1
|
Marczynski M, Rickert CA, Fuhrmann T, Lieleg O. An improved, filtration-based process to purify functional mucins from mucosal tissues with high yields. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
2
|
Butnarasu C, Petrini P, Bracotti F, Visai L, Guagliano G, Fiorio Pla A, Sansone E, Petrillo S, Visentin S. Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multi-Drug Delivery Platform. Adv Healthc Mater 2022; 11:e2200340. [PMID: 35608152 PMCID: PMC11468529 DOI: 10.1002/adhm.202200340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Mucus is a complex barrier for pharmacological treatments and overcoming it is one of the major challenges faced during transmucosal drug delivery. To tackle this issue, a novel class of glycosylated nanoparticles, named "mucosomes," which are based on the most important protein constituting mucus, the mucin, is introduced. Mucosomes are designed to improve drug absorption and residence time on the mucosal tissues. Mucosomes are produced (150-300 nm), functionalized with glycans, and loaded with the desired drug in a single one-pot synthetic process and, with this method, a wide range of small and macro molecules can be loaded with different physicochemical properties. Various in vitro models are used to test the mucoadhesive properties of mucosomes. The presence of functional glycans is indicated by the interaction with lectins. Mucosomes are proven to be storable at 4 °C after lyophilization, and administration through a nasal spray does not modify the morphology of the mucosomes. In vitro and in vivo tests indicate mucosomes do not induce adverse effects under the investigated conditions. This study proposes mucosomes as a ground-breaking nanosystem that can be applied in several pathological contexts, especially in mucus-related disorders.
Collapse
Affiliation(s)
- Cosmin Butnarasu
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Paola Petrini
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milano20133Italy
| | - Francesco Bracotti
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Livia Visai
- Molecular Medicine Department (DMM)Centre for Health Technologies (CHT)UdR INSTMUniversity of PaviaPavia27100Italy
- Medicina Clinica‐SpecialisticaUOR5 Laboratorio di NanotecnologieICS MaugeriIRCCSPavia27100Italy
| | - Giuseppe Guagliano
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milano20133Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems BiologyUniversity of Torinovia Accademia Albertina 13Torino10123Italy
| | - Ettore Sansone
- Department of Life Sciences and Systems BiologyUniversity of Torinovia Accademia Albertina 13Torino10123Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| |
Collapse
|
3
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
4
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
5
|
Marczynski M, Kimna C, Lieleg O. Purified mucins in drug delivery research. Adv Drug Deliv Rev 2021; 178:113845. [PMID: 34166760 DOI: 10.1016/j.addr.2021.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
One of the main challenges in the field of drug delivery remains the development of strategies to efficiently transport pharmaceuticals across mucus barriers, which regulate the passage and retention of molecules and particles in all luminal spaces of the body. A thorough understanding of the molecular mechanisms, which govern such selective permeability, is key for achieving efficient translocation of drugs and drug carriers. For this purpose, model systems based on purified mucins can contribute valuable information. In this review, we summarize advances that were made in the field of drug delivery research with such mucin-based model systems: First, we give an overview of mucin purification procedures and discuss the suitability of model systems reconstituted from purified mucins to mimic native mucus. Then, we summarize techniques to study mucin binding. Finally, we highlight approaches that made use of mucins as building blocks for drug delivery platforms or employ mucins as active compounds.
Collapse
|
6
|
A Pandemic Early Warning System Decision Analysis Concept Utilizing a Distributed Network of Air Samplers via Electrostatic Air Precipitation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The COVID-19 pandemic has highlighted the need for improved airborne infectious disease monitoring capability. A key challenge is to develop a technology that captures pathogens for identification from ambient air. While pathogenic species vary significantly in size and shape, for effective airborne pathogen detection the target species must be selectively captured from aerosolized droplets. Captured pathogens must then be separated from the remaining aerosolized droplet content and characterized in real-time. While improvements have been made with clinical laboratory automated sorting in culture media based on morphological characteristics of cells, this application has not extended to aerosol samples containing bacteria, viruses, spores, or prions. This manuscript presents a strategy and a model for the development of an airborne pandemic early warning system using aerosol sampling.
Collapse
|
7
|
Marczynski M, Jiang K, Blakeley M, Srivastava V, Vilaplana F, Crouzier T, Lieleg O. Structural Alterations of Mucins Are Associated with Losses in Functionality. Biomacromolecules 2021; 22:1600-1613. [PMID: 33749252 DOI: 10.1021/acs.biomac.1c00073] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Commercial mucin glycoproteins are routinely used as a model to investigate the broad range of important functions mucins fulfill in our bodies, including lubrication, protection against hostile germs, and the accommodation of a healthy microbiome. Moreover, purified mucins are increasingly selected as building blocks for multifunctional materials, i.e., as components of hydrogels or coatings. By performing a detailed side-by-side comparison of commercially available and lab-purified variants of porcine gastric mucins, we decipher key molecular motifs that are crucial for mucin functionality. As two main structural features, we identify the hydrophobic termini and the hydrophilic glycosylation pattern of the mucin glycoprotein; moreover, we describe how alterations in those structural motifs affect the different properties of mucins-on both microscopic and macroscopic levels. This study provides a detailed understanding of how distinct functionalities of gastric mucins are established, and it highlights the need for high-quality mucins-for both basic research and the development of mucin-based medical products.
Collapse
Affiliation(s)
- Matthias Marczynski
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.,Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Kun Jiang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 114 28 Stockholm, Sweden.,Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Matthew Blakeley
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden.,AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 114 28 Stockholm, Sweden.,Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.,Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| |
Collapse
|
8
|
Connor AJ, Zha RH, Koffas M. Bioproduction of biomacromolecules for antiviral applications. Curr Opin Biotechnol 2021; 69:263-272. [PMID: 33667798 DOI: 10.1016/j.copbio.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The societal damage brought on by viral epidemics indicates that next-generation antiviral treatments must be developed and deployed. Biomacromolecules are a diverse class of compounds that can potentially exhibit potent antiviral activity. Their efficacy and mechanisms of action are dependent upon multiple structural factors, including molecular weight, degree and position of sulfation, and backbone stereochemistry. Extracting biomacromolecules from animals and plants for healthcare applications is undesirable, as these methods are unable to yield products with well-defined chemical structures. Modern advances utilizing recombinant microbes and metabolic pathway engineering can be a key step towards large-scale bioproduction of tailored biomacromolecules for targeted antiviral applications.
Collapse
Affiliation(s)
- Alexander J Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Runye H Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
9
|
Sharma A, Kwak JG, Kolewe KW, Schiffman JD, Forbes NS, Lee J. In Vitro Reconstitution of an Intestinal Mucus Layer Shows That Cations and pH Control the Pore Structure That Regulates Its Permeability and Barrier Function. ACS APPLIED BIO MATERIALS 2020; 3:2897-2909. [PMID: 34322659 PMCID: PMC8315583 DOI: 10.1021/acsabm.9b00851] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysfunction of the intestinal mucus barrier causes disorders such as ulcerative colitis and Crohn's disease. The function of this essential barrier may be affected by the periodically changing luminal environment. We hypothesized that the pH and ion concentration in mucus control its porosity, molecular permeability, and the penetration of microbes. To test this hypothesis, we developed a scalable method to extract porcine small intestinal mucus (PSIM). The aggregation and porosity of PSIM were determined using rheometry, spectrophotometry, and microscopy. Aggregation of PSIM at low pH increased both the elastic (G') and viscous (G″) moduli, and it slowed the transmigration of pathogenic Salmonella. Molecular transport was dependent on ion concentration. At moderate concentrations, many microscopic aggregates (2-5 μm in diameter) impeded diffusion. At higher concentrations, PSIM formed aggregate islands, increasing both porosity and diffusion. This in vitro model could lead to a better understanding of mucus barrier functions and improve the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Abhinav Sharma
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jun-Goo Kwak
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Kristopher W Kolewe
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Neil S Forbes
- Department of Chemical Engineering, Molecular and Cellular Biology Graduate Program, and Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jungwoo Lee
- Department of Chemical Engineering, Molecular and Cellular Biology Graduate Program, and Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Yan H, Chircov C, Zhong X, Winkeljann B, Dobryden I, Nilsson HE, Lieleg O, Claesson PM, Hedberg Y, Crouzier T. Reversible Condensation of Mucins into Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13615-13625. [PMID: 30350704 DOI: 10.1021/acs.langmuir.8b02190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mucins are high molar mass glycoproteins that assume an extended conformation and can assemble into mucus hydrogels that protect our mucosal epithelium. In nature, the challenging task of generating a mucus layer, several hundreds of micrometers in thickness, from micrometer-sized cells is elegantly solved by the condensation of mucins inside vesicles and their on-demand release from the cells where they suddenly expand to form the extracellular mucus hydrogel. We aimed to recreate and control the process of compaction for mucins, the first step toward a better understanding of the process and creating biomimetic in vivo delivery strategies of macromolecules. We found that by adding glycerol to the aqueous solvent, we could induce drastic condensation of purified mucin molecules, reducing their size by an order of magnitude down to tens of nanometers in diameter. The condensation effect of glycerol was fully reversible and could be further enhanced and partially stabilized by cationic cross-linkers such as calcium and polylysine. The change of structure of mucins from extended molecules to nano-sized particles in the presence of glycerol translated into macroscopic rheological changes, as illustrated by a dampened shear-thinning effect with increasing glycerol concentration. This work provides new insight into mucin condensation, which could lead to new delivery strategies mimicking cell release of macromolecules condensed in vesicles such as mucins and heparin.
Collapse
Affiliation(s)
- Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Cristina Chircov
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Xueying Zhong
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 141 83 Huddinge , Sweden
| | - Benjamin Winkeljann
- Department of Mechanical Engineering and Munich School of Bioengineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Illia Dobryden
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , 10044 Stockholm , Sweden
| | - Harriet Elisabeth Nilsson
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 141 83 Huddinge , Sweden
- Department of Biosciences and Nutrition , Karolinska Institutet , 141 83 Huddinge , Sweden
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Per Martin Claesson
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , 10044 Stockholm , Sweden
| | - Yolanda Hedberg
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , 10044 Stockholm , Sweden
| | - Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| |
Collapse
|
11
|
Petrou G, Crouzier T. Mucins as multifunctional building blocks of biomaterials. Biomater Sci 2018; 6:2282-2297. [DOI: 10.1039/c8bm00471d] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mucins glycoproteins are emerging as a multifunctional building block for biomaterials with diverse applications in chemistry and biomedicine.
Collapse
Affiliation(s)
- Georgia Petrou
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- Department of Chemistry
- Kungliga Tekniska Hogskolan
- Stockholm
| | - Thomas Crouzier
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- Department of Chemistry
- Kungliga Tekniska Hogskolan
- Stockholm
| |
Collapse
|