), which was modified to DM NPs with capped ends to obtain the nano-delivery system DOX@MSN@HA-SS-PNIPAAm(DMHSP NPs), and a control formulation was prepared in a similar way. DMHSP NPs specifically entered tumor cells via CD44 receptor-mediated endocytosis; the high GSH concentration (10 mM) of cells severed the disulfide bonds, the hyaluronidase sheared the capped HA to open the pores, and increased tumor microenvironment temperature due to immune response can trigger the release of encapsulated drugs in thermosensitive materials.In vitroandin vivoantitumor and hemolysis assays showed that DMHSP NPs can accurately target hepatocellular carcinoma cells with a good safety profile and have synergistic effects, which meant DMHSP NPs had great potential for tumor therapy.
Collapse
Affiliation(s)
- Yijun Wu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Zhiqiang Sun
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Jinfeng Song
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Liufang Mo
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Xiaochen Wang
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Hanhan Liu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, People's Republic of China
| |
Collapse
|
5
|
Bhartiya P, Chawla R, Dutta PK. Folate receptor targeted chitosan and polydopamine coated mesoporous silica nanoparticles for photothermal therapy and drug delivery. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2135443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Prabha Bhartiya
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Pradip Kumar Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Gisbert-Garzarán M, Lozano D, Matsumoto K, Komatsu A, Manzano M, Tamanoi F, Vallet-Regí M. Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9656-9666. [PMID: 33596035 PMCID: PMC7944478 DOI: 10.1021/acsami.0c21507] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The several biological barriers that nanoparticles might encounter when administered to a patient constitute the major bottleneck of nanoparticle-mediated tumor drug delivery, preventing their successful translation into the clinic and reducing their therapeutic profile. In this work, mesoporous silica nanoparticles have been employed as a platform to engineer a versatile nanomedicine able to address such barriers, achieving (a) excessive premature drug release control, (b) accumulation in tumor tissues, (c) selective internalization in tumoral cells, and (d) endosomal escape. The nanoparticles have been decorated with a self-immolative redox-responsive linker to prevent excessive premature release, to which a versatile and polyvalent peptide that is able to recognize tumoral cells and induce the delivery of the nanoparticles to the cytoplasm via endosomal escape has been grafted. The excellent biological performance of the carrier has been demonstrated using 2D and 3D in vitro cell cultures and a tumor-bearing chicken embryo model, demonstrating in all cases high biocompatibility and cytotoxic effect, efficient endosomal escape and tumor penetration, and accumulation in tumors grown on the chorioallantoic membrane of chicken embryos.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Chemistry
in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital
12 de Octubre (i+12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Daniel Lozano
- Chemistry
in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital
12 de Octubre (i+12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Kotaro Matsumoto
- Institute
for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Aoi Komatsu
- Institute
for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Miguel Manzano
- Chemistry
in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital
12 de Octubre (i+12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Fuyuhiko Tamanoi
- Institute
for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- Department
of Microbiology, Immunology and Molecular Genetics, University of California, Los
Angeles, California 90095, United States
| | - María Vallet-Regí
- Chemistry
in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital
12 de Octubre (i+12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
8
|
Dorjsuren B, Chaurasiya B, Ye Z, Liu Y, Li W, Wang C, Shi D, Evans CE, Webster TJ, Shen Y. Cetuximab-Coated Thermo-Sensitive Liposomes Loaded with Magnetic Nanoparticles and Doxorubicin for Targeted EGFR-Expressing Breast Cancer Combined Therapy. Int J Nanomedicine 2020; 15:8201-8215. [PMID: 33122906 PMCID: PMC7591010 DOI: 10.2147/ijn.s261671] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Background One major limitation of cancer chemotherapy is a failure to specifically target a tumor, potentially leading to side effects such as systemic cytotoxicity. In this case, we have generated a cancer cell-targeting nanoparticle-liposome drug delivery system that can be activated by near-infrared laser light to enable local photo-thermal therapy and the release of chemotherapeutic agents, which could achieve combined therapeutic efficiency. Methods To exploit the magnetic potential of iron oxide, we prepared and characterized citric acid-coated iron oxide magnetic nanoparticles (CMNPs) and encapsulated them into thermo-sensitive liposomes (TSLs). The chemotherapeutic drug, doxorubicin (DOX), was then loaded into the CMNP-TSLs, which were coated with an antibody against the epidermal growth factor receptor (EGFR), cetuximab (CET), to target EGFR-expressing breast cancer cells in vitro and in vivo studies in mouse model. Results The resulting CET-DOX-CMNP–TSLs were stable with an average diameter of approximately 120 nm. First, the uptake of TSLs into breast cancer cells increased by the addition of the CET coating. Next, the viability of breast cancer cells treated with CET-CMNP-TSLs and CET-DOX-CMNP-TSLs was reduced by the addition of photo-thermal therapy using near-infrared (NIR) laser irradiation. What is more, the viability of breast cancer cells treated with CMNP-TSLs plus NIR was reduced by the addition of DOX to the CMNP-TSLs. Finally, photo-thermal therapy studies on tumor-bearing mice subjected to NIR laser irradiation showed that treatment with CMNP-TSLs or CET-CMNP-TSLs led to an increase in tumor surface temperature to 44.7°C and 48.7°C, respectively, compared with saline-treated mice body temperature ie, 35.2°C. Further, the hemolysis study shows that these nanocarriers are safe for systemic delivery. Conclusion Our studies revealed that a combined therapy of photo-thermal therapy and targeted chemotherapy in thermo-sensitive nano-carriers represents a promising therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Buyankhishig Dorjsuren
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Birendra Chaurasiya
- Department of Pediatrics, Critical Care Division, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zixuan Ye
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yanyan Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Li
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Chaoyang Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Di Shi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Colin E Evans
- Department of Pediatrics, Critical Care Division, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
9
|
Selvarajan V, Obuobi S, Ee PLR. Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections. Front Chem 2020; 8:602. [PMID: 32760699 PMCID: PMC7374024 DOI: 10.3389/fchem.2020.00602] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
The rapid emergence of drug resistance continues to outpace the development of new antibiotics in the treatment of infectious diseases. Conventional therapy is currently limited by drug access issues such as low intracellular drug accumulations, drug efflux by efflux pumps and/or enzymatic degradation. To improve access, targeted delivery using nanocarriers could provide the quantum leap in intracellular drug transport and retention. Silica nanoparticles (SiNPs) with crucial advantages such as large surface area, ease-of-functionalization, and biocompatibility, are one of the most commonly used nanoparticles in drug delivery applications. A porous variant, called the mesoporous silica nanoparticles (MSN), also confers additional amenities such as tunable pore size and volume, leading to high drug loading capacity. In the context of bacterial infections, SiNPs and its variants can act as a powerful tool for the targeted delivery of antimicrobials, potentially reducing the impact of high drug dosage and its side effects. In this review, we will provide an overview of SiNPs synthesis, its structural proficiency which is critical in loading and conjugation of antimicrobials and its role in different antimicrobial applications with emphasis on intracellular drug targeting in anti-tuberculosis therapy, nitric oxide delivery, and metal nanocomposites. The role of SiNPs in antibiofilm coatings will also be covered in the context of nosocomial infections and surgical implants.
Collapse
Affiliation(s)
- Vanitha Selvarajan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| |
Collapse
|
10
|
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E916. [PMID: 32397449 PMCID: PMC7279540 DOI: 10.3390/nano10050916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
11
|
Yan T, He J, Liu R, Liu Z, Cheng J. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydr Polym 2020; 231:115706. [DOI: 10.1016/j.carbpol.2019.115706] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022]
|
12
|
Ilkar Erdagi S, Ngwabebhoh FA, Yildiz U. Pickering stabilized nanocellulose-alginate: A diosgenin-mediated delivery of quinalizarin as a potent cyto-inhibitor in human lung/breast cancer cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110621. [PMID: 32228903 DOI: 10.1016/j.msec.2019.110621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/29/2023]
Abstract
The current study explores the facile fabrication of multilayer self-assembled electrostatic oil-in-water Pickering emulsions (PEs) using quaternized nanocellulose (Q-NC) and diosgenin-conjugate alginate (DGN-ALG) particles as stabilizers to form hydrocolloid nanocarriers. The conditions of formulation such as storage time, pH, temperature and salt effect on the emulsion stability were evaluated. The results deduced showed good emulsion droplet stability over a period of 30 days. Morphological analysis revealed the hydrodynamic sizes of the PE droplets to be spherically shaped with an average diameter of 150 ± 3.51 nm. Creaming index, wettability and critical aggregation concentrations (CAC) as well as chemical characterization of the PEs were examined. In vitro release kinetics of encapsulated quinalizarin as a model drug was investigated with a determined cumulative drug release (CDR) of 89 ± 1.21% in simulated pH blood medium of pH 7.4. In addition, cellular internalization of the PEs was studied via confocal microscopy imaging and showed high cellular uptake. Also, evaluated in vitro cytotoxicity by MTT assay demonstrated excellent anticancer activity in human lung (A549) and breast (MCF-7) cancer cell lines.
Collapse
Affiliation(s)
| | | | - Ufuk Yildiz
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey
| |
Collapse
|
13
|
Zhang X, Li Y, Wei M, Liu C, Yang J. Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Deliv 2019; 26:129-136. [PMID: 30798640 PMCID: PMC6394284 DOI: 10.1080/10717544.2018.1564403] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022] Open
Abstract
Combinational therapy is usually considered as a preferable approach for effective cancer therapy. Especially, combinational chemo and photothermal therapy is of particular interest due to its high flexibility as well as efficiency. In this article, we the silica nanoparticles (SLN) were surface conjugated with Cetuximab (Cet-SLN) to target epidermal growth factor receptor (EGFR), a common receptor that usually observed to overexpress in multiple breast cancers. Moreover, the high drug loading capacity of Cet-SLN was employed to encapsulate photothermal agent indocyanine green (ICG) to finally fabricate a versatile drug delivery system (DDS) able to co-deliver Cet and ICG (Cet-SLN/ICG) for combinational chemo-photothermal therapy of breast cancer. The obtained results clearly demonstrated that Cet-SLN/ICG was well-dispersed nanoparticles with preferable stability under physiological condition. Furthermore, due to the conjugation of Cet, Cet-SLN/ICG could target EGFR which overexpress in MCF-7 cells. Most importantly, both in vitro and in vivo results suggested that compared with Cet or ICG alone, the Cet-SLN/ICG showed superior anticancer efficacy. In conclusion, Cet-SLN/ICG could be a potential platform for effective combinational chemo-photothermal therapy for breast cancer.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Cardiovascular Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Chang Liu
- Department of Radiation Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Yang
- Department of Cardiovascular Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Shao M, Chang C, Liu Z, Chen K, Zhou Y, Zheng G, Huang Z, Xu H, Xu P, Lu B. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids Surf B Biointerfaces 2019; 183:110427. [DOI: 10.1016/j.colsurfb.2019.110427] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/13/2023]
|
15
|
Fakhrullina G, Khakimova E, Akhatova F, Lazzara G, Parisi F, Fakhrullin R. Selective Antimicrobial Effects of Curcumin@Halloysite Nanoformulation: A Caenorhabditis elegans Study. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23050-23064. [PMID: 31180643 DOI: 10.1021/acsami.9b07499] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alterations in the normal gastrointestinal microbial community caused by unhealthy diet, environmental factors, and antibiotic overuse may severely affect human health and well-being. Novel antimicrobial drug formulations targeting pathogenic microflora while not affecting or even supporting symbiotic microflora are urgently needed. Here we report fabrication of a novel antimicrobial nanocontainer based on halloysite nanotubes loaded with curcumin and protected with a dextrin outer layer (HNTs+Curc/DX) and its effective use to suppress the overgrowth of pathogenic bacteria in Caenorhabditis elegans nematodes. Nanocontainers have been obtained using vacuum-facilitated loading of hydrophobic curcumin into halloysite lumens. We have applied UV-vis and infrared spectroscopy, thermogravimetry and microscopy to characterize the HNTs+Curc/DX nanocontainers. In experiments in vitro we found that HNTs+Curc/DX effectively suppressed the growth of Serratia marcescens cells, whereas Escherichia coli bacteria were not affected. We applied HNTs+Curc/DX nanocontainers to alleviate the S. marcescens infection in C. elegans nematodes in vivo. The nematodes ingest HNTs+Curc/DX at 4-6 ng per worm, which results in improvement of the nematodes' fertility and life expectancy. Remarkably, treatment of S. marcescens-infected nematodes with HNTs+Curc/DX nanocontainers completely restored the longevity, demonstrating the enhanced bioavailability of hydrophobic curcumin. We believe that our results reported here open new avenues for fabrication of effective antimicrobial nanoformulations based on hydrophobic drugs and clay nanotubes.
Collapse
Affiliation(s)
- Gölnur Fakhrullina
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan 420008 , Republic of Tatarstan , Russian Federation
| | - Elvira Khakimova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan 420008 , Republic of Tatarstan , Russian Federation
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan 420008 , Republic of Tatarstan , Russian Federation
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Viale delle Scienze, pad. 17 , Palermo 90128 , Italy
| | - Filippo Parisi
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Viale delle Scienze, pad. 17 , Palermo 90128 , Italy
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology , Kazan Federal University , Kreml uramı 18 , Kazan 420008 , Republic of Tatarstan , Russian Federation
| |
Collapse
|
16
|
Etezadi H, Sajjadi SM, Maleki A. Crucial successes in drug delivery systems using multivariate chemometric approaches: challenges and opportunities. NEW J CHEM 2019. [DOI: 10.1039/c8nj06272b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Applying multivariate chemometric methods for thorough investigation of three processes in drug delivery systems: loading, release and photo-degradation.
Collapse
Affiliation(s)
| | | | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology
- School of Pharmacy
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| |
Collapse
|
17
|
Shi X, Wang Y, Sun H, Chen Y, Zhang X, Xu J, Zhai G. Heparin-reduced graphene oxide nanocomposites for curcumin delivery: in vitro, in vivo and molecular dynamics simulation study. Biomater Sci 2019; 7:1011-1027. [DOI: 10.1039/c8bm00907d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We fabricated novel rGO-based nanocomposites and analyzed their interaction with drug and proteins via a molecular dynamics study.
Collapse
Affiliation(s)
- Xiaoqun Shi
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Yang Wang
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Haiyan Sun
- Department of Pharmacy
- the Hospital of Qilu University of Technology
- Jinan 250353
- China
| | - Yujuan Chen
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Xingzhen Zhang
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Jiangkang Xu
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Guangxi Zhai
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| |
Collapse
|
18
|
Ricci V, Zonari D, Cannito S, Marengo A, Scupoli MT, Malatesta M, Carton F, Boschi F, Berlier G, Arpicco S. Hyaluronated mesoporous silica nanoparticles for active targeting: influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties. J Colloid Interface Sci 2018; 516:484-497. [DOI: 10.1016/j.jcis.2018.01.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/17/2022]
|
19
|
Yao M, Ma Y, Liu H, Khan MI, Shen S, Li S, Zhao Y, Liu Y, Zhang G, Li X, Zhong F, Jiang W, Wang Y. Enzyme Degradable Hyperbranched Polyphosphoester Micellar Nanomedicines for NIR Imaging-Guided Chemo-Photothermal Therapy of Drug-Resistant Cancers. Biomacromolecules 2018. [PMID: 29514006 DOI: 10.1021/acs.biomac.7b01793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multidrug resistance (MDR) is the major cause for chemotherapy failure, which constitutes a formidable challenge in the field of cancer therapy. The synergistic chemo-photothermal treatment has been reported to be a potential strategy to overcome MDR. In this work, rationally designed enzyme-degradable, hyperbranched polyphosphoester nanomedicines were developed for reversing MDR via the codelivery of doxorubicin and IR-780 (hPPEDOX&IR) as combined chemo-photothermal therapy. The amphiphilic hyperbranched polyphosphoesters with phosphate bond as the branching point were synthesized via a simple but robust one-step polycondensation reaction. The self-assembled hPPEDOX&IR exhibited good serum stability, sustained release, preferable tumor accumulation, and enhanced drug influx of doxorubicin in resistant MCF-7/ADR cells. Moreover, the degradation of hPPEDOX&IR was accelerated in the presence of alkaline phosphatase, which was overexpressed in various cancers, resulting in the fast release of encapsulated doxorubicin. The enzyme-degradable polymer generated synergistic chemo-photothermal cytotoxicity against MCF-7/ADR cells and, thus, the efficient ablation of DOX-resistant tumor without regrowth. This delivery system may open a new avenue for codelivery of chemo- and photothermal therapeutics for MDR tumor therapy.
Collapse
Affiliation(s)
- Mengqun Yao
- Department of Oncology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , People's Republic of China.,Department of Oncology , Fuyang Hospital of Anhui Medical University , Fuyang , Anhui 236000 , People's Republic of China
| | | | | | | | | | | | | | | | | | - Xiaoqiu Li
- Department of Oncology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , People's Republic of China
| | - Fei Zhong
- Department of Oncology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , People's Republic of China.,Department of Oncology , Fuyang Hospital of Anhui Medical University , Fuyang , Anhui 236000 , People's Republic of China
| | | | | |
Collapse
|
20
|
Chen C, Sun W, Wang X, Wang Y, Wang P. pH-responsive nanoreservoirs based on hyaluronic acid end-capped mesoporous silica nanoparticles for targeted drug delivery. Int J Biol Macromol 2018; 111:1106-1115. [PMID: 29357289 DOI: 10.1016/j.ijbiomac.2018.01.093] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are greatly appealing for efficient drug delivery due to their excellent drug loading capacities. However, it remains as a major challenge to realize site-specific controlled release with MSNs. This work examines a smart pH-responsive drug release system using MSNs for CD44-targeting drug delivery. Specifically, hyaluronic acid (HA) was applied as an end-capping agent to seal drug loads inside the mesoporous of MSNs through the acid labile hydrazine bonds. HA exposed on the surface of the particles can also serve as a targeting agent at the same time, enable site specific targeting toward CD-44 overexpressing cells. The system showed a good stability at physiological pHs, yet drug release could be triggered in response to changes in pH. Further studies showed that the HA-fabricated particles could achieve much enhanced cellular uptake via CD44 receptor-mediated endocytosis by Hela cells (CD44 receptor-positive), and as a result, doxorubicin-loaded MSNs exhibited significantly enhanced drug efficacy toward cancer cells overexpressing CD44 receptor (IC50 = 0.56 μg/mL), whereas the normal cells showed weakly cytotoxicity (IC50 = 1.03 μg/mL). Such a fabrication strategy may provide a new platform for preparation of high performance drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wen Sun
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
21
|
Huang L, Liu J, Gao F, Cheng Q, Lu B, Zheng H, Xu H, Xu P, Zhang X, Zeng X. A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. J Mater Chem B 2018; 6:4618-4629. [DOI: 10.1039/c8tb00989a] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel enzyme and redox dual-responsive targeted drug delivery system based on hollow mesoporous silica nanoparticles was developed for cancer therapy.
Collapse
|