1
|
Song W, Jadhav AM, Ryu Y, Kim S, Im J, Jeong Y, Vanessa, Kim Y, Sung Y, Kim Y, Choi HH. Novel Bis(4-aminophenoxy) Benzene-Based Aramid Copolymers with Enhanced Solution Processability. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1632. [PMID: 39452968 PMCID: PMC11510568 DOI: 10.3390/nano14201632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Aramid copolymers have garnered significant interest due to their potential applications in extreme environments such as the aerospace, defense, and automotive industries. Recent developments in aramid copolymers have moved beyond their traditional use in high-strength, high-temperature resistant fibers. There is now a demand for new polymers that can easily be processed into thin films for applications such as electrical insulation films and membranes, utilizing the inherent properties of aramid copolymers. In this work, we demonstrate two novel aramid copolymers that are capable of polymerizing in polar organic solvents with a high degree of polymerization, achieved by incorporating flexible bis(4-aminophenoxy) benzene moieties into the chain backbone. The synthesized MBAB-aramid and PBAB-aramid have enabled the fabrication of exceptionally thin, clear films, with an average molecular weight exceeding 150 kDa and a thickness ranging from 3 to 10 μm. The dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) reveal that the thin films of MBAB-aramid and PBAB-aramid exhibited glass transition temperatures of 270.1 °C and 292.7 °C, respectively, and thermal decomposition temperatures of 449.6 °C and 465.5 °C, respectively. The mechanical tensile analysis of the 5 μm thick films confirmed that the tensile strengths, with elongation at break, are 107.1 MPa (50.7%) for MBAB-aramid and 113.5 MPa (58.4%) for PBAB-aramid, respectively. The thermal and mechanical properties consistently differ between the two polymers, which is attributed to variations in the linearity of the polymer structures and the resulting differences in the density of intermolecular hydrogen bonding and pi-pi interactions. The resulting high-strength, ultra-thin aramid materials offer numerous potential applications in thin films, membranes, and functional coatings across various industries.
Collapse
Affiliation(s)
- Wonseong Song
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Amol M. Jadhav
- Research Institute of Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeonhae Ryu
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soojin Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaemin Im
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yujeong Jeong
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Vanessa
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youngjin Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yerin Sung
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yuri Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun Ho Choi
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Synergistic interaction of renewable nipagin and eugenol for aromatic copoly(ether ester) materials with desired performance. Sci Rep 2021; 11:24119. [PMID: 34916589 PMCID: PMC8677751 DOI: 10.1038/s41598-021-03614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Naturally occurring nipagin and eugenol were used as the collaborative starting materials for poly(ether ester) polymers. In this study, two series of nipagin and eugenol-derived copoly(ether ester)s, PHN11−xE1x and PHN11−xE2x (x = 0%, 5%, 10%, 15%, 20%), were prepared with renewable 1,6-hexanediol as a comonomer. The nipagin-derived component acts as the renewable surrogate of petroleum-based dimethyl terephthalate (DMT), while the eugenol-derived component acts as the cooperative property modifier of parent homopoly(ether ester) PHN1. 1,6-Hexanediol was chosen as the spacer because of its renewability, high boiling point, and short chain to enhance the glass transition temperatures (Tgs) of materials. The molecular weights and chemical structures were confirmed by gel permeation chromatograph (GPC), NMR and FTIR spectroscopies. Thermal and crystalline properties were studied by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC) and wide-angle X-ray diffraction (WXRD). The tensile assays were conducted to evaluate the mechanical properties. The results suggested that properties of this kind of poly(ether ester)s could be finely tuned by the relative content of two components for the desired applications (elastomer, rubbery) suitable for different scenarios from polyethylene glycol terephthalate (PET) and polybutylene terephthalate (PBT).
Collapse
|
3
|
Li J, Jiang Y, Sun Y, Wang X, Ma P, Song D, Fei Q. Extraction of parabens by melamine sponge with determination by high-performance liquid chromatography. J Sep Sci 2021; 45:697-705. [PMID: 34817924 DOI: 10.1002/jssc.202100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 01/18/2023]
Abstract
In the present study, we propose a novel method for the extraction of parabens in personal care products. A new, simple adsorptive material was obtained by combining metal-organic frameworks and melamine sponges using the adhesive property of polyvinylidene fluoride. This new material, metal-organic frameworks/melamine sponges, was found to be particularly suitable for solid-phase extraction. The structural characteristics of metal-organic frameworks/melamine sponges were first analyzed by scanning electron microscopy. Subsequently, solid-phase extraction was performed on sample solutions, and the extracted substances were then analyzed by high-performance liquid chromatography. Following optimization of important experimental conditions, excellent recovery rates were obtained. Our novel method was then applied to the extraction of four parabens (methylparahydroxybenzoates, ethylparahydroxybenzoates, propylparahydroxybenzoates, and butylparahydroxybenzoates) from real samples. The results yielded LODs of 0.26-0.41 ng/mL. The inter- and intra-day recoveries were 104.0-109.7% and 91.2-98.1%, respectively (relative standard deviation, <13.8%).
Collapse
Affiliation(s)
- Jingkang Li
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Ying Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Xinghua Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Pinyi Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Daqian Song
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Qiang Fei
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| |
Collapse
|
4
|
Mishra N, Gandhi R, Vasava D. The Thermo-Mechanical and Fluorescent Properties of Polyesters: A Review. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421060191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Monteagudo C, Robles-Aguilera V, Salcedo-Bellido I, Gálvez-Ontiveros Y, Samaniego-Sánchez C, Aguilera M, Zafra-Gómez A, Burgos MAM, Rivas A. Dietary exposure to parabens and body mass index in an adolescent Spanish population. ENVIRONMENTAL RESEARCH 2021; 201:111548. [PMID: 34166657 DOI: 10.1016/j.envres.2021.111548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 05/22/2023]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid which are extensively used in cosmetics, pharmaceuticals and foodstuffs due to their antimicrobial properties. The most commonly used parabens are methyl-(MeP), ethyl-(EtP), propyl-(PrP) and butyl-(BuP) paraben. Most human exposure to parabens is achieved through the consumption of food or pharmaceutical products and the use of personal care products. However, studies on dietary parabens exposure and the associated factors are very scarce. The main aim of the present study was to explore factors associated with dietary exposure to parabens in Spanish adolescents according to gender. Dietary data and anthropometric measures were collected from 585 adolescents (53.4% boys) aged 12-16 years. Parabens exposure through diet was assessed using a food frequency questionnaire with food products providing more than 95% of energy and macronutrient intake being included in analysis. Stepwise regression was used to identify the foods that most contributed to parabens intake. Logistic regression was used to evaluate factors predicting higher dietary exposure to parabens. The main contributors to dietary MeP, EtP, PrP and BuP exposure in adolescent boys were eggs (41.9%), canned tuna (46.4%), bakery and baked goods products (57.3%) and pineapple (61.1%). In adolescent girls, the main contributors were apples and pears (35.3%), canned tuna (42.1%), bakery and baked goods products (55.1%) and olives (62.1%). Overweight/obese girls were more likely to belong to the highest tertile of overall parabens intake (odds ratio [OR]: 3.32; 95% confidence interval [95% CI]: 1.21-9.15) and MeP (OR: 3.05; 95% CI: 1.14-8.12) than those with a body mass index lower than 25 kg/m2. These findings suggest a positive association between dietary exposure to parabens and overweight/obesity in adolescent girls.
Collapse
Affiliation(s)
- Celia Monteagudo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain; Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain
| | - Virginia Robles-Aguilera
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Campus of Cartuja, 18071, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 2809, Madrid, Spain.
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain; Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Margarita Aguilera
- Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain; Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Alberto Zafra-Gómez
- Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain; Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071, Granada, Spain
| | - Maria Alba Martínez Burgos
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology 'José Matáix' (INYTA), Center for Biomedical Research (CIBM), Health Sciences Technological Park, Avda. del Conocimiento s/n, 18071, Armilla, Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071, Granada, Spain; Instituto de Investigación Biosanitaria. Ibs-Granada, 18012, Granada, Spain
| |
Collapse
|
6
|
Gálvez-Ontiveros Y, Moscoso-Ruiz I, Rodrigo L, Aguilera M, Rivas A, Zafra-Gómez A. Presence of Parabens and Bisphenols in Food Commonly Consumed in Spain. Foods 2021; 10:E92. [PMID: 33466450 PMCID: PMC7824906 DOI: 10.3390/foods10010092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Given the widespread use of bisphenols and parabens in consumer products, the assessment of their intake is crucial and represents the first step towards the assessment of the potential risks that these compounds may pose to human health. In the present study, a total of 98 samples of food items commonly consumed by the Spanish population were collected from different national supermarkets and grocery stores for the determination of parabens and bisphenols. Our analysis demonstrated that 56 of the 98 food samples contained detectable levels of parabens with limits of quantification (LOQ) between 0.4 and 0.9 ng g-1. The total concentration of parabens (sum of four parabens: ∑parabens) ranged from below the LOQ to 281.7 ng g-1, with a mean value of 73.86 ng g-1. A total of 52% of the samples showed detectable concentrations of bisphenols. Bisphenol A (BPA) was the most frequently detected bisphenol in the food samples analysed, followed by bisphenol S (BPS) and bisphenol E (BPE). Bisphenol AF (BPAF), bisphenol B (BPB) and bisphenol P (BPP) were not found in any of the analysed samples. LOQ for these bisphenols were between 0.4 and 4.0 ng g-1.
Collapse
Affiliation(s)
- Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
| | - Inmaculada Moscoso-Ruiz
- Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071 Granada, Spain; (I.M.-R.); (A.Z.-G.)
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, 18071 Granada, Spain;
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071 Granada, Spain; (I.M.-R.); (A.Z.-G.)
| |
Collapse
|
7
|
Production of methylparaben in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:91-99. [DOI: 10.1007/s10295-018-2102-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/27/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Since the 1930s, parabens have been employed widely as preservatives in food, pharmaceutical, and personal care products. These alkyl esters of benzoic acid occur naturally in a broad range of plant species, where they are thought to enhance overall fitness through disease resistance and allelopathy. Current manufacture of parabens relies on chemical synthesis and the processing of 4-hydroxybenzoate as a precursor. A variety of bio-based production platforms have targeted 4-hydroxybenzoate for a greener alternative to chemical manufacturing, but parabens have yet to be made in microbes. Here, we deploy the plant enzyme benzoic acid carboxyl methyltransferase together with four additional recombinant enzymes to produce methylparaben in Escherichia coli. The feasibility of a tyrosine-dependent route to methylparaben is explored, establishing a framework for linking paraben production to emerging high-tyrosine E. coli strains. However, our use of a unique plant enzyme for bio-based methylparaben biosynthesis is potentially applicable to any microbial system engineered for the manufacture of 4-hydroxybenzoate.
Collapse
|
8
|
Wu ZF, Zhang G, Yan GM, Lu JH, Yang J. Aromatic polyesters containing different content of Thioether and methyl units: facile synthesis and properties. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1563-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|