1
|
Nunes GP, de Oliveira Alves R, Ragghianti MHF, Dos Reis-Prado AH, de Toledo PTA, Martins TP, Vieira APM, Peres GR, Duque C. Effects of quercetin on mineralized dental tissues: A scoping review. Arch Oral Biol 2025; 169:106119. [PMID: 39486275 DOI: 10.1016/j.archoralbio.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE This scoping review (SR) aimed to investigate the impact of quercetin on mineralized dental tissues intended to be used in preventive and restorative dentistry. METHODS This SR was conducted following the PRISMA-ScR statement. A comprehensive search was performed across databases for articles published up to March 2024. Eligible studies included in vitro and in situ studies and evaluating the potential therapeutic effects of quercetin on dental enamel and dentin. Data were extracted, and synthesis of study findings was conducted. RESULTS Out of the 2322 records screened, 22 studies were included in the review. Quercetin, in solution or into dental materials increased the bond strength to enamel and dentin. Additionally, quercetin also enhanced the bond strength of enamel after bleaching. Co-administration of quercetin with fluoride prevented erosive wear and inhibited the proteolytic activity in dentin more effectively than either agent alone. Hardness and modulus of elasticity was higher in dentin treated with quercetin compared to placebo. Reduction of nanoleakage at the composite-dentin interface was reduced in the presence of quercetin as a solution or incorporated into dental adhesives. CONCLUSIONS Quercetin exhibits promising therapeutic effects on mineralized dental tissues, including remineralization and enhancement of bond strength. It shows potential as a multifunctional agent for improving the longevity and effectiveness of dental biomaterials, as well as in preventing erosion and dental caries. However, as these conclusions are largely drawn from lab-based (in vitro) studies, further research, including clinical trials, is needed to fully explore its therapeutic potential and applications in dentistry.
Collapse
Affiliation(s)
- Gabriel Pereira Nunes
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Laboratory for Bone Metabolism and Regeneration, University of Porto, Faculty of Dental Medicine, Porto, Portugal
| | - Renata de Oliveira Alves
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | | | - Alexandre Henrique Dos Reis-Prado
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil; Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Priscila Toninatto Alves de Toledo
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Tamires Passadori Martins
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, Göttingen, Germany
| | - Ana Paula Miranda Vieira
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Geórgia Rondó Peres
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Laboratory for Bone Metabolism and Regeneration, University of Porto, Faculty of Dental Medicine, Porto, Portugal
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Faculty of Dental Medicine, Centre for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Viseu, Portugal.
| |
Collapse
|
2
|
Kim H, Jung YJ, Kim Y, Bae MK, Yoo KH, Yoon SY, Park HR, Kim IR, Kim YI. Long-term hybrid stability and matrix metalloproteinase inhibition by fucosterol in resin-dentin bonding biomechanics. Sci Rep 2024; 14:20415. [PMID: 39223241 PMCID: PMC11369231 DOI: 10.1038/s41598-024-71715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Fucosterols have been widely studied for their antioxidant, anticancer, and anti-inflammatory properties. However, they have not yet been studied in the field of dentistry. This study aimed to determine whether pretreatment of dentin with fucosterol before resin restoration enhances bond stability in resin-dentin hybrid layers. After applying 0.1, 0.5, and 1.0 wt% fucosterol to demineralized dentin, microtensile bond strength (MTBS) and nanoleakage tests were performed before and after collagenase aging, and the surface was observed using scanning electron microscope (SEM). The fucosterol-treated group showed better bond strength and less nanoleakage both before and after collagenase aging, and the corresponding structures were confirmed using SEM. MMP zymography confirmed that the activity of MMPs was relatively low along the concentration gradient of fucosterol, and the FTIR analysis confirmed the production of collagen crosslinks. In addition, fucosterol exhibits cytotoxicity against Streptococcus mutans, the main cause of dental decay. The results of this study suggest that fucosterol pretreatment improves bond strength and reduces nanoleakage at the resin-dentin interface, possibly through a mechanism involving collagen cross-link formation via the inhibition of endogenous and exogenous MMP activity. This study demonstrates the potential of fucosterol as an MMP inhibitor in dentin, which contributes to long-term resin-dentin bond stability and can be used as a restorative material.
Collapse
Affiliation(s)
- Hyeryeong Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University, Geumoro 20, Mulgeumeup, Yangsan, 50612, South Korea
| | - Yu-Jung Jung
- Department of Orthodontics, Dental Research Institute, Pusan National University, Geumoro 20, Mulgeumeup, Yangsan, 50612, South Korea
| | - Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Kyung-Hyeon Yoo
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Seog-Young Yoon
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, South Korea
| | - Hae Ryoun Park
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Yong-Il Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University, Geumoro 20, Mulgeumeup, Yangsan, 50612, South Korea.
- Dental and Life Science Institute, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
3
|
Zhao S, Zhu Z, Yu J, Yao C, Yu M, Yang H, Huang C. Enhancing dentin bonding quality through Acetone wet-bonding technique: a promising approach. Front Bioeng Biotechnol 2023; 11:1309503. [PMID: 38169916 PMCID: PMC10758616 DOI: 10.3389/fbioe.2023.1309503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Objective: This paper aimed to assess the impact of the acetone wet-bonding (AWB) technique on dentin bonding and to investigate its potential underlying mechanisms. Materials and Methods: Caries-free third molars were sliced, ground, etched, water-rinsed. Then the specimens were randomly allocated to four groups according to the following pretreatments: 1. water wet-bonding (WWB); 2. ethanol wet-bonding (EWB); 3. 50% (v/v) acetone aqueous solution (50%AWB); 4. 100% acetone solution (AWB). Singlebond universal adhesive was then applied and composite buildups were constructed. The microtensile bond strength (MTBS), failure modes and interface nanoleakage were respectively evaluated after 24 h of water storage, 10,000 times of thermocycling or 1-month collagenase ageing. In situ zymography and contact angle were also investigated. Results: Acetone pretreatment preserved MTBS after thermocycling or collagenase ageing (p < 0.05) without affecting the immediate MTBS (p > 0.05). Furthermore, AWB group manifested fewer nanoleakage than WWB group. More importantly, the contact angle of the dentin surfaces decreased significantly and collagenolytic activities within the hybrid layer were suppressed in AWB group. Conclusion: This study suggested that the AWB technique was effective in enhancing the dentin bond durability by increasing the wettability of dentin surface to dental adhesives, removing residual water in the hybrid layer, improving the penetration of adhesive monomer, and inhibiting the collagenolytic activities. Clinical significance: The lifespan of adhesive restorations would be increased by utilization of acetone wet-bonding technique.
Collapse
Affiliation(s)
- Shikai Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhiyi Zhu
- Department of Stomatology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenmin Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Miaoyang Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Masek A, Olejnik O, Czechowski L, Kaźmierczyk F, Miszczak S, Węgier A, Krauze S. Epoxy Resin-Based Materials Containing Natural Additives of Plant Origin Dedicated to Rail Transport. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7080. [PMID: 38005010 PMCID: PMC10672540 DOI: 10.3390/ma16227080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023]
Abstract
The presented study is focused on the modification of commercially available epoxy resin with flame retardants by means of using natural substances, including quercetin hydrate and potato starch. The main aim was to obtain environmentally friendly material dedicated to rail transport that is resistant to the aging process during exploitation but also more prone to biodegradation in environmental conditions after usage. Starch is a natural biopolymer that can be applied as a pro-ecological filler, which may contribute to degradation in environmental conditions, while quercetin hydrate is able to prevent a composite from premature degradation during exploitation. To determine the aging resistance of the prepared materials, the measurements of hardness, color, mechanical properties and surface free energy were performed before and after solar aging. To assess the mechanical properties of the composite material, one-directional tensile tests were performed for three directions (0, 90, 45 degrees referred to the plate edges). Moreover, the FT-IR spectra of pristine and aged materials were obtained to observe the changes in chemical structure. Furthermore, thermogravimetric analysis was conducted to achieve information about the impact of natural substances on the thermal resistance of the achieved composites.
Collapse
Affiliation(s)
- Anna Masek
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
| | - Olga Olejnik
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
| | - Leszek Czechowski
- Department of Strength of Materials, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (L.C.); (F.K.)
| | - Filip Kaźmierczyk
- Department of Strength of Materials, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (L.C.); (F.K.)
| | - Sebastian Miszczak
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland;
| | - Aleksandra Węgier
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
- S.Z.T.K. “TAPS”—Maciej Kowalski, ul. Borowa 4, 94-247 Lodz, Poland;
| | - Sławomir Krauze
- S.Z.T.K. “TAPS”—Maciej Kowalski, ul. Borowa 4, 94-247 Lodz, Poland;
| |
Collapse
|
5
|
Chen H, Sun G, Wang H, Yu S, Tian Z, Zhu S. Effect of collagen cross-linkers on dentin bond strength: A systematic review and network meta-analysis. Front Bioeng Biotechnol 2023; 10:1100894. [PMID: 36760752 PMCID: PMC9903368 DOI: 10.3389/fbioe.2022.1100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 01/25/2023] Open
Abstract
Objective: This study aimed to evaluate the role of collagen cross-linkers in the bonding performance of the resin-dentin interface through a systematic review and a network meta-analysis. Sources: The literature search was conducted in several databases like PubMed, EMBASE, Cochrane, Scopus and Web of Science from their inception till 30 April 2022. Study selection: The inclusion criteria consisted of in vitro studies evaluating the micro-tensile and micro-shear bond strengths of different cross-linkers acting on dentin. Bayesian network meta-analysis was conducted using RStudio. Data: Out of the 294 studies evaluated in the full-text analysis, 40 were included in the systematic review and meta-analysis. Most studies have used cross-linkers as primer (65.1%), followed by incorporating them into in adhesives and acid etching agents. The application methods of the adhesive system were classified as "etch-and-rinse (ER) adhesives" (77%) and "self-etching (SE) adhesives". Moreover, there were six types of cross-linkers in this presented review, of which the most numerous were polyphenols. Conclusion: Different application methods of cross-linkers, the long-term results showed that were only effective when used for longer durations, the immediate results were not statistically different. According to immediate and long-term results, etch-and-rinse (ER) adhesives showed a greater bonding performance than the control groups (p ≤ 0.05), whereas self-etching (SE) adhesives showed similar bond strength values (p ≥ 0.05). The result of network meta-analysis (NMA) showed that Dope like compound showed higher long-term bonding performance than other cross-linkers. Clinical significance: Long-term clinical studies may be needed to determine the effect of the cross-linkers on the bonding properties.
Collapse
|
6
|
Moradian M, Saadat M, Sohrabniya F, Afifian M. The comparative evaluation of the effects of quercetin, α-tocopherol, and chlorhexidine dentin pretreatments on the durability of universal adhesives. Clin Exp Dent Res 2022; 8:1638-1644. [PMID: 36189633 PMCID: PMC9760145 DOI: 10.1002/cre2.667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate and compare the effects of chlorhexidine, quercetin, and α-tocopherol on the shear bond strength of universal adhesives in the short (24h) and long term (6 months). MATERIAL AND METHODS Ninety-six extracted sound molars were collected and divided randomly into four groups: control (no treatment), 2% chlorhexidine, 10% α-tocopherol, and 1% quercetin. The solutions were prepared and applied to the teeth for 60 s, followed by application of All-Bond universal adhesive and composite build-up. Half of the specimens in each group (n = 12) were tested for shear bond strength (SBS) after 24 h of storage and the other half were kept in distilled water for 6 months and then tested for shear bond strength. The shear bond strength test was performed and the failure modes were determined using a stereomicroscope. The data were analyzed using two-way analysis of variance and Tukey's post hoc tests with p ˂ .05 as the significance level. RESULTS The results of the two-way analysis of variance test showed that there was no significant difference in immediate SBS, and after 6 months, α-tocopherol had the lowest SBS in comparison to the control and CHX subgroups (p < .05). The t-test showed that the shear bond strength in the α-tocopherol and quercetin groups was significantly decreased after 6 months. CONCLUSION It can be concluded that the solutions used in this study had no adverse effect on immediate SBS. After 6 months, the CHX could preserve SBS in comparison to other groups.
Collapse
Affiliation(s)
- Marzieh Moradian
- Department of Operative Dentistry, School of DentistryOral and Dental Disease Research Center, Shiraz University of Medical SciencesShirazIran
| | - Maryam Saadat
- Department of Operative Dentistry, School of DentistryOral and Dental Disease Research Center, Shiraz University of Medical SciencesShirazIran
| | - Fatemeh Sohrabniya
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Mohammad Afifian
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| |
Collapse
|
7
|
The effect of kaempferol on the dentin bonding stability through matrix metalloproteinases inhibition and collagen crosslink in dentin biomodification. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Li XY, Lin XJ, Zhong BJ, Yu H. Effects of the application timing of anti-erosive agents on dentin erosion. J Mech Behav Biomed Mater 2022; 136:105512. [PMID: 36274553 DOI: 10.1016/j.jmbbm.2022.105512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
This in vitro study aimed to evaluate the effects of the application timing of anti-erosive agents on dentin erosion. Eighty dentin specimens with dimensions of 2 × 2 × 2 mm were prepared and randomly divided into 4 groups based on the treatment solutions: 1.23 × 104 μg/ml sodium fluoride (NaF), 120 μg/ml chlorhexidine (CHX), 300 μg/ml quercetin (QUE), and deionized water (DW, negative control). The specimens in each group were further divided into 2 subgroups according to the application timing of the treatment solutions (n = 10): before the erosive challenges (PRE) and after the erosive challenges (POST). All specimens were submitted to 4 daily erosive challenges for 5 d. For each erosive challenge, the specimens in the subgroup PRE were treated with the respective solutions for 2 min and then immersed in cola drinks for 5 min, while the specimens in the subgroup POST were immersed in cola drinks for 5 min followed by treatment with the respective solutions for 2 min. The erosive dentin loss (EDL) was measured using a contact profilometer, and the surface morphology of the dentin specimens was evaluated by scanning electron microscopy at the end of the experiment. The data were statistically analyzed using two-way analysis of variance (ANOVA) and Bonferroni's test (α = 0.05). Significantly less EDL was observed in the groups NaF, CHX, and QUE than in the group DW (all P < 0.001). Significantly lower EDL was observed in the groups CHX and QUE than in the group NaF (P = 0.001 and P < 0.001, respectively). For CHX, subgroup POST exhibited significantly less EDL than subgroup PRE (P < 0.001). Regarding QUE, subgroup PRE showed significantly less EDL than subgroup POST (P < 0.001). Furthermore, a relatively greater number of obliterated dentinal tubules was visible in the subgroup POST rather than in the subgroup PRE of the group CHX, while in the group QUE, narrower dentinal tubules were observed in the subgroup PRE than those in subgroup POST. In conclusion, CHX and QUE showed the best performance in controlling dentin erosion. CHX was more effective in reducing EDL when applied after erosive challenges, whereas QUE worked more effectively when used before erosive attacks. The application timing should be considered when evaluating the effects of anti-erosive agents because it may determine their effectiveness.
Collapse
Affiliation(s)
- Xue-Yu Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, China
| | - Xiu-Jiao Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, China
| | - Bing-Jie Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, China
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, China.
| |
Collapse
|
9
|
Yu J, Zhao Y, Shen Y, Yao C, Guo J, Yang H, Huang C. Enhancing adhesive-dentin interface stability of primary teeth: From ethanol wet-bonding to plant-derived polyphenol application. J Dent 2022; 126:104285. [PMID: 36089222 DOI: 10.1016/j.jdent.2022.104285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To investigate whether the adhesive-dentin interface stability of primary teeth would be enhanced by epigallocatechin-3-gallate (EGCG) with ethanol wet-bonding. METHODS Non-caries primary molars were sliced to achieve a flat dentin surface and etched then randomly distributed into five groups in accordance with different treatments: group 1, no treatment; group 2, applying absolute ethanol wet-bonding for 60 s; groups 3-5, applying 0.1%, 0.5%, and 1% (w/v) EGCG-incorporating ethanol wet-bonding (0.1%, 0.5%, and 1% EGCG) for 60 s. Singlebond universal adhesive was then applied followed by resin composite construction. Microtensile bond strength, fracture mode, and nanoleakage at adhesive-dentin interface were evaluated after 24 h of water storage or 10,000 times of thermocycling. Zymography of hybrid layer, biofilm formation of Streptococcus mutans by CLSM, FESEM, and MTT test, and cytotoxicity by CCK-8 assay were respectively assessed. RESULTS Irrespective of thermocycling, the dentin bond strength was preserved with reduced nanoleakage in the 0.5% and 1% EGCG groups. Furthermore, the activity of endogenous proteases and the growth of Streptococcus mutans biofilm were inhibited after treatment with 0.5% and 1% EGCG/ethanol solutions (groups 4 and 5). CCK-8 results of the 0.1% and 0.5% EGCG groups showed acceptable biocompatibility. CONCLUSIONS Treatment by EGCG/ethanol solutions effectively enhanced the bond stability of primary teeth at the adhesive-dentin interface. CLINICAL SIGNIFICANCE Synergistic application of EGCG and ethanol wet-bonding suggesting a promising strategy to improve dentin bonding durability with bacterial biofilm inhibition, thus increasing resin-based restorations' service life in primary dentition.
Collapse
Affiliation(s)
- Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Yaning Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
10
|
Hong DW, Chen LB, Lin XJ, Attin T, Yu H. Dual function of quercetin as an MMP inhibitor and crosslinker in preventing dentin erosion and abrasion: An in situ/in vivo study. Dent Mater 2022; 38:e297-e307. [PMID: 36192276 DOI: 10.1016/j.dental.2022.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the in situ/in vivo effect of quercetin on dentin erosion and abrasion. METHODS Human dentin blocks (2 × 2 × 2 mm) were embedded and assigned to 6 groups: 75 μg/mL, 150 μg/mL and 300 μg/mL quercetin (Q75, Q150, Q300); 120 μg/mL chlorhexidine (CHX, positive control); and deionized water and ethanol (the negative controls). The specimens were treated with the respective solutions for 2 min and then subjected to in situ/in vivo erosive/abrasive challenge for 7 d as follows: in vivo erosion 4 times a day and then in vivo toothbrush abrasion after the first and last erosive challenges of each day. Dentin loss was assessed by profilometry. An additional dentin specimen was used to evaluate the penetration depth of quercetin into dentin by tracking the spatial distribution of its characteristic Raman peak. Moreover, dentin blocks (7 × 1.7 × 0.7 mm) were used to detect the impact of quercetin on dentin-derived matrix metalloproteinase (MMP) inhibition by in situ zymography, and the inhibition percentage (%) was calculated. Additionally, the potential collagen crosslinking interactions with quercetin were detected by Raman spectroscopy, and the crosslinking degree was determined with a ninhydrin assay. Fully demineralized dentin beams (0.5 × 0.5 × 10 mm) were used to evaluate the impact of quercetin on the mechanical properties of dentin collagen fibre by the ultimate micro-tensile strength test (μUTS). The data were analysed by one-way analysis of variance and Tukey's test (α = 0.05). RESULTS Compared to the negative controls, all treatment solutions significantly reduced dentin loss. The dentin loss of Q150 and Q300 was significantly less than that of CHX (all P < 0.05). The amount of quercetin decreased with increasing dentin depth, and the maximum penetration depth was approximately 25-30 µm. In situ zymography showed that quercetin significantly inhibited the activities of dentin-derived MMPs. The inhibitory percentages of Q75 and Q150 were significantly lower than that of CHX (all P < 0.05), but no significant difference was found between Q300 and CHX (P = 0.58). The collagen crosslinking interactions with quercetin primarily involved hydrogen bonding and the degree of crosslinking increased in a concentration-dependent manner. Statistically significant increases in μUTS values were observed for demineralized dentin beams after quercetin treatment compared with those of the control treatments (all P < 0.05). SIGNIFICANCE This study provides the first direct evidence that quercetin could penetrate approximately 25-30 µm into dentin and further prevent dentin erosion and abrasion by inhibiting dentin-derived MMP activity as well as crosslinking collagen of the demineralized organic matrix.
Collapse
Affiliation(s)
- Deng-Wei Hong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Li-Bing Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xiu-Jiao Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Thomas Attin
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University Zurich, Switzerland
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
11
|
Lin XJ, Hong DW, Lu ZC, Yu H. Effect of quercetin pretreatment on the immediate and aged bond strength of bleached dentin. J Mech Behav Biomed Mater 2022; 135:105476. [PMID: 36179613 DOI: 10.1016/j.jmbbm.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
Abstract
This in vitro study aimed to investigate the effect of quercetin pretreatment on the bond strength of bleached dentin. Human dentin blocks (2 × 2 × 1 mm) were prepared and randomly divided into 5 groups (n = 16): deionized water pretreatment + no bleaching treatment (DNB); deionized water pretreatment + bleaching treatment (DYB); 75 μg/mL quercetin pretreatment + bleaching (Q75B); 150 μg/mL quercetin pretreatment + bleaching (Q150B); and 300 μg/mL quercetin pretreatment + bleaching (Q300B). The surfaces of superficial dentin (bonding surfaces) were treated with the respective solutions for 2 min, and then the surfaces opposite to the bonding surfaces (near pulp, bleaching surfaces) were subjected to bleaching treatment with 40% hydrogen peroxide (Ultradent, USA) for two 15-min sessions (groups DYB, Q75B, Q150B, and Q300B). After the bleaching procedure, the bonding surfaces were bonded with resin cements (Panavia V5, Kuraray, Japan). The bonded specimens were then divided into 2 subgroups (n = 8): the aging group (subgroup T), which was subjected to 10,000 thermocycles, and the nonaging group (subgroup N), which was not subjected to thermocycling. The microshear bond strength (μSBS) was obtained using a universal testing machine (AGS-X, Shimadzu, Tokyo, Japan). Additional dentin blocks (5 × 5 × 1 mm) were prepared and treated the same as the groups DYB, Q75B, Q150B, and Q300B (n = 8) to evaluate the color change, defined as groups CCDYB, CCQ75B, CCQ150B, and CCQ300B, respectively. Color evaluation was performed using a spectrophotometer (Vita Easyshade Advance 4.0, Vident, USA) to obtain a baseline and again at the end of the bleaching treatment. The data were analyzed via two-way analysis of variance (ANOVA) and Tukey's post-hoc test (α = 0.05). For the immediate bond strength, the specimens in the groups Q75B, Q150B, and Q300B showed significantly higher μSBS values than those in the group DYB (all P < 0.05). No significant differences in the μSBS values were found among the groups Q75B, Q150B, Q300B, and DNB, respectively (all P > 0.05). For the aged bond strength, both the groups Q150B and Q300B exhibited significantly higher μSBS values than groups DYB and DNB (all P < 0.05), whereas no significance differences were found between groups Q150B and Q300B (P = 1.00) or between the groups DYB and DNB (P = 1.00). No significant differences were observed in the △E values among all the groups tested (P = 0.80). Therefore, the application of quercetin for 2 min prior to the bleaching procedure preserved the immediate bond strength and improved the aged bond strength of bleached dentin while maintaining the effectiveness of bleaching.
Collapse
Affiliation(s)
- Xiu-Jiao Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, China
| | - Deng-Wei Hong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, China
| | - Zhi-Cen Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, China
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, China; Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Switzerland; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| |
Collapse
|
12
|
Moradian M, Saadat M, S. Shiri MH, Sohrabniya F. Comparative evaluation of the postbleaching application of sodium ascorbate, alpha-tocopherol, and quercetin on shear bond strength of composite resin to enamel. Clin Exp Dent Res 2022; 8:1598-1604. [PMID: 36106470 PMCID: PMC9760164 DOI: 10.1002/cre2.655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate and compare the impacts of the postbleaching application of sodium ascorbate, alpha-tocopherol, and quercetin on the shear bond strength (SBS) of composite resin. MATERIAL AND METHODS 60 extracted intact maxillary first premolars were collected and were randomly divided into five experimental groups as follows (n=12): Group A (negative control): no bleaching, Group B (positive control): bleaching with 40% hydrogen peroxide (HP), Group C: HP±10% sodium ascorbate for 10min, Group D: HP±10% alpha-tocopherol for 10min, and Group E: HP±1% quercetin for 10min. Composite bonding was done immediately after bleaching for Groups B-E and without any treatment for Group A. After being stored in distilled water at room temperature for 24h, all specimens were tested for SBS in the universal testing machine. One-way analysis of variance and Tukey's post-hoc test were used to analyze the SBS values of all groups. RESULTS The results showed that the bonding of composite to the unbleached group exhibited the highest mean value of SBS (22.68±2.91MPa). Among the antioxidant-treated groups, the highest SBS value was detected in quercetin-treated specimens (15.45±1.58MPa), which was significantly different from the positive control group (p<.05). CONCLUSION It could be concluded that 10% quercetin applied for 10min increased the bond strength to bleached enamel, but it was not able to reverse it completely.
Collapse
Affiliation(s)
- Marzieh Moradian
- Department of Operative Dentistry, Oral and Dental Disease Research Center, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Maryam Saadat
- Department of Operative Dentistry, Oral and Dental Disease Research Center, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Mohammad Hossein S. Shiri
- Student Research Committee, Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Fatemeh Sohrabniya
- Student Research Committee, Department of Operative Dentistry, School of DentistryShiraz University of Medical SciencesShirazIran
| |
Collapse
|
13
|
Anumula L, Ramesh S, Kolaparthi VSK, Kirubakaran R, Karobari MI, Arora S, Saleh AA, Aldowah O, Messina P, Scardina GA. Role of Natural Cross Linkers in Resin-Dentin Bond Durability: A Systematic Review and Meta-Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5650. [PMID: 36013786 PMCID: PMC9413318 DOI: 10.3390/ma15165650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The role of endogenous Matrix Metallo Proteinases in resin dentin bond deterioration over time has been well documented. The present study aimed to systematically review the literature; in vitro and ex vivo studies that assessed the outcomes of natural cross-linkers for immediate and long-term tensile bond strength were included. METHODS The manuscript search was carried out in six electronic databases-PubMed/MEDLINE, LILACS, SciELO, Cochrane, Web of Science and DOAJ, without publication year limits. Only manuscripts in English (including the translated articles) were selected, and the last search was performed in December 2020. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was followed. RESULTS From the 128 potentially eligible studies, 48 full-text articles were assessed for eligibility. After eligibility assessment and exclusions, 14 studies were considered for systematic review and seven studies for meta-analysis. Amongst the selected studies for meta-analysis, three had a medium and four had a low risk of bias. CONCLUSIONS It was evidenced by the available data that Proanthocyanidin is the most efficient natural cross-linker to date, in preserving the bond strength even after ageing.
Collapse
Affiliation(s)
- Lavanya Anumula
- Department of Conservative Dentistry and Endodontics, Narayana Dental College and Hospital, Nellore 524003, Andra Pradesh, India
| | - Sindhu Ramesh
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Chennai 600077, Tamil Nadu, India
| | | | - Richard Kirubakaran
- Cochrane South Asia, BV Moses Centre for Evidence Informed Health Care and Health Policy, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Mohmed Isaqali Karobari
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Chennai 600077, Tamil Nadu, India
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu 16150, Malaysia
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Suraj Arora
- Department of Restorative Dental Sciences, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Ahmed A. Saleh
- Department of Restorative Dental Sciences, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Omir Aldowah
- Prosthetic Dental Science Department, Faculty of Dentistry, Najran University, Najran 11001, Saudi Arabia
| | - Pietro Messina
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, 90133 Palermo, Italy
| | | |
Collapse
|
14
|
Zhang Q, Guo J, Huang Z, Mai S. Promotion Effect of Carboxymethyl Chitosan on Dental Caries via Intrafibrillar Mineralization of Collagen and Dentin Remineralization. MATERIALS 2022; 15:ma15144835. [PMID: 35888302 PMCID: PMC9319914 DOI: 10.3390/ma15144835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Objective: To observe ultrastructural changes during the process of carboxymethyl chitosan (CMC)-mediated intrafibrillar mineralization, we evaluated the biomimetic remineralization potential of CMC in type-I collagen fibrils and membranes, and further explored the bond strength as well as the bond interfacial integrity of the biomimetic remineralized artificial caries-affected dentin (ACAD). Methods: A mineralized solution containing 200 μg/mL CMC was used to induce type-I collagen biomimetic remineralization in ACAD, while traditional mineralization without CMC was used as a control. The process and pattern of mineralization were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) as well as structured illumination microscopy (SIM). The Vickers hardness test was used to quantify the dentin hardness, while the microtensile bond strength (µTBS) test was used to assess the bond strength and durability. The bond interfacial integrity was evaluated by a confocal laser scanning microscope (CLSM). Results: TEM, SEM, and SIM images showed that CMC had a positive effect on stabilizing amorphous calcium phosphate (ACP) and promoting intrafibrillar mineralization, while extrafibrillar mineralization was formed without CMC. Furthermore, hardness evaluation and µTBS proved that CMC significantly increased dentin hardness and bond strength. CLSM indicated that CMC could create a significantly better bond interfacial integrity with less of a micro-gap in ACAD. Significance: CMC possessed the ability to promote intrafibrillar mineralization and remineralization in demineralized caries dentin lesions, as well as improve bond performance, which implied its potential in carious dentin demineralization or dentin hypersensitivity and possibly even as a possible material for indirect pulp-capping, to deal with deep caries. Highlights: CMC possessed the ability to induce intrafibrillar mineralization effectively; the bond strength and bond durability of demineralized caries dentin were improved via CMC-induced remineralization; the CMC-induced remineralization complex is a potential material for indirect pulp-capping, to deal with deep caries.
Collapse
Affiliation(s)
- Qi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.Z.); (J.G.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou 510080, China;
| | - Jiaxin Guo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.Z.); (J.G.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou 510080, China;
| | - Zihua Huang
- Institute of Stomatology, Sun Yat-sen University, Guangzhou 510080, China;
- Department of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.Z.); (J.G.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence:
| |
Collapse
|
15
|
Olejnik O, Masek A. Natural Phenolic Compounds as Modifiers for Epoxidized Natural Rubber/Silica Hybrids. Molecules 2022; 27:2214. [PMID: 35408613 PMCID: PMC9000673 DOI: 10.3390/molecules27072214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Silica is a popular filler, but in epoxidized natural rubber, can act as a cross-linking agent. Unfortunately, a high amount of silica is necessary to obtain satisfactory tensile strength. Moreover, a high amount of silica in ENR/silica hybrids is associated with low elongation at break. In our paper, we propose natural phenolic compounds, including quercetin, tannic acid, and gallic acid as natural and safe additional crosslinkers dedicated to ENR/silica hybrids to obtain bio-elastomers with improved mechanical properties. Therefore, toxic crosslinkers, such as peroxides or harmful accelerators can be eliminated. The impact of selected natural phenolic compounds on crosslinking effect, mechanical properties, color, and chemical structure of ENR/silica composite have been analyzed. The obtained results indicated that only 3 phr of selected natural phenolic compounds is able to improve crosslinking effect as well as mechanical properties of ENR/silica hybrids. Moreover, some of the prepared materials tend to regain mechanical properties after reprocessing. Such materials containing only natural and safe ingredients have a chance of becoming novel elastomeric biomaterials dedicated to biomedical applications.
Collapse
Affiliation(s)
| | - Anna Masek
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| |
Collapse
|
16
|
Zhao S, Hua F, Yan J, Yang H, Huang C. Effects of Plant Extracts on Dentin Bonding Strength: A Systematic Review and Meta-Analysis. Front Bioeng Biotechnol 2022; 10:836042. [PMID: 35284411 PMCID: PMC8908204 DOI: 10.3389/fbioe.2022.836042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: To systematically review in vitro studies that evaluated the effects of plant extracts on dentin bonding strength. Materials and Methods: Six electronic databases (PubMed, Embase, VIP, CNKI, Wanfang and The Cochrane Library) were searched from inception to September 2021 in accordance with the Preferred Reporting Items for Systematic Reviews (PRISMA). In vitro studies that compared the performance of dental adhesives with and without the plant extracts participation were included. The reference lists of the included studies were manually searched. Two researchers carried out study screening, data extraction and risk of bias assessment, independently and in duplicate. Meta-analysis was conducted using Review Manager 5.3. Results: A total of 62 studies were selected for full-text analysis. 25 articles used the plant extracts as primers, while five added the plant extracts into adhesives. The meta-analysis included 14 articles of in vitro studies investigating the effects of different plant extract primers on dentin bonding strength of etch-and-rinse and self-etch adhesives, respectively. The global analysis showed statistically significant difference between dental adhesives with and without plant extract primers. It showed that the immediate bond strength of dental adhesives was improved with the application of plant extract primers. Conclusion: The application of proanthocyanidin (PA) primers have positive effect on the in vitro immediate bonding strength of dental adhesives irrespective of etch-and-rinse or self-etch modes.
Collapse
Affiliation(s)
- Shikai Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Hua
- Department of Orthodontics, Center for Evidence-Based Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jiarong Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Hongye Yang, ; Cui Huang,
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Hongye Yang, ; Cui Huang,
| |
Collapse
|
17
|
Enhancing resin-dentin bond durability using a novel mussel-inspired monomer. Mater Today Bio 2021; 12:100174. [PMID: 34901824 PMCID: PMC8640517 DOI: 10.1016/j.mtbio.2021.100174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022] Open
Abstract
Numerous approaches have been developed to improve the resin-dentin bond performance, among which the bio-application of mussel-derived compounds have drawn great attention recently. To assess the performance of N-(3,4-dihydroxyphenethyl)methacrylamide (DMA), a mussel-derived compound, as a functional monomer in dental adhesive, its potential property to cross-link with dentin collagen and polymerize with adhesive will first be evaluated by transmission electron microscopy (TEM), attenuated total reflectance technique of Fourier transform infrared (ATR-FTIR), and atomic force microscopy (AFM) via Peakforce QNM mode. After validating the influence of DMA on collagen and adhesive separately, the overall performance of DMA/ethanol solution as a primer in dentin bonding was examined using micro-tensile bond strength (μTBS) testing, fracture pattern observation, and nanoleakage evaluation both immediately and after 10,000 times thermocycling aging. The inhibitory effect of DMA on endogenous metalloproteinases (MMPs) was evaluated by in situ zymography using confocal laser scanning microscopy (CLSM) and the cytotoxicity of DMA was evaluated using cell counting kit-8. Results demonstrated that DMA successfully cross-linked with dentin collagen via non-covalent bonds and had no influence on the polymerization and mechanical properties of the adhesive. Furthermore, even after 10,000 times thermocycling aging, the μTBS and nanoleakage expression of the DMA-treated groups showed no significant change compared with their immediate values. In situ zymography revealed reduced endogenous proteolytic activities after the application of DMA, and no cytotoxicity effect was observed for DMA concentration up to 25 μmol/L. Thus, DMA could be used as a novel, biocompatible functional monomer in dentin bonding. DMA acts as a functional monomer in dentin bonding system with high biocompatibility. DMA connects the adhesive and collagen network to resist various external attacks. DMA/ethanol inhibits the activity of MMPs and improve resin-dentin bond durability.
Collapse
|
18
|
Li K, Zhang Z, Sun Y, Yang H, Tsoi JKH, Huang C, Yiu CKY. In vitro evaluation of the anti-proteolytic and cross-linking effect of mussel-inspired monomer on the demineralized dentin matrix. J Dent 2021; 111:103720. [PMID: 34119610 DOI: 10.1016/j.jdent.2021.103720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To evaluate the anti-proteolytic and cross-linking effect of N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) on the demineralized dentin matrix in vitro. METHODS Four experimental solutions were selected: 50% ethanol/water solution (Control); 1, 5, and 10 mmol/L DMA dissolved in 50% ethanol/water solution. Sound human molars were sectioned to produce dentin beams with dimension of 1×1×6 mm. The dentin beams were demineralized with 10% phosphoric acid for 8 h to remove the apatite. The demineralized specimens were randomly separated into four groups and immersed in the four experimental solutions for 1 h. After the treatment, the ultimate tensile strength (UTS), loss of dry mass and the release of hydroxyproline by storing the treated specimens in 0.1 mg/mL collagenase solution for 24 h were assessed. The swelling ratio of another ten specimens from each group were evaluated. The interaction between DMA with dentin matrix was observed under Field Emission Scanning Electron Microscopy (FESEM). UTS data was analyzed by two-way ANOVA followed by Tukey test, and the other data was analyzed by one-way ANOVA followed by Tukey test (α = 0.05). RESULTS The two-way ANOVA factors, different solutions (p < 0.001), collagenase degradation (p < 0.001) and their interactions (p < 0.001) all significantly affected the UTS. The 10 mM DMA treatment significantly decreased the percentage of loss of dry mass, release of hydroxyproline and swelling ratio of demineralized dentin matrix compared to other treatment groups (p < 0.05). The FESEM observation depicted that with increasing concentration of DMA, the structure of dentin matrix was protected and the porosity within dentin collagen network was decreased. CONCLUSIONS The treatment by 10 mM DMA/ethanol solution for 1 hour is capable of enhancing the mechanical properties of demineralized dentin matrix against collagenase degradation and may be clinically useful to improve the durability of hybrid layer. CLINICAL SIGNIFICANCE The 10 mM DMA/ethanol primer may offer an alternative choice for dentists to strengthen the mechanical properties of demineralized dentin matrix and resist its degradation by collagenase.
Collapse
Affiliation(s)
- Kang Li
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 2nd Floor, Prince Philip Dental Hospital 34 Hospital Road, Sai Ying Pun, Hong Kong, PR China
| | - Zhongni Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Hongshan District, Wuhan 430079, China
| | - Yuhong Sun
- Center of Stomatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Hongshan District, Wuhan 430079, China
| | - James Kit Hon Tsoi
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong, PR China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Hongshan District, Wuhan 430079, China.
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 2nd Floor, Prince Philip Dental Hospital 34 Hospital Road, Sai Ying Pun, Hong Kong, PR China.
| |
Collapse
|
19
|
Mehmood N, Nagpal R, Singh UP, Agarwal M. Effect of dentin biomodification techniques on the stability of the bonded interface. J Conserv Dent 2021; 24:265-270. [PMID: 35035152 PMCID: PMC8717850 DOI: 10.4103/jcd.jcd_106_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022] Open
Abstract
Aim: The aim of this study is to evaluate the effect of different bonding techniques ethanol wet bonding and dimethyl sulfoxide (DMSO) wet bonding and a novel collagen cross-linker Quercetin application on the durability of resin-dentin bond and observe the bonded interface under the scanning electron microscope (SEM). Materials and Methods: For shear bond strength testing, flat coronal dentin surfaces were prepared on 110 extracted human molars. Teeth were randomly divided into five experimental groups according to different surface pretreatments techniques. Group A was control group without any surface pretreatment. In Group B, ethanol wet bonding pretreatment was done before the application of adhesive. In Group C, DMSO wet bonding was done before the application of adhesive and in Groups D and E, Quercetin along with ethanol and Quercetin along with DMSO pretreatment, respectively, were done before adhesive application. Composite restorations were placed in all the samples. Twenty samples from each group were subjected to immediate and delayed (9 months) shear bond strength evaluation. In addition, two samples per group were subjected to the scanning electron microscopic analysis for the observation of resin-dentin interface. Statistical Analysis: Data collected were subjected to the statistical analysis using the one-way analysis of variance and post hoc Tukey's test at a significance level of P < 0.05. Results: Dentin pretreatment with all the techniques resulted in significantly higher resin-dentin bond strength after 9 months storage with DMSO group showing the highest bond strength values. Conclusion: It can be concluded that these biomodification techniques can improve the durability of the resin-dentin bond.
Collapse
Affiliation(s)
- Nida Mehmood
- Department of Conservative Dentistry and Endodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Rajni Nagpal
- Department of Conservative Dentistry and Endodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Udai Pratap Singh
- Department of Conservative Dentistry and Endodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Meenal Agarwal
- Department of Conservative Dentistry and Endodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| |
Collapse
|
20
|
Porto ICCDM, Rocha ABDB, Ferreira IIS, de Barros BM, Ávila EC, da Silva MC, de Oliveira MPS, Lôbo TDLGF, Oliveira JMDS, do Nascimento TG, de Freitas JMD, de Freitas JD. Polyphenols and Brazilian red propolis incorporated into a total-etching adhesive system help in maintaining bonding durability. Heliyon 2021; 7:e06237. [PMID: 33665421 PMCID: PMC7898005 DOI: 10.1016/j.heliyon.2021.e06237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/21/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives The aim of this study was to evaluate the degree of conversion and bond strength of a commercial dental adhesive modified by the incorporation of quercetin, resveratrol (RES), and Brazilian red propolis (BRP). Methods BRP markers were identified using ultra-performance liquid chromatography coupled with a diode array detector, and the antioxidant activity (AAO) of the three substances was analyzed. Single Bond 2 adhesive (3M ESPE) was modified by adding BRP, quercetin, and RES, separately, at 20 μg/mL, 250 μg/mL, and 500 μg/mL, respectively. The degree of conversion (DC) was measured using near-infrared spectroscopy 24 h after photopolymerization. Measurements of the resin-dentin microtensile bond strength (μTBS) were carried out after 1 day and 1 year. Student's t test and ANOVA with Tukey's test were used for data analysis (α = 0.05). Results The markers daidzein, liquiritigenin, pinobanksin, isoliquiritigenin, formononetin, pinocembrin, and biochanin A were found in the ethanolic extract of BRP. Quercetin, RES, and BRP showed high AAO. The DC of the tested adhesives remained adequate for this category of material, with a slight increase in the DC of adhesives with quercetin and BRP (P > 0.05). Comparisons between μTBS measurements made at 1 day and 1 year showed that, contrary to the control group, μTBS values for all modified adhesives were maintained after 1 year in distilled water (P > 0.05). Conclusions These findings suggest that quercetin, RES, or BRP might be useful in adhesive dentistry to help improve hybrid layer resistance. Clinical significance Dentin bonding agents with quercetin, RES, and BRP have potential to increase the longevity of composite restorations.
Collapse
Affiliation(s)
- Isabel Cristina Celerino de Moraes Porto
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil.,Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Arthur Bezerra de Barros Rocha
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Iverson Iago Soares Ferreira
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Bruna Muritiba de Barros
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Eryck Canabarra Ávila
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Matheus Corrêa da Silva
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Marcos Paulo Santana de Oliveira
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Teresa de Lisieux Guedes Ferreira Lôbo
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - José Marcos Dos Santos Oliveira
- Postgraduate Program in Health Research, Cesmac University Center, Rua Prof. Ângelo Neto, 51, Farol, CEP 57051-530, Maceió, Alagoas, Brazil
| | - Ticiano Gomes do Nascimento
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Jeniffer Mclaine Duarte de Freitas
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Rua Mizael Domingues, 75, Campus Maceió, CEP 57020-600, Maceió, Alagoas, Brazil
| |
Collapse
|
21
|
Zhang Z, Yu J, Yao C, Yang H, Huang C. New perspective to improve dentin-adhesive interface stability by using dimethyl sulfoxide wet-bonding and epigallocatechin-3-gallate. Dent Mater 2020; 36:1452-1463. [PMID: 32943231 DOI: 10.1016/j.dental.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/07/2020] [Accepted: 08/29/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine whether dentin-adhesive interface stability would be improved by dimethyl sulfoxide (DMSO) wet-bonding and epigallocatechin-3-gallate (EGCG). METHODS Etched dentin surfaces from sound third molars were randomly assigned to five groups according to different pretreatments: group 1, water wet-bonding (WWB); group 2, 50% (v/v) DMSO wet-bonding (DWB); groups 3-5, 0.01, 0.1, and 1 wt% EGCG-incorporated 50% (v/v) DMSO wet-bonding (0.01%, 0.1%, and 1%EGCG/DWB). Singlebond universal adhesive was applied to the pretreated dentin surfaces, and composite buildups were constructed. Microtensile bond strength (μTBS) and interfacial nanoleakage were respectively examined after 24 h water storage or 1-month collagenase ageing. In situ zymography andStreptococcus mutans (S. mutans) biofilm formation were also investigated. RESULTS After collagenase ageing, μTBS of groups 4 (0.1%EGCG/DWB) and 5 (1%EGCG/DWB) did not decrease (p > 0.05) and was higher than that of the other three groups (p < 0.05). Nanoleakage expression of groups 4 and 5 was less than that of the other three groups (p < 0.05), regardless of collagenase ageing. Metalloproteinase activities within the hybrid layer in groups 4 and 5 were suppressed. Furthermore, pretreatment with 1%EGCG/DWB (group 5) efficiently inhibited S. mutans biofilm formation along the dentin-adhesive interface. SIGNIFICANCE This study suggested that the synergistic action of DMSO wet-bonding and EGCG can effectively improve dentin-adhesive interface stability. This strategy provides clinicians with promising benefits to achieve desirable dentin bonding performance and to prevent secondary caries, thereby extending the longevity of adhesive restorations.
Collapse
Affiliation(s)
- Zhongni Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Jiang NW, Hong DW, Attin T, Cheng H, Yu H. Quercetin reduces erosive dentin wear: Evidence from laboratory and clinical studies. Dent Mater 2020; 36:1430-1436. [PMID: 32928560 DOI: 10.1016/j.dental.2020.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/27/2020] [Accepted: 08/29/2020] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The aim of the present study was to evaluate the effect of quercetin on the acid resistance of human dentin through both laboratory and clinical studies. METHODS Two hundred and twelve dentin blocks (2 mm × 2 mm × 2 mm) were prepared and used. For the laboratory study, dentin specimens were randomly divided into 8 groups (n = 12): deionized water, ethanol, 1.23 × 104 μg/ml sodium fluoride (NaF), 120 μg/ml chlorhexidine, 183.2 μg/ml epigallocatechin gallate (EGCG), and 75 μg/ml, 150 μg/ml, and 300 μg/ml quercetin (Q75, Q150, and Q300). The specimens were treated with the respective solutions for 2 min and then subjected to in vitro erosion (4 cycles/d for 7 d). The surface microhardness loss (%SMHl), erosive dentin wear, and surface morphology were evaluated and compared. For the impact on MMP inhibition, the release of crosslinked carboxyterminal telopeptide of type I collagen (ICTP) and the thickness of the demineralized organic matrix (DOM) were measured using additional dentin specimens. For the clinical study, the specimens were treated with NaF or Q300 for 2 min and then subjected to in vivo erosion (4 cycles/d for 7 d). The %SMHl and erosive dentin wear of the specimens were measured to determine whether quercetin similarly inhibits erosion in situ. RESULTS The quercetin-treated group had a significantly lower %SMHl and erosive dentin wear than any other group, and the effect was concentration-dependent in vitro (P < 0.05). Dentin treated with quercetin produced significantly less ICTP and had a thicker DOM than the control dentin (P < 0.05). After in vivo erosion, the %SMHl and erosive dentin wear of the Q300 group were significantly lower than those of the control group (P < 0.05). SIGNIFICANCE The application of quercetin was shown, for the first time, to increase the acid resistance of human dentin, possibly through MMP inhibition and DOM preservation.
Collapse
Affiliation(s)
- Neng-Wu Jiang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Stomatology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361006, China
| | - Deng-Wei Hong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Hui Cheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
23
|
The application of mussel-inspired molecule in dentin bonding. J Dent 2020; 99:103404. [DOI: 10.1016/j.jdent.2020.103404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
|
24
|
Bim-Júnior O, Gaglieri C, Bedran-Russo AK, Bueno-Silva B, Bannach G, Frem R, Ximenes VF, Lisboa-Filho PN. MOF-Based Erodible System for On-Demand Release of Bioactive Flavonoid at the Polymer–Tissue Interface. ACS Biomater Sci Eng 2020; 6:4539-4550. [DOI: 10.1021/acsbiomaterials.0c00564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Odair Bim-Júnior
- Department of Physics, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - Caroline Gaglieri
- Department of Chemistry, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - Ana K. Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago (UIC), Chicago 60612, United States
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University (UNG), Guarulhos 07023-080, Brazil
| | - Gilbert Bannach
- Department of Chemistry, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - Regina Frem
- Department of Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - Paulo N. Lisboa-Filho
- Department of Physics, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| |
Collapse
|
25
|
Peng W, Yi L, Wang Z, Yang H, Huang C. Effects of resveratrol/ethanol pretreatment on dentin bonding durability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111000. [PMID: 32994020 DOI: 10.1016/j.msec.2020.111000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
To determine the effects of resveratrol/ethanol solution on the durability of resin-dentin bonding interfaces. Sixty-four non-caries third molars were randomly divided into four groups (n = 16) after sectioning, and then pretreated with one of the following concentrations of resveratrol/ethanol solutions: 0 (control group), 1, 10 and 20 mg/mL, followed by a universal adhesive and resin composites. All microtensile samples were divided into three subgroups: immediate group, collagenase ageing group and thermocycled group. The microtensile bond strength (MTBS), failure modes, interfacial nanoleakage and in situ zymography were measured, whereas the inhibitory effects of pretreated dentin slices on S. mutans biofilms were determined by confocal laser scanning microscopy and MTT assay. The results indicated that bonding strength was not only influenced by pretreatment factors (P < 0.05) but also ageing factors (P < 0.05). Regardless of collagenase ageing or thermocycling, the 10 mg/mL resveratrol/ethanol pretreatment group presented significantly higher (P < 0.05) MTBS and lower (P < 0.05) expression of nanoleakage than the control group, showed better inhibitory effect of matrix metalloproteinases and S. mutans activity with acceptable cytotoxicity. Meanwhile, cohesive failure in dentin decreased gradually with increasing resveratrol concentration. Therefore, the resveratrol/ethanol solution had the potential to serve as a versatile dentin primer, which can effectively improve dentin bonding durability and prevent secondary caries.
Collapse
Affiliation(s)
- Wenan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Luyao Yi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Ziming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
26
|
Moyaho-Bernal MDLA, Badillo-Estévez BE, Soberanes-de la Fuente EL, González-Torres M, Teutle-Coyotecatl B, Rubín de Celís-Quintana GN, Carrasco-Gutiérrez R, Vaillard-Jiménez E, Lezama-Flores G. The roughness of deciduous dentin surface and shear bond strength of glass ionomers in the treatment with four minimally invasive techniques. RSC Adv 2019; 9:32197-32204. [PMID: 35530792 PMCID: PMC9072945 DOI: 10.1039/c9ra04159a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022] Open
Abstract
The concept of minimally invasive technique in dentistry emphasizes conservative strategies in the management of caries, which results in less destruction of healthy tooth structure. The use of different techniques seems to interfere in the roughness of dentin and the mechanisms of adhesion with the restorative material. This study characterized the roughness of deciduous dentin surface treated with four minimally invasive techniques using profilometry, atomic force microscopy (AFM) and scanning electron microscopy (SEM); moreover, shear bond strength of Vitremer™ glass ionomer was determined. Samples were divided into four groups: G1_CB carbide bur, G2_PB polymer bur, G3_C Carisolv™, and G4_AA air abrasive. No differences were found between groups before and after treatment in the roughness. Samples treated with a carbide bur presented a smear layer; smart bur surface exhibited the remains of the material; G3_C Carisolv™ showed a rough surface, and air abrasive presented particle traces. Concerning the shear bond strength of Vitremer™ glass ionomer were not found differences after treatment (p > 0.05). It is concluded that roughness showed characteristic patterns derived from the technique used and the shear bond strength is not significantly affected after using any minimally invasive method. The concept of minimally invasive technique in dentistry emphasizes conservative strategies in the management of caries, which results in less destruction of healthy tooth structure.![]()
Collapse
Affiliation(s)
| | | | | | - Maykel González-Torres
- Conacyt-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra" 14389 Mexico .,Tecnológico de Monterrey, Campus Ciudad de México 14380 Mexico
| | | | | | | | - Esther Vaillard-Jiménez
- Departamento de Odontología Pediátrica, Benemérita Universidad Autónoma de Puebla 72000 Mexico
| | - Gloria Lezama-Flores
- Departamento de Odontología Pediátrica, Benemérita Universidad Autónoma de Puebla 72000 Mexico
| |
Collapse
|
27
|
Yi L, Yu J, Han L, Li T, Yang H, Huang C. Combination of baicalein and ethanol-wet-bonding improves dentin bonding durability. J Dent 2019; 90:103207. [PMID: 31586587 DOI: 10.1016/j.jdent.2019.103207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the potential of baicalein combined with ethanol-wet bonding (EWB) in improving dentin bonding durability. METHODS Sixty caries-free human third molars were randomly allocated into four groups and pretreated with solutions after sectioning and polishing. The pretreatments were prepared via dissolving baicalein in ethanol at concentrations of 0, 0.01%, 0.05% and 0.1% (w/v). Microtensile bond strength (MTBS) test, failure mode analysis and interfacial nanoleakage evaluation were conducted immediately or after thermocycling or 1 month of collagenase aging. In situ zymography, contact angle, antibacterial activity and bioactivity were comprehensively assessed. RESULTS Results demonstrated that the three experimental groups exhibited higher MTBS and lower nanoleakage expression regardless of aging. MMP activity within hybrid layer and Streptococcus. mutans biofilm formation were inhibited in the experimental groups in a dose-dependent manner. Baicalein also reduced reactive oxygen species (ROS) expression in human dental pulp cells and resisted adhesive-induced cytotoxicity. Baicalein exhibited remarkable capabilities at concentrations higher than 0.05% (w/v). CONCLUSION Baicalein is a prospective candidate as bioactive dentin bonding agent. Combined with EWB, baicalein may form a functional bonding interface, thereby enhancing dentin bond strength and durability. SIGNIFICANCE Joint efforts by baicalein and EWB provides a novel therapeutic strategy for obtaining ideal adhesive-dentin interface and prolonging the longevity of restorations.
Collapse
Affiliation(s)
- Luyao Yi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin Han
- CR&WISCO General Hospital, Wuhan, China
| | - Tingting Li
- Lanzhou Hospital of Stomatology, Lanzhou, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Yan H, Wang S, Han L, Peng W, Yi L, Guo R, Liu S, Yang H, Huang C. Chlorhexidine-encapsulated mesoporous silica-modified dentin adhesive. J Dent 2018; 78:83-90. [PMID: 30153498 DOI: 10.1016/j.jdent.2018.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES This work aims to explore the feasibility of chlorhexidine-encapsulated mesoporous silica (CHX@pMSN) as a modifier of a commercial dental adhesive via the evaluation of physicochemical properties and antibacterial capabilities of adhesive-dentin interface. METHODS Therapeutic adhesives were developed in the present study by incorporating CHX@pMSN into a commercial adhesive at four mass fractions (0, 1, 5 and 10 wt.%). The antibacterial capability on Streptococcus mutans (S. mutans) biofilm, conversion degree, adhesive morphology, microtensile bond strength (MTBS) and nanoleakage expression were evaluated comprehensively. RESULTS MTT and CLSM evaluation showed that CHX@pMSN-doped adhesive inhibits S. mutans biofilm growth, while CHX is released from the modified adhesive continuously. The incorporation of CHX@pMSN did not affect immediate bond strength at the concentration of 1% and 5% (P > 0.05). Moreover, these bonds were mainly preserved in 5% CHX@pMSN group after one month of collagenase ageing. Meanwhile, CHX@pMSN-doped adhesive groups exhibited similar nanoleakage distribution compared with the control. CONCLUSION This study showed that the 5% CHX@pMSN-modified adhesive achieved balance amongst unaffected immediate bonding strength, well-preserved bonds against collagenase ageing and effective inhibition of S. mutans biofilm growth. CLINICAL SIGNIFICANCE CHX@pMSN-modified dentin adhesive can potentially extend the service life of adhesive restoration in clinic.
Collapse
Affiliation(s)
- Huiyi Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shilei Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Lin Han
- CR&WISCO General Hospital, Wuhan, China
| | - Wenan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Luyao Yi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siying Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|