1
|
Hasan WANBW, Nezhad NG, Yaacob MA, Salleh AB, Rahman RNZRA, Leow TC. Shifting the pH profiles of Staphylococcus epidermidis lipase (SEL) and Staphylococcus hyicus lipase (SHL) through generating chimeric lipases by DNA shuffling strategy. World J Microbiol Biotechnol 2024; 40:106. [PMID: 38386107 DOI: 10.1007/s11274-024-03927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Enzymes are often required to function in a particular reaction condition by the industrial procedure. In order to identify critical residues affecting the optimum pH of Staphylococcal lipases, chimeric lipases from homologous lipases were generated via a DNA shuffling strategy. Chimeric 1 included mutations of G166S, K212E, T243A, H271Y. Chimeric 2 consisted of substitutions of K212E, T243A, H271Y. Chimeric 3 contained substitutions of K212E, R359L. From the screening results, the pH profiles for chimeric 1 and 2 lipases were shifted from pH 7 to 6. While the pH of chimeric 3 was shifted to 8. It seems the mutation of K212E in chimeric 1 and 2 decreased the pH to 6 by changing the electrostatic potential surface. Furthermore, chimeric 3 showed 10 ˚C improvement in the optimum temperature due to the rigidification of the catalytic loop through the hydrophobic interaction network. Moreover, the substrate specificity of chimeric 1 and 2 was increased towards the longer carbon length chains due to the mutation of T243A adjacent to the lid region through increasing the flexibility of the lid. Current study illustrated that directed evolution successfully modified lipase properties including optimum pH, temperature and substrate specificity through mutations, especially near catalytic and lid regions.
Collapse
Affiliation(s)
- Wan Atiqah Najiah Binti Wan Hasan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Mohd Adilin Yaacob
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abdul Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
| |
Collapse
|
2
|
Boukid F, Ganeshan S, Wang Y, Tülbek MÇ, Nickerson MT. Bioengineered Enzymes and Precision Fermentation in the Food Industry. Int J Mol Sci 2023; 24:10156. [PMID: 37373305 DOI: 10.3390/ijms241210156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Enzymes have been used in the food processing industry for many years. However, the use of native enzymes is not conducive to high activity, efficiency, range of substrates, and adaptability to harsh food processing conditions. The advent of enzyme engineering approaches such as rational design, directed evolution, and semi-rational design provided much-needed impetus for tailor-made enzymes with improved or novel catalytic properties. Production of designer enzymes became further refined with the emergence of synthetic biology and gene editing techniques and a plethora of other tools such as artificial intelligence, and computational and bioinformatics analyses which have paved the way for what is referred to as precision fermentation for the production of these designer enzymes more efficiently. With all the technologies available, the bottleneck is now in the scale-up production of these enzymes. There is generally a lack of accessibility thereof of large-scale capabilities and know-how. This review is aimed at highlighting these various enzyme-engineering strategies and the associated scale-up challenges, including safety concerns surrounding genetically modified microorganisms and the use of cell-free systems to circumvent this issue. The use of solid-state fermentation (SSF) is also addressed as a potentially low-cost production system, amenable to customization and employing inexpensive feedstocks as substrate.
Collapse
Affiliation(s)
- Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | | | - Yingxin Wang
- Saskatchewan Food Industry Development Centre, Saskatoon, SK S7M 5V1, Canada
| | | | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
3
|
Jia R, Tian S, Yang Z, Sadiq FA, Wang L, Lu S, Zhang G, Li J. Tuning Thermostability and Catalytic Efficiency of Aflatoxin-Degrading Enzyme by Error-prone PCR. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12610-4. [PMID: 37300712 DOI: 10.1007/s00253-023-12610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
In our previous work, a recombinant aflatoxin-degrading enzyme derived from Myxococcus fulvus (MADE) was reported. However, the low thermal stability of the enzyme had limitations for its use in industrial applications. In this study, we obtained an improved variant of recombinant MADE (rMADE) with enhanced thermostability and catalytic activity using error-prone PCR. Firstly, we constructed a mutant library containing over 5000 individual mutants. Three mutants with T50 values higher than the wild-type rMADE by 16.5 °C (rMADE-1124), 6.5 °C (rMADE-1795), and 9.8 °C (rMADE-2848) were screened by a high-throughput screening method. Additionally, the catalytic activity of rMADE-1795 and rMADE-2848 was improved by 81.5% and 67.7%, respectively, compared to the wild-type. Moreover, structural analysis revealed that replacement of acidic amino acids with basic amino acids by a mutation (D114H) in rMADE-2848 increased the polar interactions with surrounding residues and resulted in a threefold increase in the t1/2 value of the enzyme and made it more thermaltolerate. KEY POINTS: • Mutant libraries construction of a new aflatoxins degrading enzyme by error-prone PCR. • D114H/N295D mutant improved enzyme activity and thermostability. • The first reported enhanced thermostability of aflatoxins degrading enzyme better for its application.
Collapse
Affiliation(s)
- Ru Jia
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
| | - Senmiao Tian
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Zhaofeng Yang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Faizan Ahmed Sadiq
- Fisheries and Food, Technology & Food Science Unit, Flanders Research Institute for Agriculture, 9090, Melle, Belgium
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Simeng Lu
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Jianhui Li
- College of Animal Sciences, Shanxi Agriculture University, Taigu, 030801, China
| |
Collapse
|
4
|
Fang Y, Liu F, Shi Y, Yang T, Liang C, Xin Y, Gu Z, Shi G, Zhang L. Hotspots and Mechanisms of Action of the Thermostable Framework of a Microbial Thermolipase. ACS Synth Biol 2022; 11:3460-3470. [PMID: 36173803 DOI: 10.1021/acssynbio.2c00360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The lipase TrLipB from Thermomicrobium roseum is highly thermostable. However, its thermostable skeleton and mechanism of action should be investigated for industrial applications. Toward this, TrLipB was crystallized using the hanging-drop vapor diffusion method and subjected to X-ray diffraction at 2.0 Å resolution in this study. The rigid sites, such as the prolines on the relatively flexible loops on the enzyme surface, were scanned. Soft substitutions of these sites were designed using both molecular dynamics (MD) simulation and site-directed mutagenesis. The thermostability of several substitutions decreased markedly, while the catalytic efficiencies of the P9G, P127G, P194G, and P300G mutants reduced substantially; additionally, the thermostable framework of the double mutant, P194G/P300G, was considerably perturbed. However, the substitutions on the lid of the enzyme, including P49G and P48G, promoted the catalytic efficiency to approximately 150% and slightly enhanced the thermostability below 80 °C. In MD simulations, the P100G, P194G, P100G/P194G, P194G/P300G, and P100G/P194G/P300G mutants showed high B-factors and RMSD values, whereas the secondary structures, radius of gyration, H-bonds, and solvent accessible surface areas of these mutants were markedly affected. Our observations will assist in understanding the natural framework of a stable lipase, which might contribute to its industrial applications.
Collapse
Affiliation(s)
- Yakun Fang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Fan Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yi Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Ting Yang
- Wuxi Food Safety Inspection and Test Center, Technology Innovation Center of Special Food for State Market Regulation, Wuxi, Jiangsu 214122, P.R. China
| | - Chaojuan Liang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Guiyang Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
5
|
Zhu E, Xiang X, Wan S, Miao H, Han N, Huang Z. Discovery of the Key Mutation Site Influencing the Thermostability of Thermomyces lanuginosus Lipase by Rosetta Design Programs. Int J Mol Sci 2022; 23:ijms23168963. [PMID: 36012226 PMCID: PMC9408933 DOI: 10.3390/ijms23168963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lipases are remarkable biocatalysts and are broadly applied in many industry fields because of their versatile catalytic capabilities. Considering the harsh biotechnological treatment of industrial processes, the activities of lipase products are required to be maintained under extreme conditions. In our current study, Gibbs free energy calculations were performed to predict potent thermostable Thermomyces lanuginosus lipase (TLL) variants by Rosetta design programs. The calculating results suggest that engineering on R209 may greatly influence TLL thermostability. Accordingly, ten TLL mutants substituted R209 were generated and verified. We demonstrate that three out of ten mutants (R209H, R209M, and R209I) exhibit increased optimum reaction temperatures, melting temperatures, and thermal tolerances. Based on molecular dynamics simulation analysis, we show that the stable hydrogen bonding interaction between H198 and N247 stabilizes the local configuration of the 250-loop in the three R209 mutants, which may further contribute to higher rigidity and improved enzymatic thermostability. Our study provides novel insights into a single residue, R209, and the 250-loop, which were reported for the first time in modulating the thermostability of TLL. Additionally, the resultant R209 variants generated in this study might be promising candidates for future-industrial applications.
Collapse
Affiliation(s)
- Enheng Zhu
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Xia Xiang
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Sidi Wan
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Huabiao Miao
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, China
- Correspondence: (N.H.); (Z.H.)
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, China
- Correspondence: (N.H.); (Z.H.)
| |
Collapse
|
6
|
Mahmood MS, Asghar H, Riaz S, Shaukat I, Zeeshan N, Gul R, Ashraf NM, Saleem M. Expression and immobilization of trypsin‐like domain of serine protease from
Pseudomonas aeruginosa
for improved stability and catalytic activity. Proteins 2022; 90:1425-1433. [DOI: 10.1002/prot.26323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Hunza Asghar
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Sheeba Riaz
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Iqra Shaukat
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology University of Gujrat Gujrat Punjab Pakistan
| | - Roquyya Gul
- Faculty of Life Sciences Gulab Devi Educational Complex Lahore Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology University of Gujrat Gujrat Punjab Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| |
Collapse
|
7
|
Kuang G, Du Y, Lu S, Wang Z, Zhang Z, Fan X, Bilal M, Cui J, Jia S. Silica@lipase hybrid biocatalysts with superior activity by mimetic biomineralization in oil/water two-phase system for hydrolysis of soybean oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Recent Advances in Feedstock and Lipase Research and Development towards Commercialization of Enzymatic Biodiesel. Processes (Basel) 2021. [DOI: 10.3390/pr9101743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biodiesel is a biodegradable, renewable, and carbon-neutral alternative to petroleum diesel that can contribute to the global effort of minimizing the use of fossil fuels and meeting the ever-growing energy demands and stringent environmental constraints. The aim of this work was to (1) review the recent progress in feedstock development, including first, second, third, and fourth-generation feedstocks for biodiesel production; (2) discuss recent progress in lipase research and development as one of the key factors for establishing a cost-competitive biodiesel process in terms of enzyme sources, properties, immobilization, and transesterification efficiency; and (3) provide an update of the current challenges and opportunities for biodiesel commercialization from techno-economic and social perspectives. Related biodiesel producers, markets, challenges, and opportunities for biodiesel commercialization, including environmental considerations, are critically discussed.
Collapse
|
9
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
10
|
Guan L, Gao Y, Li J, Wang K, Zhang Z, Yan S, Ji N, Zhou Y, Lu S. Directed Evolution of Pseudomonas fluorescens Lipase Variants With Improved Thermostability Using Error-Prone PCR. Front Bioeng Biotechnol 2020; 8:1034. [PMID: 32984290 PMCID: PMC7492553 DOI: 10.3389/fbioe.2020.01034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023] Open
Abstract
Lipases catalyze the hydrolysis of fats and oils, and have been widely used in various industrial fields. However, bacterial lipases have a lower thermostability in industrial processes, which was a limiting factor in their industrial application. In this study, we obtained an improve variant of Pseudomonas fluorescens lipase (PFL) with enhanced thermostability using classical error-prone PCR. Wild-type PFL showed an optimal temperature and pH of 50°C and pH 7.5, respectively. Due to the low thermostability of PFL, a library containing over 3000 individual mutants as constructed using error-prone PCR. Screening for thermotolerance yielded the mutants L218P and P184C/M243C with Tm values of 62.5 and 66.0°C, which was 2.5 and 6°C higher than that of the WT, respectively. The combination of the two mutants (P184C/M243C/L218P) resulted in an approximately additive effect with a Tm value of 68.0°C. Although the increase of Tm was not substantial, the mutant also had dramatically increased methanol tolerance. Structural analysis revealed that the introduction of a disulfide bond between P184C and M243C and the substitution of Pro to reduce the flexibility of a loop increased the thermostability of PFL, which provides a theoretical foundation for improving the thermostability and methanol tolerance of lipase family I.1 to resist the harsh conditions of industrial processes.
Collapse
Affiliation(s)
- Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yang Gao
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jialei Li
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Kunlun Wang
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhihong Zhang
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Song Yan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Nina Ji
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ye Zhou
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shuwen Lu
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
11
|
Single Residue Substitution at N-Terminal Affects Temperature Stability and Activity of L2 Lipase. Molecules 2020; 25:molecules25153433. [PMID: 32731608 PMCID: PMC7435863 DOI: 10.3390/molecules25153433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
Rational design is widely employed in protein engineering to tailor wild-type enzymes for industrial applications. The typical target region for mutation is a functional region like the catalytic site to improve stability and activity. However, few have explored the role of other regions which, in principle, have no evident functionality such as the N-terminal region. In this study, stability prediction software was used to identify the critical point in the non-functional N-terminal region of L2 lipase and the effects of the substitution towards temperature stability and activity were determined. The results showed 3 mutant lipases: A8V, A8P and A8E with 29% better thermostability, 4 h increase in half-life and 6.6 °C higher thermal denaturation point, respectively. A8V showed 1.6-fold enhancement in activity compared to wild-type. To conclude, the improvement in temperature stability upon substitution showed that the N-terminal region plays a role in temperature stability and activity of L2 lipase.
Collapse
|
12
|
Jiang Z, Zhang C, Tang M, Xu B, Wang L, Qian W, He J, Zhao Z, Wu Q, Mu Y, Ding J, Zhang R, Huang Z, Han N. Improving the Thermostability of Rhizopus chinensis Lipase Through Site-Directed Mutagenesis Based on B-Factor Analysis. Front Microbiol 2020; 11:346. [PMID: 32194535 PMCID: PMC7063977 DOI: 10.3389/fmicb.2020.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/17/2020] [Indexed: 12/03/2022] Open
Abstract
In order to improve the thermostability of lipases derived from Rhizopus chinensis, we identified lipase (Lipr27RCL) mutagenesis sites that were associated with enhanced flexibility based upon B-factor analysis and multiple sequence alignment. We found that two mutated isoforms (Lipr27RCL-K64N and Lipr27RCL-K68T) exhibited enhanced thermostability and improved residual activity, with respective thermal activity retention values of 37.88% and 48.20% following a 2 h treatment at 50°C relative to wild type Lipr27RCL. In addition, these Lipr27RCL-K64N and Lipr27RCL-K68T isoforms exhibited 2.4- and 3.0-fold increases in enzymatic half-life following a 90 min incubation at 60°C. Together these results indicate that novel mutant lipases with enhanced thermostability useful for industrial applications can be predicted based upon B-factor analysis and constructed via site-directed mutagenesis.
Collapse
Affiliation(s)
- Zhanbao Jiang
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Minyuan Tang
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Bo Xu
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Lili Wang
- Yunnan Walvax Biotechnology Co., Ltd., Kunming, China
| | - Wen Qian
- Yunnan Walvax Biotechnology Co., Ltd., Kunming, China
| | - Jiandong He
- Yunnan Walvax Biotechnology Co., Ltd., Kunming, China
| | - Zhihong Zhao
- Yunnan Walvax Biotechnology Co., Ltd., Kunming, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Yuelin Mu
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Junmei Ding
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Rui Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| |
Collapse
|
13
|
Li Q, Yan Y, Liu X, Zhang Z, Tian J, Wu N. Enhancing thermostability of a psychrophilic alpha-amylase by the structural energy optimization in the trajectories of molecular dynamics simulations. Int J Biol Macromol 2020; 142:624-633. [DOI: 10.1016/j.ijbiomac.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
|
14
|
Alfaro-Chávez AL, Liu JW, Stevenson BJ, Goldman A, Ollis DL. Evolving a lipase for hydrolysis of natural triglycerides along with enhanced tolerance towards a protease and surfactants. Protein Eng Des Sel 2019; 32:129-143. [PMID: 31504920 DOI: 10.1093/protein/gzz023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 11/15/2022] Open
Abstract
In the accompanying paper, we described evolving a lipase to the point where variants were soluble, stable and capable of degrading C8 TAG and C8 esters. These variants were tested for their ability to survive in an environment that might be encountered in a washing machine. Unfortunately, they were inactivated both by treatment with a protease used in laundry detergents and by very low concentrations of sodium dodecyl sulfate (SDS). In addition, all the variants had very low levels of activity with triglycerides with long aliphatic chains and with naturally occurring oils, like olive oil. Directed evolution was used to select variants with enhanced properties. In the first 10 rounds of evolution, the primary screen was selected for variants capable of hydrolyzing olive oil whereas the secondary screen was selected for enhanced tolerance towards a protease and SDS. In the final six rounds of evolution, the primary and secondary screens identified variants that retained activity after treatment with SDS. Sixteen cycles of evolution gave variants with greatly enhanced lipolytic activity on substrates that had both long (C16 and C18) as well as short (C3 and C8) chains. We found variants that were stable for more than 3 hours in protease concentrations that rapidly degrade the wild-type enzyme. Enhanced tolerance towards SDS was found in variants that could break down naturally occurring lipid and resist protease attack. The amino acid changes that gave enhanced properties were concentrated in the cap domain responsible for substrate binding.
Collapse
Affiliation(s)
- Ana L Alfaro-Chávez
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jian-Wei Liu
- CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia
| | - Bradley J Stevenson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Adrian Goldman
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.,Molecular and Integrative Biosciences Program, University of Helsinki, Helsinki FIN-0018, Finland
| | - David L Ollis
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Anuar NFSK, Wahab RA, Huyop F, Halim KBA, Hamid AAA. In silico mutation on a mutant lipase from Acinetobacter haemolyticus towards enhancing alkaline stability. J Biomol Struct Dyn 2019; 38:4493-4507. [DOI: 10.1080/07391102.2019.1683074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nurul Fatin Syamimi Khairul Anuar
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor, Bahru, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota Kuantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota Kuantan, Malaysia
| |
Collapse
|
16
|
Liu Y, Huang L, Zheng D, Xu Z, Li Y, Shao S, Zhang Y, Ge X, Lu F. Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus. Food Chem 2019; 295:653-661. [DOI: 10.1016/j.foodchem.2019.05.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
17
|
Alfaro-Chávez AL, Liu JW, Porter JL, Goldman A, Ollis DL. Improving on nature’s shortcomings: evolving a lipase for increased lipolytic activity, expression and thermostability. Protein Eng Des Sel 2019; 32:13-24. [DOI: 10.1093/protein/gzz024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 06/30/2019] [Accepted: 07/07/2019] [Indexed: 01/18/2023] Open
Abstract
Abstract
An enzyme must be soluble, stable, active and easy to produce to be useful in industrial applications. Not all enzymes possess these attributes. We set out to determine how many changes are required to convert an enzyme with poor properties into one that has useful properties. Lipase Lip3 from Drosophila melanogaster had been previously optimised for expression in Escherichia coli. The expression levels were good, but Lip3 was mainly insoluble with poor activity. Directed evolution was used to identify variants with enhanced activity along with improved solubility. Five variants and the wild-type (wt) enzyme were purified and characterised. The yield of the wt enzyme was just 2.2 mg/L of culture, while a variant, produced under the same conditions, gave 351 mg. The improvement of activity of the best variant was 200 times higher than that of the wt when the crude lysates were analysed using pNP-C8, but with purified protein, the improvement observed was 1.5 times higher. This means that most of the increase of activity is due to increase in solubility and stability. All the purified variants showed increased thermal stability compared with the wt enzyme that had a T1/2 of 37°C, while the mutant with P291L of 42.2°C and the mutant R7_47D with five mutations had a value of 52.9°C, corresponding to an improvement of 16°C. The improved variants had between five and nine changes compared with the wt enzyme. There were four changes that were found in all 30 final round variants for which sequences were obtained; three of these changes were found in the substrate-binding domain.
Collapse
Affiliation(s)
- Ana L Alfaro-Chávez
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Jian-Wei Liu
- CSIRO Land and Water, Black Mountain, Canberra ACT 2601, Australia
| | - Joanne L Porter
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Adrian Goldman
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Molecular and Integrative Biosciences Program, University of Helsinki, Helsinki FIN-0018, Finland
| | - David L Ollis
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
18
|
Huang L, Zheng D, Zhao Y, Ma J, Li Y, Xu Z, Shan M, Shao S, Guo Q, Zhang J, Lu F, Liu Y. Improvement of the alkali stability of Penicillium cyclopium lipase by error-prone PCR. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Liu Y, Huang L, Zheng D, Fu Y, Shan M, Li Y, Xu Z, Jia L, Wang W, Lu F. Characterization of transglutaminase from Bacillus subtilis and its cross-linking function with a bovine serum albumin model. Food Funct 2019; 9:5560-5568. [PMID: 30306167 DOI: 10.1039/c8fo01503a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Finding new crosslinking enzymes for enzyme-mediated protein conjugation is a great need in the food industry. In this research, the properties of Bacillus subtilis transglutaminase (BTG) were characterized in detail and its protein crosslinking functions with bovine serum albumin (BSA) as a model were studied. Compared to the commercial transglutaminase from Streptoverticillium mobaraense, BTG was more stable in a broad range of temperatures (30-60 °C) and pH values (pH 5.0-9.0), with its maximum enzymatic activity at 60 °C and pH 8.0. The protein function evaluation results demonstrated that the BTG-modified BSA showed better emulsifying and foaming properties (p < 0.05) compared with the native one. Additionally, significant improvements (p < 0.05) were observed in the rheological properties, water holding capacity, and textural properties of the BTG-treated BSA gels. With good thermal and pH stability and excellent crosslinking effects, BTG would be a potential enzyme for food structure engineering to improve the functional properties of food proteins and expand their applications.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
21
|
Liu Y, Huang L, Zheng D, Fu Y, Shan M, Xu Z, Ma J, Lu F. Development of a Pichia pastoris whole-cell biocatalyst with overexpression of mutant lipase I PCLG47I from Penicillium cyclopium for biodiesel production. RSC Adv 2018; 8:26161-26168. [PMID: 35541942 PMCID: PMC9082943 DOI: 10.1039/c8ra04462g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
Biodiesel is efficiently produced by a lipase whole-cell biocatalyst with high activity and thermostability at low temperature.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- Tianjin Key Laboratory of Industrial Microbiology
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- Tianjin Key Laboratory of Industrial Microbiology
| | - Dong Zheng
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- The College of Biotechnology
| | - Yu Fu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- The College of Biotechnology
| | - Mengying Shan
- Tianjin Key Laboratory of Industrial Microbiology
- Tianjin 300457
- P. R. China
- The College of Biotechnology
- Tianjin University of Science and Technology
| | - Zehua Xu
- Tianjin Key Laboratory of Industrial Microbiology
- Tianjin 300457
- P. R. China
- The College of Biotechnology
- Tianjin University of Science and Technology
| | - Jieying Ma
- Tianjin Key Laboratory of Industrial Microbiology
- Tianjin 300457
- P. R. China
- The College of Biotechnology
- Tianjin University of Science and Technology
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- Tianjin Key Laboratory of Industrial Microbiology
| |
Collapse
|