1
|
Getahun Y, Das D, Ramana CV, El-Gendy AA. Nanoengineered pure Fe in a citrate matrix (Fe-CIT) with significant and tunable magnetic properties. NANOTECHNOLOGY 2024; 35:48LT01. [PMID: 39146961 DOI: 10.1088/1361-6528/ad6fa5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
This work demonstrates the synthesis and characterization of Fe nanoparticles surrounded by a citrate (CIT) matrix prepared at various temperatures and concentrations of metal, capping agent and reducing agent at standard conditions. We study the effect of reactant ratio and reaction temperature on the magnetization of the produced nanoparticles and their crystal structure. We found that for optimal metal concentrations, magnetic saturation increases with increase in the concentration of capping and reducing agents but decreases as the temperature of the reaction increases. Synthesis conditions were tailored to reveal nucleation of particles with average sizes ranging from 24 to 105 nm and a spherical shape. The ultra-high saturation magnetization of 228 emu g-1obtained for samples prepared at a metal precursor concentration of 27.8 mol l-1was attributed to the formation of small magnetic domains. Energy band gap measurements revealed a band gap energy for the Fe nanoparticles in the CIT matrix which is associated with CIT concentration and/or possible formation of a few thin layers of iron oxide shell and does not have a significant effect on the magnetic properties of the samples. Herein, we demonstrate that the synthesis parameters are crucial for the nucleation of Fe-CIT nanoparticles tailoring their magnetizatic properties as well as their potential for different applications.
Collapse
Affiliation(s)
- Yohannes Getahun
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, United States of America
- Department of Environmental Science and Engineering, Material Science and Engineering, University of Texas at El Paso, El Paso, TX 79968, United States of America
| | - Debabrata Das
- Centre for Advanced Materials Research (CMR), University of Texas at El Paso, El Paso, TX 79968, United States of America
| | - C V Ramana
- Centre for Advanced Materials Research (CMR), University of Texas at El Paso, El Paso, TX 79968, United States of America
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, United States of America
- Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, United States of America
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, United States of America
| |
Collapse
|
2
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
3
|
Tiryaki E, Zorlu T, Alvarez-Puebla RA. Magnetic-Plasmonic Nanocomposites as Versatile Substrates for Surface-enhanced Raman Scattering (SERS) Spectroscopy. Chemistry 2024; 30:e202303987. [PMID: 38294096 DOI: 10.1002/chem.202303987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy, a highly sensitive technique for detecting trace-level analytes, relies on plasmonic substrates. The choice of substrate, its morphology, and the excitation wavelength are crucial in SERS applications. To address advanced SERS requirements, the design and use of efficient nanocomposite substrates have become increasingly important. Notably, magnetic-plasmonic (MP) nanocomposites, which combine magnetic and plasmonic properties within a single particle system, stand out as promising nanoarchitectures with versatile applications in nanomedicine and SERS spectroscopy. In this review, we present an overview of MP nanocomposite fabrication methods, explore surface functionalization strategies, and evaluate their use in SERS. Our focus is on how different nanocomposite designs, magnetic and plasmonic properties, and surface modifications can significantly influence their SERS-related characteristics, thereby affecting their performance in specific applications such as separation, environmental monitoring, and biological applications. Reviewing recent studies highlights the multifaceted nature of these materials, which have great potential to transform SERS applications across a range of fields, from medical diagnostics to environmental monitoring. Finally, we discuss the prospects of MP nanocomposites, anticipating favorable developments that will make substantial contributions to various scientific and technological areas.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications. Italian Institute of Technology (IIT), Geneva, 16163, Geneve, Italy
| | - Tolga Zorlu
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, A-1090, Vienna, Austria
| | - Ramon A Alvarez-Puebla
- Department of Inorganic and Physical Chemistry, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
- ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
4
|
Gautam N, Singh KB, Snigdha, Upadhyay DD, Pandey G. Structural and optical properties of silver supported α-Fe 2O 3 nanocomposite fabricated by Saraca asoca leaf extract for the effective photo-degradation of cationic dye Azure B. RSC Adv 2023; 13:23181-23196. [PMID: 37533787 PMCID: PMC10391326 DOI: 10.1039/d3ra03315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
In recent decades, several nanocomposites developed by chemical synthetic routes, have been demonstrated as efficient photocatalysts for the photodegradation of hazardous organic dyes. The present investigation reports the sonochemical-assisted fabrication of silver-supported α-Fe2O3 nanocomposites (SA@Ag@IONCs) using the Saraca asoca leaf extract. The magnetic nanocomposites can be easily removed from the reaction mixture. The morphology of these materials was characterized by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), XPS, BET surface area analyzer, UV-visible spectroscopy, photoluminescence, X-ray diffraction (XRD), and VSM techniques. The XRD and electron microscopy analyses revealed the small size and well-crystalline SA@Ag@IONC particles with spherical and buckyball structures. The large surface area of SA@Ag@IONCs was confirmed by BET analysis. The absorption edge in UV-visible spectra appeared to migrate towards high wavelengths for the SA@Ag@IONC composite, causing a change in the bandgap energy. In the case of the sonication assisted composite, the bandgap energy was 2.1 eV, making it easier for the electron to transfer from the valence band to conduction band. The decoration of ultrasmall silver onto the surfaces of the α-Fe2O3 nanocomposite, which considerably increases the capacity to absorb sunlight, enhances the efficiency of charge carrier separation, and inhibits the electron-hole recombination rate as confirmed by the reduced PL intensity, is responsible for the excellent photocatalytic degradation performance. Outcomes shown SA@Ag@IONCs have a high photodegradation rate as well as high-rate constant value at an optimized condition that is at pH 9 and 0.5 g L-1 dose of nanocomposite, photodegradation rate of Azure B is ∼94%. Trap experiment results indicated that O2˙- and h+ are the active species responsible for the photodegradation of AzB.
Collapse
Affiliation(s)
- Neelam Gautam
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University Lucknow India
| | - Kijay Bahadur Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University Lucknow India
| | - Snigdha
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University Lucknow India
| | - Deen Dayal Upadhyay
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University Lucknow India
| | - Gajanan Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University Lucknow India
| |
Collapse
|
5
|
Zimina TM, Sitkov NO, Gareev KG, Fedorov V, Grouzdev D, Koziaeva V, Gao H, Combs SE, Shevtsov M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. BIOSENSORS 2022; 12:789. [PMID: 36290927 PMCID: PMC9599632 DOI: 10.3390/bios12100789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Magnetic nanocarriers have attracted attention in translational oncology due to their ability to be employed both for tumor diagnostics and therapy. This review summarizes data on applications of synthetic and biogenic magnetic nanoparticles (MNPs) in oncological theranostics and related areas. The basics of both types of MNPs including synthesis approaches, structure, and physicochemical properties are discussed. The properties of synthetic MNPs and biogenic MNPs are compared with regard to their antitumor therapeutic efficiency, diagnostic potential, biocompatibility, and cellular toxicity. The comparative analysis demonstrates that both synthetic and biogenic MNPs could be efficiently used for cancer theranostics, including biosensorics and drug delivery. At the same time, reduced toxicity of biogenic particles was noted, which makes them advantageous for in vivo applications, such as drug delivery, or MRI imaging of tumors. Adaptability to surface modification based on natural biochemical processes is also noted, as well as good compatibility with tumor cells and proliferation in them. Advances in the bionanotechnology field should lead to the implementation of MNPs in clinical trials.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia
| | - Veronika Koziaeva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
6
|
Yurkov GY, Kozinkin AV, Shvachko OV, Kubrin SP, Ovchenkov EA, Korobov MS, Kirillov VE, Osipkov AS, Makeev MO, Ryzhenko DS, Solodilov VI, Burakova EA, Bouznik VM. One
‐step synthesis of composite materials based on polytetrafluoroethylene microgranules and Co@
Fe
2
O
3
‐FeF
2
nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.52890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gleb Yu. Yurkov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
- Bauman Moscow State Technical University Moscow Russian Federation
| | | | | | | | | | - Maxim S. Korobov
- Bauman Moscow State Technical University Moscow Russian Federation
| | - Vladislav E. Kirillov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
| | | | | | | | - Vitaly I. Solodilov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
| | | | | |
Collapse
|
7
|
Khazaie F, Sheshmani S, Shokrollahzadeh S, Shahvelayati AS. Desalination of saline water via forward osmosis using magnetic nanoparticles covalently functionalized with citrate ions as osmotic agent. ENVIRONMENTAL TECHNOLOGY 2022; 43:2113-2123. [PMID: 33332242 DOI: 10.1080/09593330.2020.1866087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Forward osmosis is an emerging membrane technology in water desalination. In this study, desalination of saline water via forward osmosis was investigated using a new magnetic osmotic agent. For this purpose, Fe3O4 nanoparticles covalently functionalised with tri-sodium citrate was synthesised and characterised. The structural examinations revealed that the sodium citrate had been immobilised onto the magnetic nanoparticles. The highest water flux was obtained 17.1 L M-2 h (LMH) per 80 g L-1 osmotic agent solution against deionised water, while the ratio of salt flux to water flux was very low (0.088 g L-1). The osmotic solution was evaluated for saline water desalination using different concentrations of sodium chloride (NaCl) as feed solutions. The average water fluxes of 6.2, 4.5, and 2.7 LMH was obtained for 0.1, 0.2, and 0.5 M salt solutions, respectively. The magnetic osmotic agent was separated by a magnet and re-used for several times without considerable decrease in the water flux.
Collapse
Affiliation(s)
- Fazeleh Khazaie
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Shabnam Sheshmani
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Ashraf S Shahvelayati
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Recent Advances of Magnetic Gold Hybrids and Nanocomposites, and Their Potential Biological Applications. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Magnetic gold nanoparticles (mGNP) have become a great interest of research for nanomaterial scientists because of their significant magnetic and plasmonic properties applicable in biomedical applications. Various synthetic approaches and surface modification techniques have been used for mGNP including the most common being the coprecipitation, thermal decomposition, and microemulsion methods in addition to the Brust Schiffrin technique, which involves the reduction of metal precursors in a two-phase system (water and toluene) in the presence of alkanethiol. The hybrid magnetic–plasmonic nanoparticles based on iron core and gold shell are being considered as potential theranostic agents. In this critical review, in addition to future works, we have summarized recent developments for synthesis and surface modification of mGNP with their applications in modern biomedical science such as drug and gene delivery, bioimaging, biosensing, and neuro-regeneration, neuro-degenerative and arthritic disorders. This review includes techniques and biological applications of mGNP majorly based on research from the previous six years.
Collapse
|
9
|
An Overview of the Production of Magnetic Core-Shell Nanoparticles and Their Biomedical Applications. METALS 2022. [DOI: 10.3390/met12040605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several developments have recently emerged for core-shell magnetic nanomaterials, indicating that they are suitable materials for biomedical applications. Their usage in hyperthermia and drug delivery applications has escalated since the use of shell materials and has several beneficial effects for the treatment in question. The shell can protect the magnetic core from oxidation and provide biocompatibility for many materials. Yet, the synthesis of the core-shell materials is a multifaceted challenge as it involves several steps and parallel processes. Although reviews on magnetic core-shell nanoparticles exist, there is a lack of literature that compares the size and shape of magnetic core-shell nanomaterials synthesized via various methods. Therefore, this review outlines the primary synthetic routes for magnetic core-shell nanoparticles, along with the recent advances in magnetic core-shell nanomaterials. As core-shell nanoparticles have been proposed among others as therapeutic nanocarriers, their potential applications in hyperthermia drug delivery are discussed.
Collapse
|
10
|
Kwizera EA, Stewart S, Mahmud MM, He X. Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. JOURNAL OF HEAT TRANSFER 2022; 144:030801. [PMID: 35125512 PMCID: PMC8813031 DOI: 10.1115/1.4053007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.
Collapse
Affiliation(s)
- Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Md Musavvir Mahmud
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
11
|
Surface Effect of Iron Oxide Nanoparticles on the Suppression of Oxidative Burst in Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Gohain SB, Boruah PK, Das MR, Thakur AJ. Gold-coated iron oxide core–shell nanostructures for the oxidation of indoles and the synthesis of uracil-derived spirooxindoles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of isatins and uracil-based spirooxindoles catalysed by Au/Fe3O4 core–shell nanoparticles under mild conditions and low reaction times.
Collapse
Affiliation(s)
| | - Purna Kanta Boruah
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Manash Ranjan Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
13
|
Yoon HM, Kang MS, Choi GE, Kim YJ, Bae CH, Yu YB, Jeong YIL. Stimuli-Responsive Drug Delivery of Doxorubicin Using Magnetic Nanoparticle Conjugated Poly(ethylene glycol)- g-Chitosan Copolymer. Int J Mol Sci 2021; 22:ijms222313169. [PMID: 34884973 PMCID: PMC8658650 DOI: 10.3390/ijms222313169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
Stimuli-responsive nanoparticles are regarded as an ideal candidate for anticancer drug targeting. We synthesized glutathione (GSH) and magnetic-sensitive nanocomposites for a dual-targeting strategy. To achieve this goal, methoxy poly (ethylene glycol) (MePEG) was grafted to water-soluble chitosan (abbreviated as ChitoPEG). Then doxorubicin (DOX) was conjugated to the backbone of chitosan via disulfide linkage. Iron oxide (IO) magnetic nanoparticles were also conjugated to the backbone of chitosan to provide magnetic sensitivity. In morphological observation, images from a transmission electron microscope (TEM) showed that IO nanoparticles were embedded in the ChitoPEG/DOX/IO nanocomposites. In a drug release study, GSH addition accelerated DOX release rate from nanocomposites, indicating that nanocomposites have redox-responsiveness. Furthermore, external magnetic stimulus concentrated nanocomposites in the magnetic field and then provided efficient internalization of nanocomposites into cancer cells in cell culture experiments. In an animal study with CT26 cell-bearing mice, nanocomposites showed superior magnetic sensitivity and then preferentially targeted tumor tissues in the field of external magnetic stimulus. Nanocomposites composed of ChitoPEG/DOX/IO nanoparticle conjugates have excellent anticancer drug targeting properties.
Collapse
Affiliation(s)
- Hyun-Min Yoon
- Department of Industrial and Management Engineering, POSTECH, Gyeongbuk, Pohang 37673, Korea;
| | - Min-Su Kang
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea;
| | - Go-Eun Choi
- College of Medicine, Hanyang University, Seoul 04763, Korea;
| | | | - Chang-Hyu Bae
- Department of Well-being Bioresources, Sunchon National University, Suncheon 57922, Korea;
| | - Young-Bob Yu
- Department of Emergency Medical Rescue & Department of Herbal Pharmaceutical Development, Nambu University, Gwangju 62271, Korea
- Correspondence: (Y.-B.Y.); (Y.-I.J.); Tel.: +82-62-970-0163 (Y.-B.Y.), +82-62-230-7567 (Y-.I.J)
| | - Young-IL Jeong
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, Yangsan 50612, Korea
- Correspondence: (Y.-B.Y.); (Y.-I.J.); Tel.: +82-62-970-0163 (Y.-B.Y.), +82-62-230-7567 (Y-.I.J)
| |
Collapse
|
14
|
Liu R, Wu Q, Huang X, Zhao X, Chen X, Chen Y, Weitz DA, Song Y. Synthesis of nanomedicine hydrogel microcapsules by droplet microfluidic process and their pH and temperature dependent release. RSC Adv 2021; 11:37814-37823. [PMID: 35498106 PMCID: PMC9043787 DOI: 10.1039/d1ra05207a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Chitosan and alginate hydrogels are attractive because they are highly biocompatible and suitable for developing nanomedicine microcapsules. Here we fabricated a polydimethylsiloxane-based droplet microfluidic reactor to synthesize nanomedicine hydrogel microcapsules using Au@CoFeB-Rg3 as a nanomedicine model and a mixture of sodium alginate and PEG-g-chitosan crosslinked by genipin as a hydrogel model. The release kinetics of nanomedicines from the hydrogel were evaluated by simulating the pH and temperature of the digestive tract during drug transport and those of the target pathological cell microenvironment. Their pH and temperature-dependent release kinetics were studied by measuring the mass loss of small pieces of thin films formed by the nanomedicine-encapsulating hydrogels in buffers of pH 1.2, 7.4, and 5.5, which replicate the pH of the stomach, gut and blood, and cancer microenvironment, respectively, at 20 °C and 37 °C, corresponding to the storage temperature of hydrogels before use and normal body temperature. Interestingly, nanomedicine-encapsulating hydrogels can undergo rapid decomposition at pH 5.5 and are relatively stable at pH 7.4 at 37 °C, which are desirable qualities for drug delivery, controlled release, and residue elimination after achieving target effects. These results indicate that the designed nanomedicine hydrogel microcapsule system is suitable for oral administration.
Collapse
Affiliation(s)
- Ran Liu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - Qiong Wu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - Xing Huang
- Physics Department, School of Engineering and Applied Science, Harvard University Cambridge MA 02138 USA
| | - Xiaoxiong Zhao
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - Xinhua Chen
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - Yonggang Chen
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - David A Weitz
- Physics Department, School of Engineering and Applied Science, Harvard University Cambridge MA 02138 USA
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
- Physics Department, School of Engineering and Applied Science, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
15
|
Abbasgholi N Asbaghi B, Alsadig A, Cabrera H. Online electrophoretic nanoanalysis using miniaturized gel electrophoresis and thermal lens microscopy detection. J Chromatogr A 2021; 1657:462596. [PMID: 34689905 DOI: 10.1016/j.chroma.2021.462596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Online thermal lens microscopy (TLM) coupled with gel electrophoresis (GE) can represent a powerful tool for separating and detecting a wide range of biomaterials. Unlike slab gel electrophoresis (SGE), the proposed method does not require prolonged procedure between separation and detection. In this work, we developed an online monitoring GE system to separate and detect nanosized materials. The design is based on a homemade and cost-effective miniaturized GE chip (MGEC) integrated with real-time TLM detection through microcontroller-based digitization board platform. To validate the feasibility and practicability of the proposed approach, we evaluated its separation capability via employing synthesized Fe3O4-Au core-shell nanoparticles (NPs) which served remarkably for the proof-of-concept. The optimum conditions for the separation process were achieved through optimization of the excitation power as 30 mW, detection position at 24 mm, the concentration of agarose gel 0.5 % w/v, and 37.5 V/cm as the effective electric field strength. The findings showed that two populations of Fe3O4-Au, core-shell, and uncapped Fe3O4 NPs, were effectively separated in less than eleven minutes, demonstrating rapid assessment of the nanomaterial production quality. Moreover, other characterization techniques such as HRTEM and EDX were employed to confirm the presence of the two dissimilar kinds of NPs separated using MGEC-TLM. The sensitivity of the method was demonstrated by determining the limit of detection (23 pM) for 10 nm AuNPs. It is envisaged that our presented system enables rapid, economical, low volume of reagents consumption and high potential analysis for quality test in various bioanalytical and nanotechnological applications.
Collapse
Affiliation(s)
| | - Ahmed Alsadig
- PhD School in Nanotechnology, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; NanoInnovation Lab, Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Humberto Cabrera
- Optics Lab, STI Unit, The Abdus Salam International Centre for Theoretical Physics, Trieste 34151, Italy.
| |
Collapse
|
16
|
Fe3O4@Au@SiO2 Core–Shell Nanoparticles: Synthesis, Characterization, Investigations of Its Influence on Cell Lines Using a NIR Laser and an Alternating Magnetic Field. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02136-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Rosado Piquer L, Dreiser J, Sañudo EC. Heterometallic Co-Dy SMMs grafted on iron oxide nanoparticles. Dalton Trans 2021; 50:9589-9597. [PMID: 34160526 DOI: 10.1039/d1dt01519b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heterometallic 3d-4f SMM [Co4Dy(OH)2(SALOH)5(chp)4(MeCN)(H2O)2] (1) has been deposited onto iron oxide nanoparticles (NPs) with an oleate self-assembled monolayer (SAM) as a surfactant. The obtained hybrid molecular-inorganic system 1-NP has been thoroughly characterized. The oleate SAM separates SMM 1 from the magnetic substrate to avoid the strong-coupling between the surface and molecule to ensure that 1 retains its magnetic properties in 1-NP. The magnetic properties of the hybrid system 1-NP have been characterized by element specific XMCD: the heterometallic SMM retains its magnetic properties on the surface of the iron oxide NPs while there is an enhancement of the magnetic properties of the NPs.
Collapse
Affiliation(s)
- Lidia Rosado Piquer
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Carrer Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Carrer Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jan Dreiser
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - E Carolina Sañudo
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Carrer Martí i Franquès 1-11, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Carrer Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Design a high sensitive electrochemical sensor based on immobilized cysteine on Fe3O4@Au core-shell nanoparticles and reduced graphene oxide nanocomposite for nitrite monitoring. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
20
|
Długosz O, Lis K, Banach M. Synthesis and antimicrobial properties of CaCO 3-nAg and nAg-CaCO 3 nanocomposites. NANOTECHNOLOGY 2021; 32:025715. [PMID: 32992310 DOI: 10.1088/1361-6528/abbcaa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The nanocomposites of nAg-CaCO3 and CaCO3-nAg with different mass content of silver nanoparticles were obtained in a two-stage continuous microwave process. The nanocomposites were characterized by XRD, TEM, UV-vis, and FTIR spectroscopy. The effects of microwave radiation, silver nanoparticles content in the composite and the molar ratio of tannic acid to silver on the size of salt crystallites were studied. The effectiveness of combining silver nanoparticles with CaCO3 was confirmed to exceed 99%. Depending on the input parameters applied, the size of salt crystals in nAg/CaCO3 nanocomposites ranged from 25 to 45 nm, while the size of salt crystals in CaCO3/nAg nanocomposites ranged from 26 to 41 nm. In addition, some of the compositions were tested for their antimicrobial activity on selected yeast and bacterial microorganisms. The prepared materials present a biocidal effect, which makes them suitable for use in antimicrobial preparations.
Collapse
Affiliation(s)
- Olga Długosz
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Kinga Lis
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
21
|
Nair RV, Murukeshan VM. (Cu2O-Au) – Graphene - Au layered structures as efficient near Infra - Red SERS substrates. Sci Rep 2020; 10:4152. [PMID: 32139732 PMCID: PMC7058041 DOI: 10.1038/s41598-020-60874-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Near Infra-Red Surface Enhanced Raman Spectroscopy (NIR SERS) has gained huge attention in recent years as the conventional visible SERS suffers from overwhelming fluorescence background from the fluorophore resulting in the masking of Raman signals. In this paper, we propose a novel multi-layered SERS substrate- (Cu2O - Au) - Graphene – Au - for efficient NIR SERS applications. The proposed structure has a monolayer of Cu2O - Au core-shell particles on a Au substrate with 1 nm thick graphene spacer layer. Mie simulations are used to optimize the aspect ratios of core-shell particles to shift their plasmon resonances to NIR region using MieLab software. Further, Finite Difference Time Domain (FDTD) simulations using Lumerical software are used for the design of the multiparticle layered SERS substrate as MieLab software works only for single particle systems. Designed structure is shown to provide high field enhancement factor of the order of 108 at an excitation of 1064 nm thus ensuring the possibility of using the proposed structure as efficient NIR SERS substrate which could probably be used for various NIR sensing applications.
Collapse
|
22
|
Khan AU, Rahman AU, Yuan Q, Ahmad A, Khan ZUH, Mahnashi MH, Alyami BA, Alqahtani YS, Ullah S, Wirman AP. Facile and eco-benign fabrication of Ag/Fe2O3 nanocomposite using Algaia Monozyga leaves extract and its’ efficient biocidal and photocatalytic applications. Photodiagnosis Photodyn Ther 2020; 32:101970. [DOI: 10.1016/j.pdpdt.2020.101970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
|
23
|
Petrov D. Photopolarimetrical properties of coronavirus model particles: Spike proteins number influence. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 2020; 248:107005. [PMID: 32292212 DOI: 10.1016/j.jqsrt.2020.107095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 05/22/2023]
Abstract
Coronavirus virions have spherical shape surrounded by spike proteins. The coronavirus spike proteins are very effective molecular mechanisms, which provide the coronavirus entrance to the host cell. The number of these spikes is different; it dramatically depends on external conditions and determines the degree of danger of the virus. A larger number of spike proteins makes the virus infectivity stronger. This paper describes a mathematical model of the shape of coronavirus virions. Based on this model, the characteristics of light scattered by the coronavirus virions were calculated. It was found two main features of coronavirus model particles in the spectral region near 200 nm: a minimum of intensity and a sharp leap of the linear polarization degree. The effect of the spike protein number on the intensity and polarization properties of the scattered light was studied. It was determined that when the number of spike proteins decreases, both the intensity minimum and the position of the linear polarization leap shift to shorter wavelengths. This allows us to better evaluate the shape of the coronavirus virion, and, therefore, the infectious danger of the virus. It was shown that the shorter the wavelength of scattered light, the more reliably one can distinguish viruses from non-viruses. The developed model and the light scattering simulations based on it can be applied not only to coronaviruses, but also to other objects of a similar structure, for example, pollen.
Collapse
Affiliation(s)
- Dmitry Petrov
- Crimean Astrophysical Observatory (CrAO RAS), Nauchnyj, 298409, Crimea, Russian Federation
| |
Collapse
|
24
|
Charchi N, Li Y, Huber M, Kwizera EA, Huang X, Argyropoulos C, Hoang T. Small mode volume plasmonic film-coupled nanostar resonators. NANOSCALE ADVANCES 2020; 2:2397-2403. [PMID: 34046555 PMCID: PMC8153380 DOI: 10.1039/d0na00262c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 06/12/2023]
Abstract
Confining and controlling light in extreme subwavelength scales are tantalizing tasks. In this work, we report a study of individual plasmonic film-coupled nanostar resonators where polarized plasmonic optical modes are trapped in ultrasmall volumes. Individual gold nanostars, separated from a flat gold film by a thin dielectric spacer layer, exhibit a strong light confinement between the sub-10 nm volume of the nanostar's tips and the film. Through dark field scattering measurements of many individual nanostars, a statistical observation of the scattered spectra is obtained and compared with extensive simulation data to reveal the origins of the resonant peaks. We observe that an individual nanostar on a flat gold film can result in a resonant spectrum with single, double or multiple peaks. Further, these resonant peaks are strongly polarized under white light illumination. Our simulation data revealed that the resonant spectrum of an individual film-coupled nanostar resonator is related to the symmetry of the nanostar, as well as the orientation of the nanostar relative to its placement on the gold substrate. Our results demonstrate a simple new method to create an ultrasmall mode volume and polarization sensitive plasmonic platform which could be useful for applications in sensing or enhanced light-matter interactions.
Collapse
Affiliation(s)
- Negar Charchi
- Department of Physics and Materials Science, The University of MemphisMemphisTN 38152USA
| | - Ying Li
- Department of Electrical and Computer Engineering, University of Nebraska-LincolnLincolnNE 68588USA
| | - Margaret Huber
- Department of Physics and Materials Science, The University of MemphisMemphisTN 38152USA
| | | | - Xiaohua Huang
- Department of Chemistry, The University of MemphisMemphisTN 38152USA
| | - Christos Argyropoulos
- Department of Electrical and Computer Engineering, University of Nebraska-LincolnLincolnNE 68588USA
| | - Thang Hoang
- Department of Physics and Materials Science, The University of MemphisMemphisTN 38152USA
| |
Collapse
|
25
|
Thekkathu R, Ashok D, K Ramkollath P, Neelakandapillai S, Kurishunkal LP, Yadav MP, Kalarikkal N. Magnetically recoverable Ir/IrO2@Fe3O4 core/ SiO2 shell catalyst for the reduction of organic pollutants in water. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Automated droplet reactor for the synthesis of iron oxide/gold core-shell nanoparticles. Sci Rep 2020; 10:1737. [PMID: 32015417 PMCID: PMC6997455 DOI: 10.1038/s41598-020-58580-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Core-shell nanoparticles are promising candidates for theranostic drugs, as they combine different intrinsic properties with a small size and large surface area. However, their controlled synthesis, or the screening and optimization of synthesis conditions are often difficult and labor intensive. Through the precise control over mass and heat transfer, and automatization possibilities, microfluidic devices could be a solution to this problem in a lab scale synthesis. Here, we demonstrate a microfluidic, capillary, droplet reactor for the multi-step synthesis of iron oxide/gold core-shell nanoparticles. Through the integration of a transmission measurement at the outlet of the reactor, synthesis results can be monitored in a real-time manner. This allowed for the implementation of an optimization algorithm. Starting from three separate initial guesses, the algorithm converged to the same synthesis conditions in less than 30 minutes for each initial guess. These conditions resulted in diameter for the iron oxide core of 5.8 ± 1.4 nm, a thickness for the gold shell of 3.5 ± 0.6 nm, and a total diameter of the core-shell particles of 13.1 ± 2.5 nm. Finally, applications of the iron oxide/gold core-shell nanoparticles were demonstrated for Surface Enhanced Raman Spectroscopy (SERS), photothermal therapy, and magnetic resonance imaging (MRI).
Collapse
|
27
|
Kheradmand E, Poursalehi R, Delavari H. Optical and magnetic properties of iron-enriched Fe/FexOy@Au magnetoplasmonic nanostructures. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01246-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Veloso SRS, Martins JA, Hilliou L, O Amorim C, Amaral VS, Almeida BG, Jervis PJ, Moreira R, Pereira DM, Coutinho PJG, Ferreira PMT, Castanheira EMS. Dehydropeptide-based plasmonic magnetogels: a supramolecular composite nanosystem for multimodal cancer therapy. J Mater Chem B 2019; 8:45-64. [PMID: 31764934 DOI: 10.1039/c9tb01900f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Supramolecular hydrogels are highly promising candidates as biomedical materials owing to their wide array of properties, which can be tailored and modulated. Additionally, their combination with plasmonic/magnetic nanoparticles to form plasmonic magnetogels further improves their potential in biomedical applications through the combination of complementary strategies, such as photothermia, magnetic hyperthermia, photodynamic therapy and magnetic-guided drug delivery. Here, a new dehydropeptide hydrogelator, Npx-l-Met-Z-ΔPhe-OH, was developed and combined with two different plasmonic/magnetic nanoparticle architectures, i.e., core/shell manganese ferrite/gold nanoparticles and gold-decorated manganese ferrite nanoparticles with ca. 55 nm and 45 nm sizes, respectively. The magnetogels were characterized via HR-TEM, FTIR spectroscopy, circular dichroism and rheological assays. The gels were tested as nanocarriers for a model antitumor drug, the natural compound curcumin. The incorporation of the drug in the magnetogel matrices was confirmed through fluorescence-based techniques (FRET, fluorescence anisotropy and quenching). The curcumin release profiles were studied with and without the excitation of the gold plasmon band. The transport of curcumin from the magnetogels towards biomembrane models (small unilamellar vesicles) was assessed via FRET between the fluorescent drug and the lipid probe Nile Red. The developed magnetogels showed promising results for photothermia and photo-triggered drug release. The magnetogels bearing gold-decorated nanoparticles showed the best photothermia properties, while the ones containing core/shell nanoparticles had the best photoinduced curcumin release.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - J A Martins
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C O Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - V S Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - B G Almeida
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Peter J Jervis
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal and REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Rute Moreira
- REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | |
Collapse
|
29
|
Pillarisetti S, Uthaman S, Huh KM, Koh YS, Lee S, Park IK. Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications. Tissue Eng Regen Med 2019; 16:451-465. [PMID: 31624701 PMCID: PMC6778581 DOI: 10.1007/s13770-019-00218-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background Iron oxide nanoparticles (IONPs) are excellent candidates for biomedical imaging because of unique characteristics like enhanced colloidal stability and excellent in vivo biocompatibility. Over the last decade, material scientists have developed IONPs with better imaging and enhanced optical absorbance properties by tuning their sizes, shape, phases, and surface characterizations. Since IONPs could be detected with magnetic resonance imaging, various attempts have been made to combine other imaging modalities, thereby creating a high-resolution imaging platform. Composite IONPs (CIONPs) comprising IONP cores with polymeric or inorganic coatings have recently been documented as a promising modality for therapeutic applications. Methods In this review, we provide an overview of the recent advances in CIONPs for multimodal imaging and focus on the therapeutic applications of CIONPs. Result CIONPs with phototherapeutics, IONP-based nanoparticles are used for theranostic application via imaging guided photothermal therapy. Conclusion CIONP-based nanoparticles are known for theranostic application, longstanding effects of composite NPs in in vivo systems should also be studied. Once such issues are fixed, multifunctional CIONP-based applications can be extended for theranostics of diverse medical diseases in the future.
Collapse
Affiliation(s)
- Shameer Pillarisetti
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Yang Seok Koh
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Chonnam, 58128 Republic of Korea
| | - Sangjoon Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115 USA
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| |
Collapse
|
30
|
Magnetic Nanomaterials for Magnetically-Aided Drug Delivery and Hyperthermia. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic nanoparticles have continuously gained importance for the purpose of magnetically-aided drug-delivery, magnetofection, and hyperthermia. We have summarized significant experimental approaches, as well as their advantages and disadvantages with respect to future clinical translation. This field is alive and well and promises meaningful contributions to the development of novel cancer therapies.
Collapse
|
31
|
Chen H, Hu H, Tao C, Clauson RM, Moncion I, Luan X, Hwang S, Sough A, Sansanaphongpricha K, Liao J, Paholak HJ, Stevers NO, Wang G, Liu B, Sun D. Self-Assembled Au@Fe Core/Satellite Magnetic Nanoparticles for Versatile Biomolecule Functionalization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23858-23869. [PMID: 31245984 DOI: 10.1021/acsami.9b05544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although the functionalization of magnetic nanoparticles (MNPs) with biomolecules has been widely explored for various biological applications, achieving efficient bioconjugations with a wide range of biomolecules through a single, universal, and versatile platform remains a challenge, which may significantly impact their applications' outcomes. Here, we report a novel MNP platform composed of Au@Fe core/satellite nanoparticles (CSNPs) for versatile and efficient bioconjugations. The engineering of the CSNPs is facilely formed through the self-assembly of ultrasmall gold nanoparticles (AuNPs, 2-3 nm in diameter) around MNPs with a polysiloxane-containing polymer coating. The formation of the hybrid magnetic nanostructure is revealed by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), element analysis using atomic absorption spectroscopy, and vibrating sample magnetometer. The versatility of biomolecule loading to the CSNP is revealed through the bioconjugation of a wide range of relevant biomolecules, including streptavidin, antibodies, peptides, and oligonucleotides. Characterizations including DLS, TEM, lateral flow strip assay, fluorescence assay, giant magnetoresistive nanosensor array, high-performance liquid chromatography, and absorption spectrum are performed to further confirm the efficiency of various bioconjugations to the CSNP. In conclusion, this study demonstrates that the CSNP is a novel MNP-based platform that offers versatile and efficient surface functionalization with various biomolecules.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Chun Tao
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ryan M Clauson
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ila Moncion
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xin Luan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sangyeul Hwang
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Ashley Sough
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Kanokwan Sansanaphongpricha
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hayley J Paholak
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Nicholas O Stevers
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Guoping Wang
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Bing Liu
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
32
|
Nalluri SR, Nagarjuna R, Patra D, Ganesan R, Balaji G. Large Scale Solid-state Synthesis of Catalytically Active Fe 3O 4@M (M = Au, Ag and Au-Ag alloy) Core-shell Nanostructures. Sci Rep 2019; 9:6603. [PMID: 31036893 PMCID: PMC6488626 DOI: 10.1038/s41598-019-43116-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Solvent-less synthesis of nanostructures is highly significant due to its economical, eco-friendly and industrially viable nature. Here we report a solid state synthetic approach for the fabrication of Fe3O4@M (where M = Au, Ag and Au-Ag alloy) core-shell nanostructures in nearly quantitative yields that involves a simple physical grinding of a metal precursor over Fe3O4 core, followed by calcination. The process involves smooth coating of low melting hybrid organic-inorganic precursor over the Fe3O4 core, which in turn facilitates a continuous shell layer post thermolysis. The obtained core-shell nanostructures are characterized using, XRD, XPS, ED-XRF, FE-SEM and HR-TEM for their phase, chemical state, elemental composition, surface morphology, and shell thickness, respectively. Homogeneous and continuous coating of the metal shell layer over a large area of the sample is ascertained by SAXS and STEM analyses. The synthesized catalysts have been studied for their applicability towards a model catalytic hydrogen generation from NH3BH3 and NaBH4 as hydrogen sources. The catalytic efficacy of the Fe3O4@Ag and Ag rich alloy shell materials are found to be superior to the corresponding Au counterparts. The saturation magnetization studies reveal the potential of the core-shell nanostructured catalysts to be magnetically recoverable and recyclable.
Collapse
Affiliation(s)
- Srinivasa Rao Nalluri
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, 500078, India
| | - Ravikiran Nagarjuna
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, 500078, India
| | - Dinabandhu Patra
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, 500078, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, 500078, India.
| | - Gopalan Balaji
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, 500078, India.
| |
Collapse
|
33
|
Sarno M, Cirillo C, Iuliano M. Self-Suspended Nanoparticles for N-Alkylation Reactions: A New Concept for Catalysis. ChemistryOpen 2019; 8:520-531. [PMID: 31061777 PMCID: PMC6488208 DOI: 10.1002/open.201900104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 11/23/2022] Open
Abstract
The catalytic activity of snowman-like and core-shell Fe3O4/Au nanoparticles (NPs), obtained through a "wet chemistry" approach which directly restitutes nanocatalysts stable and highly active in the reaction medium, was tested towards N-alkylation reactions. The nanocatalysts were tested for the synthesis of secondary amines. The core-shell NPs, thanks to the surface properties, homogeneous dispersion and intimate connection with reagents in the catalyst medium, exhibited an excellent catalytic activity (e. g. >99 % yield and conversion of aniline in very short time and mild conditions). Owing to the magnetic part, the nanoparticles can be easily separated and reused, showing an almost stable activity after 10 cycles.
Collapse
Affiliation(s)
- Maria Sarno
- Department of Industrial Engineering and Centre NANO_MATESUniversity of SalernoVia Giovanni Paolo II132-84084Fisciano (SA)Italy
| | - Claudia Cirillo
- Department of Industrial Engineering and Centre NANO_MATESUniversity of SalernoVia Giovanni Paolo II132-84084Fisciano (SA)Italy
| | - Mariagrazia Iuliano
- Department of Industrial Engineering and Centre NANO_MATESUniversity of SalernoVia Giovanni Paolo II132-84084Fisciano (SA)Italy
| |
Collapse
|
34
|
Tomitaka A, Ota S, Nishimoto K, Arami H, Takemura Y, Nair M. Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core-shell nanoparticles. NANOSCALE 2019; 11:6489-6496. [PMID: 30892348 PMCID: PMC6464385 DOI: 10.1039/c9nr00242a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Multifunctional nanoparticles with a magnetic core and gold shell structures are emerging multi-modal imaging probes for disease diagnosis, image-guided therapy, and theranostic applications. Owing to their multi-functional magnetic and plasmonic properties, these nanoparticles can be used as contrast agents in multiple complementary imaging modalities. Magnetic particle imaging (MPI) is a new pre-clinical imaging system that enables real-time imaging with high sensitivity and spatial resolution by detecting the dynamic responses of nanoparticle tracers. In this study, we evaluated the dynamic magnetic properties and MPI imaging performances of core-shell nanoparticles with a magnetic core coated with a gold shell. A change in AC hysteresis loops was detected before and after the formation of the gold shell on magnetic core nanoparticles, suggesting the influence of the core-shell interfacial effect on their dynamic magnetic properties. This alteration in the dynamic responses resulted in an enhancement of the MPI imaging capacity of magnetic nanoparticles. The gold shell coating also enabled a simple and effective functionalization of the nanoparticles with a brain glioma targeting ligand. The enhanced MPI imaging capacity and effective functionality suggest the potential application of the magnetic-gold core-shell nanoparticles for MPI disease diagnostics.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Zhou Z, Yang L, Gao J, Chen X. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804567. [PMID: 30600553 PMCID: PMC6392011 DOI: 10.1002/adma.201804567] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/17/2018] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.
Collapse
Affiliation(s)
- Zijian Zhou
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- ‡ Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijiao Yang
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyuan Chen
- ‡ Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Rosado Piquer L, Escoda-Torroella M, Ledezma Gairaud M, Carneros S, Daffé N, Studniarek M, Dreiser J, Wernsdorfer W, Sañudo EC. Hysteresis enhancement on a hybrid Dy(iii) single molecule magnet/iron oxide nanoparticle system. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01346b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel hybrid NP-Dy12 system presents an enhancement of the magnetization hysteresis with respect to the isolated components while retaining the morphological characteristics of the parent NPs.
Collapse
Affiliation(s)
- Lidia Rosado Piquer
- Institut de Nanociència i Nanotecnologia-UB
- Barcelona
- Spain
- Secció de Química Inorgànica
- Departament de Química Inorgànica i Orgànica
| | - Mariona Escoda-Torroella
- Institut de Nanociència i Nanotecnologia-UB
- Barcelona
- Spain
- Secció de Química Inorgànica
- Departament de Química Inorgànica i Orgànica
| | - Marisol Ledezma Gairaud
- Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
- Centro de Electroquímica y Energía Química
| | - Saul Carneros
- Secció de Química Inorgànica
- Departament de Química Inorgànica i Orgànica
- Universitat de Barcelona
- Av. Diagonal 645
- Spain
| | - Niéli Daffé
- Swiss Light Source
- Paul Scherrer Institute
- Villigen PSI
- Switzerland
| | | | - Jan Dreiser
- Swiss Light Source
- Paul Scherrer Institute
- Villigen PSI
- Switzerland
| | | | - E. Carolina Sañudo
- Institut de Nanociència i Nanotecnologia-UB
- Barcelona
- Spain
- Secció de Química Inorgànica
- Departament de Química Inorgànica i Orgànica
| |
Collapse
|
37
|
Preparation conditions effect on the physico-chemical properties of magnetic–plasmonic core–shell nanoparticles functionalized with chitosan: Green route. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Taimoory SM, Rahdar A, Aliahmad M, Sadeghfar F, Hajinezhad MR, Jahantigh M, Shahbazi P, Trant JF. The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.105] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Nasrollahzadeh M, Sajjadi M, Khonakdar HA. Synthesis and characterization of novel Cu(II) complex coated Fe3O4@SiO2 nanoparticles for catalytic performance. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Chen Y, Zhang Y, Kou Q, Liu Y, Han D, Wang D, Sun Y, Zhang Y, Wang Y, Lu Z, Chen L, Yang J, Xing SG. Enhanced Catalytic Reduction of 4-Nitrophenol Driven by Fe₃O₄-Au Magnetic Nanocomposite Interface Engineering: From Facile Preparation to Recyclable Application. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E353. [PMID: 29789457 PMCID: PMC5977367 DOI: 10.3390/nano8050353] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 01/22/2023]
Abstract
In this work, we report the enhanced catalytic reduction of 4-nitrophenol driven by Fe₃O₄-Au magnetic nanocomposite interface engineering. A facile solvothermal method is employed for Fe₃O₄ hollow microspheres and Fe₃O₄-Au magnetic nanocomposite synthesis via a seed deposition process. Complementary structural, chemical composition and valence state studies validate that the as-obtained samples are formed in a pure magnetite phase. A series of characterizations including conventional scanning/transmission electron microscopy (SEM/TEM), Mössbauer spectroscopy, magnetic testing and elemental mapping is conducted to unveil the structural and physical characteristics of the developed Fe₃O₄-Au magnetic nanocomposites. By adjusting the quantity of Au seeds coating on the polyethyleneimine-dithiocarbamates (PEI-DTC)-modified surfaces of Fe₃O₄ hollow microspheres, the correlation between the amount of Au seeds and the catalytic ability of Fe₃O₄-Au magnetic nanocomposites for 4-nitrophenol (4-NP) is investigated systematically. Importantly, bearing remarkable recyclable features, our developed Fe₃O₄-Au magnetic nanocomposites can be readily separated with a magnet. Such Fe₃O₄-Au magnetic nanocomposites shine the light on highly efficient catalysts for 4-NP reduction at the mass production level.
Collapse
Affiliation(s)
- Yue Chen
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yuanyuan Zhang
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Qiangwei Kou
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yang Liu
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Dandan Wang
- Technology Development Department, GLOBALFOUNDRIES (Singapore) Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406, Singapore.
| | - Yantao Sun
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yongjun Zhang
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yaxin Wang
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Ziyang Lu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lei Chen
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Jinghai Yang
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Scott Guozhong Xing
- United Microelect Corp. Ltd., 3 Pasir Ris Dr 12, Singapore 519528, Singapore.
| |
Collapse
|
41
|
Macchione MA, Biglione C, Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel) 2018; 10:E527. [PMID: 30966561 PMCID: PMC6415435 DOI: 10.3390/polym10050527] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Hybrid nanomaterials based on inorganic nanoparticles and polymers are highly interesting structures since they combine synergistically the advantageous physical-chemical properties of both inorganic and polymeric components, providing superior functionality to the final material. These unique properties motivate the intensive study of these materials from a multidisciplinary view with the aim of finding novel applications in technological and biomedical fields. Choosing a specific synthetic methodology that allows for control over the surface composition and its architecture, enables not only the examination of the structure/property relationships, but, more importantly, the design of more efficient nanodevices for therapy and diagnosis in nanomedicine. The current review categorizes hybrid nanomaterials into three types of architectures: core-brush, hybrid nanogels, and core-shell. We focus on the analysis of the synthetic approaches that lead to the formation of each type of architecture. Furthermore, most recent advances in therapy and diagnosis applications and some inherent challenges of these materials are herein reviewed.
Collapse
Affiliation(s)
- Micaela A Macchione
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| | - Catalina Biglione
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Miriam Strumia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| |
Collapse
|
42
|
Formation of Bimetallic Fe/Au Submicron Particles with Ultrasonic Spray Pyrolysis. METALS 2018. [DOI: 10.3390/met8040278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Lavrentiev V, Chvostova D, Stupakov A, Lavrentieva I, Vacik J, Motylenko M, Barchuk M, Rafaja D, Dejneka A. Quantum plasmon and Rashba-like spin splitting in self-assembled Co x C 60 composites with enhanced Co content (x > 15). NANOTECHNOLOGY 2018; 29:135701. [PMID: 29368694 DOI: 10.1088/1361-6528/aaaa7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled Co x C60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of Co x C60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C60-related OA lines detected at the photon energies E p > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E p > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E p > 2.5 eV reflect splitting of the C60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.
Collapse
Affiliation(s)
- Vasily Lavrentiev
- Nuclear Physics Institute of the Czech Academy of Sciences, Rez-130, Husinec 25068, Czechia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Souza JB, Varanda LC. Magneto-plasmonic Au-Coated Co nanoparticles synthesized via hot-injection method. NANOTECHNOLOGY 2018; 29:065604. [PMID: 29226846 DOI: 10.1088/1361-6528/aaa093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A synthetic procedure is described for the obtaining of superparamagnetic Co nanoparticles (NPs) via hot-injection method in the presence of sodium borohydride. The Co NPs obtained have an average diameter of 5.3 nm and saturation magnetization of 115 emu g-1. A modified Langevin equation is fitted to the magnetization curves using a log-normal distribution for the particle diameter and an effective field to account for dipolar interactions. The calculated magnetic diameter of the Co NPs is 0.6 nm smaller than TEM-derived values, implying a magnetic dead layer of 0.3 nm. The magnetic core is coated with Au to prevent oxidation, resulting in water-stable magneto-plasmonic Co/Au core/shell NPs with saturation of 71.6 emu g-1. The coating adds a localized surface plasmon resonance property with absorbance in the so-called 'therapeutic window' (690-900 nm), suitable for biomedical applications. It is suggested that these multifunctional NPs are distinguished as a potential platform for applied and fundamental research.
Collapse
Affiliation(s)
- João B Souza
- Instituto de Química de São Carlos, Universidade de São Paulo-USP, Colloidal Materials Group, CP 780, 13566-590, São Carlos-SP, Brazil
| | | |
Collapse
|
45
|
Hu Y, Mignani S, Majoral JP, Shen M, Shi X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 2018; 47:1874-1900. [DOI: 10.1039/c7cs00657h] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review highlights the most recent progress in the construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy.
Collapse
Affiliation(s)
- Yong Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Serge Mignani
- PRES Sorbonne Paris Cité
- CNRS UMR 860
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Université Paris Descartes
- Paris
| | | | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
46
|
Schrittwieser S, Reichinger D, Schotter J. Applications, Surface Modification and Functionalization of Nickel Nanorods. MATERIALS (BASEL, SWITZERLAND) 2017; 11:E45. [PMID: 29283415 PMCID: PMC5793543 DOI: 10.3390/ma11010045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
The growing number of nanoparticle applications in science and industry is leading to increasingly complex nanostructures that fulfill certain tasks in a specific environment. Nickel nanorods already possess promising properties due to their magnetic behavior and their elongated shape. The relevance of this kind of nanorod in a complex measurement setting can be further improved by suitable surface modification and functionalization procedures, so that customized nanostructures for a specific application become available. In this review, we focus on nickel nanorods that are synthesized by electrodeposition into porous templates, as this is the most common type of nickel nanorod fabrication method. Moreover, it is a facile synthesis approach that can be easily established in a laboratory environment. Firstly, we will discuss possible applications of nickel nanorods ranging from data storage to catalysis, biosensing and cancer treatment. Secondly, we will focus on nickel nanorod surface modification strategies, which represent a crucial step for the successful application of nanorods in all medical and biological settings. Here, the immobilization of antibodies or peptides onto the nanorod surface adds another functionality in order to yield highly promising nanostructures.
Collapse
Affiliation(s)
- Stefan Schrittwieser
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| | - Daniela Reichinger
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| | - Joerg Schotter
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| |
Collapse
|
47
|
Agarwal RA, Gupta NK. Developing multifunctional nanoparticles in a 1-D coordination polymer of Cd(II). J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles. Sci Rep 2017; 7:13212. [PMID: 29038429 PMCID: PMC5643562 DOI: 10.1038/s41598-017-12980-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/14/2017] [Indexed: 11/23/2022] Open
Abstract
A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au2O3, Cr/Cr2O3/CrO2 and Cu/Cu2O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.
Collapse
|
49
|
Agarwal RA. Flexible porous coordination polymer of Ni(II) for developing nanoparticles through acid formation and redox activity of the framework. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|