1
|
Saldarriaga CA, Alatout MH, Khurram OU, Gransee HM, Sieck GC, Mantilla CB. Chloroquine impairs maximal transdiaphragmatic pressure generation in old mice. J Appl Physiol (1985) 2023; 135:1126-1134. [PMID: 37823202 PMCID: PMC10979802 DOI: 10.1152/japplphysiol.00365.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
Aging results in increased neuromuscular transmission failure and denervation of the diaphragm muscle, as well as decreased force generation across a range of motor behaviors. Increased risk for respiratory complications in old age is a major health problem. Aging impairs autophagy, a tightly regulated multistep process responsible for clearing misfolded or aggregated proteins and damaged organelles. In motor neurons, aging-related autophagy impairment may contribute to deficits in neurotransmission, subsequent muscle atrophy, and loss of muscle force. Chloroquine is commonly used to inhibit autophagy. We hypothesized that chloroquine decreases transdiaphragmatic pressure (Pdi) in mice. Old mice (16-28 mo old; n = 26) were randomly allocated to receive intraperitoneal chloroquine (50 mg/kg) or vehicle 4 h before measuring Pdi during eupnea, hypoxia (10% O2)-hypercapnia (5% CO2) exposure, spontaneous deep breaths ("sighs"), and maximal activation elicited by bilateral phrenic nerve stimulation (Pdimax). Pdi amplitude and ventilatory parameters across experimental groups and behaviors were evaluated using a mixed linear model. There were no differences in Pdi amplitude across treatments during eupnea (∼8 cm H2O), hypoxia-hypercapnia (∼10 cm H2O), or sigh (∼36 cm H2O), consistent with prior studies documenting a lack of aging effects on ventilatory behaviors. In vehicle and chloroquine-treated mice, average Pdimax was 61 and 46 cm H2O, respectively. Chloroquine decreased Pdimax by 24% compared to vehicle (P < 0.05). There were no sex or age effects on Pdi in older mice. The observed decrease in Pdimax suggests aging-related susceptibility to impairments in autophagy, consistent with the effects of chloroquine on this important homeostatic process.NEW & NOTEWORTHY Recent findings suggest that autophagy plays a role in the development of aging-related neuromuscular dysfunction; however, the contribution of autophagy impairment to the maintenance of diaphragm force generation in old age is unknown. This study shows that in old mice, chloroquine administration decreases maximal transdiaphragmatic pressure generation. These chloroquine effects suggest a susceptibility to impairments in autophagy in old age.
Collapse
Affiliation(s)
- Carlos A Saldarriaga
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Mayar H Alatout
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Carlos B Mantilla
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Račková L, Csekes E. Redox aspects of cytotoxicity and anti-neuroinflammatory profile of chloroquine and hydroxychloroquine in serum-starved BV-2 microglia. Toxicol Appl Pharmacol 2022; 447:116084. [PMID: 35618033 DOI: 10.1016/j.taap.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have long been used worldwide to treat and prevent human malarias. However, these 4-aminoquinolines have also shown promising potential in treating chronic illnesses with an inflammatory component, including neurological diseases. Given the current demand for serum avoidance during pharmacological testing and modeling of some pathologies, we compared cytotoxicities of CQ and HCQ in both serum-deprived and -fed murine BV-2 microglia. Furthermore, we assessed the anti-neuroinflammatory potential of both compounds in serum-deprived cells. Under both conditions, CQ showed higher cytotoxicity than HCQ. However, the comparable MTT-assay-derived data measured under different serum conditions were associated with disparate cytotoxic mechanisms of CQ and HCQ. In particular, under serum starvation, CQ mildly enhanced secondary ROS, mitochondrial hyperpolarization, and decreased phagocytosis. However, CQ promoted G1 phase cell cycle arrest and mitochondrial depolarization in serum-fed cells. Under both conditions, CQ fostered early apoptosis. Additionally, we confirmed that both compounds could exert anti-inflammatory effects in microglia through interference with MAPK signaling under nutrient-deprivation-related stress. Nevertheless, unlike HCQ, CQ is more likely to exaggerate intracellular prooxidant processes in activated starved microglia, which are inefficiently buffered by Nrf2/HO-1 signaling pathway activation. These outcomes also show HCQ as a promising anti-neuroinflammatory drug devoid of CQ-mediated cytotoxicity.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Erika Csekes
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| |
Collapse
|