1
|
Nitika, Arora S, Ahlawat DS. High-throughput screening on optoelectronic properties of two-dimensional InN/GaN heterostructure from first principles. J Mol Model 2024; 30:318. [PMID: 39215826 DOI: 10.1007/s00894-024-06121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT A novel 2D InN/GaN lateral heterostructure (LHT) was simulated by stitching monolayer of 2D InN and monolayer of 2D GaN. The structural stability, electronic structure, and optical properties were systematically investigated using first-principle calculations and by considering the effects of strain. The results indicated that the designed heterostructure has a direct bandgap of 2.26 eV which is further affected by applied biaxial strain. The bandgap of 2D InN/GaN lateral heterostructure decreases with the increase in biaxial strain, and tensile strain triggers a direct-to-indirect energy gap changeover at + 6%. Additionally, under compressive strain, heterostructure remains a direct bandgap semiconductor. Furthermore, the strain significantly affects the optical characteristics of lateral heterostructure. It has been noticed that the first optical absorption peak moves from 2.51 eV (ɛ = - 4%) to 1.40 eV (ɛ = 10%). Therefore, 2D InN/GaN lateral heterostructure provides an approachable way for utilizing in optoelectronic devices through the creation of in-plane lateral heterostructures. METHODS We performed all the computations using a self-consistent method based upon density functional theory. We used the PBEsol functional in the GGA to account for the exchange-correlation effects. We introduced a 10-Å vacuum region in the z-direction to avoid interaction between periodic images. We considered non-negligible weak dispersion correction in the lateral heterostructure using Grimme's DFT-D3 approach. In this study, we also computed the electrical and optical properties employing the local modified Becke-Johnson (lmBJ) exchange potential under meta-GGA functional to obtain more precise results.
Collapse
Affiliation(s)
- Nitika
- Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Hry, Sirsa, India
| | - Sandeep Arora
- Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Hry, Sirsa, India
- Govt. Model Skt. Sen. Sec. School, Rania-125076, Sirsa, India
| | | |
Collapse
|
2
|
Laranjeira JS, Martins N, Denis PA, Sambrano J. Unveiling a New 2D Semiconductor: Biphenylene-Based InN. ACS OMEGA 2024; 9:28879-28887. [PMID: 38973873 PMCID: PMC11223256 DOI: 10.1021/acsomega.4c03511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
The two-dimensional (2D) materials class earned a boost in 2021 with biphenylene synthesis, which is structurally formed by the fusion of four-, six-, and eight-membered carbon rings, usually named 4-6-8-biphenylene network (BPN). This research proposes a detailed study of electronic, structural, dynamic, and mechanical properties to demonstrate the potential of the novel biphenylene-like indium nitride (BPN-InN) via density functional theory and molecular dynamics simulations. The BPN-InN has a direct band gap energy transition of 2.02 eV, making it promising for optoelectronic applications. This structure exhibits maximum and minimum Young modulus of 22.716 and 22.063 N/m, Poisson ratio of 0.018 and -0.008, and Shear modulus of 11.448 and 10.860 N/m, respectively. To understand the BPN-InN behavior when subjected to mechanical deformations, biaxial and uniaxial strains in armchair and zigzag directions from -8 to 8% were applied, achieving a band gap energy modulation of 1.36 eV over tensile deformations. Our findings are expected to motivate both theorists and experimentalists to study and obtain these new 2D inorganic materials that exhibit promising semiconductor properties.
Collapse
Affiliation(s)
- José
A. S. Laranjeira
- Modeling
and Molecular Simulation Group, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - Nicolas Martins
- Modeling
and Molecular Simulation Group, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| | - Pablo A. Denis
- Computational
Nanotechnology, DETEMA, Facultad de Química, UDELAR, CC 1157, 11800 Montevideo, Uruguay
| | - Julio Sambrano
- Modeling
and Molecular Simulation Group, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil
| |
Collapse
|
3
|
Mehrez JAA, Chen X, Zeng M, Yang J, Hu N, Wang T, Liu R, Xu L, González-Alfaro Y, Yang Z. MoTe 2/InN van der Waals heterostructures for gas sensors: a DFT study. Phys Chem Chem Phys 2023; 25:28677-28690. [PMID: 37849357 DOI: 10.1039/d3cp02906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Vertical van der Waals (vdW) heterostructures have shown potential for gas sensing owing to their remarkable sensitivity. However, the optimization process for achieving the best gas sensing performance is complicated by the heterostructure's reliance on both physical and electrical characteristics. This study employs density functional theory (DFT) to analyse the structural and electronic parameters of a MoTe2/InN vdW heterostructure. The findings of this study indicate that the vdW heterostructure has a type-II band alignment with higher adsorption energy towards NH3, NO2, and SO2 than the individual monolayers. In specific, the heterostructure is well suited for NO2 detection but has limitations in reliably detecting NH3 and SO2 due to longer recovery times. We find significant hybridization between the adsorbate and interacting surfaces' orbitals and a notable presence of NO2 molecular orbitals in proximity to the Fermi level. Additionally, dielectric and work function modulations offer a viable means to develop optical-based gas sensors that can selectively detect NO2. Our research provides valuable insights into vdW heterostructure design for high-performance gas sensors.
Collapse
Affiliation(s)
- Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Ruili Liu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Lin Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, National Clinical Research Centre for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Centre for Visual Science and Photomedicine, Shanghai 200080, People's Republic of China
| | | | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
4
|
Dai ZN, Xu Y, Zou DF, Yin WJ, Wang JN. InN/XS 2 (X = Zr, Hf) vdW heterojunctions: promising Z-scheme systems with high hydrogen evolution activity for photocatalytic water splitting. Phys Chem Chem Phys 2023; 25:8144-8152. [PMID: 36877127 DOI: 10.1039/d2cp05280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Z-scheme van der Waals heterojunctions are very attractive photocatalysts attributed to their excellent reduction and oxidation abilities. In this paper, we designed InN/XS2 (X = Zr, Hf) heterojunctions and explored their electronic structure properties, photocatalytic performance, and light absorption systematically using first-principles calculations. We found that the valence-band maximum (VBM) and conduction-band minimum (CBM) of the InN/XS2 (X = Zr, Hf) heterojunctions are contributed by InN and XS2, respectively. Photo-generated carriers transferring along the Z-path can accelerate the recombination of interlayer electron-hole pairs. Therefore, the photogenerated electrons in the CBM of the InN layer can be maintained making the hydrogen evolution reaction occur continuously, while photogenerated holes in the VBM of the Ti2CO2 layer make the oxygen evolution reaction occur continuously. The band edge positions of heterojunctions can straddle the required water redox potentials, while pristine InN and XS2 (X = Zr, Hf) can only be used for photocatalytic hydrogen evolution or oxygen evolution, respectively. Furthermore, the HER barriers can be tuned by transition metal doping. With Cr doping, the hydrogen evolution reaction (HER) barriers decrease to -0.12 for InN/ZrS2 and -0.05 eV for InN/HfS2, very close to the optimal value (0 eV). In addition, the optical absorption coefficient is as high as 105 cm-1 in the visible and ultraviolet regions. Therefore, the InN/XS2 (X = Zr, Hf) heterojunctions are expected to be excellent photocatalysts for water splitting.
Collapse
Affiliation(s)
- Zhuo-Ni Dai
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| | - Ying Xu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| | - Dai Feng Zou
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| | - Wen Jin Yin
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| | - Jun Nian Wang
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| |
Collapse
|
5
|
Sangiovanni DG, Faccio R, Gueorguiev GK, Kakanakova-Georgieva A. Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface. Phys Chem Chem Phys 2022; 25:829-837. [PMID: 36511446 DOI: 10.1039/d2cp04091c] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Conceptual 2D group III nitrides and oxides (e.g., 2D InN and 2D InO) in heterostructures with graphene have been realized by metal-organic chemical vapor deposition (MOCVD). MOCVD is expected to bring forth the same impact in the advancement of 2D semiconductor materials as in the fabrication of established semiconductor materials and device heterostructures. MOCVD employs metal-organic precursors such as trimethyl-indium, -gallium, and -aluminum, with (strong) metal-carbon bonds. Mechanisms that regulate MOCVD processes at the atomic scale are largely unknown. Here, we employ density-functional molecular dynamics - accounting for van der Waals interactions - to identify the reaction pathways responsible for dissociation of the trimethylindium (TMIn) precursor in the gas phase as well as on top-layer and zero-layer graphene. The simulations reveal how collisions with hydrogen molecules, intramolecular or surface-mediated proton transfer, and direct TMIn/graphene reactions assist TMIn transformations, which ultimately enables delivery of In monomers or InH and CH3In admolecules, on graphene. This work provides knowledge for understanding the nucleation and intercalation mechanisms at the atomic scale and for carrying out epitaxial growth of 2D materials and graphene heterostructures.
Collapse
Affiliation(s)
- Davide G Sangiovanni
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden.
| | - Ricardo Faccio
- Área Física & Centro Nanomat, DETEMA, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, C.P., 11800, Montevideo, Uruguay
| | | | | |
Collapse
|
6
|
Lu F, Wang H, Zeng M, Fu L. Infinite possibilities of ultrathin III-V semiconductors: Starting from synthesis. iScience 2022; 25:103835. [PMID: 35243223 PMCID: PMC8857587 DOI: 10.1016/j.isci.2022.103835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ultrathin III-V semiconductors have been receiving tremendous research interest over the past few years. Owing to their exotic structures, excellent physical and chemical properties, ultrathin III-V semiconductors are widely applied in the field of electronics, optoelectronics, and solar energy. However, the strong chemical bonds in layers are the bottleneck of the two-dimensionalization preparation process, which hinders the further development of ultrathin III-V semiconductors. Some effective methods to synthesize ultrathin III-V semiconductors have been reported recently. In this perspective, we briefly introduce the structures and properties of ultrathin III-V semiconductors firstly. Then, we comprehensively summarize the synthetic strategies of ultrathin III-V semiconductors, mainly focusing on space confinement, atomic substitution, adhesion energy regulation, and epitaxial growth. Finally, we summarize the current challenges and propose the development directions of ultrathin III-V semiconductors in the future.
Collapse
Affiliation(s)
- Fangyun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huiliu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
The influence of transition metal (Mn, Fe, Co, Cu) doping on the electronic and vibrational properties of indium nitride nanocage: A DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Hess P. Bonding, structure, and mechanical stability of 2D materials: the predictive power of the periodic table. NANOSCALE HORIZONS 2021; 6:856-892. [PMID: 34494064 DOI: 10.1039/d1nh00113b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review describes the ongoing effort to convert main-group elements of the periodic table and their combinations into stable 2D materials, which is sometimes called modern 'alchemy'. Theory is successfully approaching this goal, whereas experimental verification is lagging far behind in the synergistic interplay between theory and experiment. The data collected here gives a clear picture of the bonding, structure, and mechanical performance of the main-group elements and their binary compounds. This ranges from group II elements, with two valence electrons, to group VI elements with six valence electrons, which form not only 1D structures but also, owing to their variable oxidation states, low-symmetry 2D networks. Outside of these main groups reviewed here, predominantly ionic bonding may be observed, for example in group II-VII compounds. Besides high-symmetry graphene with its shortest and strongest bonds and outstanding mechanical properties, low-symmetry 2D structures such as various borophene and tellurene phases with intriguing properties are receiving increasing attention. The comprehensive discussion of data also includes bonding and structure of few-layer assemblies, because the electronic properties, e.g., the band gap, of these heterostructures vary with interlayer layer separation and interaction energy. The available data allows the identification of general relationships between bonding, structure, and mechanical stability. This enables the extraction of periodic trends and fundamental rules governing the 2D world, which help to clear up deviating results and to estimate unknown properties. For example, the observed change of the bond length by a factor of two alters the cohesive energy by a factor of four and the extremely sensitive Young's modulus and ultimate strength by more than a factor of 60. Since the stiffness and strength decrease with increasing atom size on going down the columns of the periodic table, it is important to look for suitable allotropes of elements and binaries in the upper rows of the periodic table when mechanical stability and robustness are issues. On the other hand, the heavy compounds are of particular interest because of their low-symmetry structures with exotic electronic properties.
Collapse
Affiliation(s)
- Peter Hess
- Institute of Physical Chemistry, INF 253, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Islam MS, Zamil MY, Mojumder MRH, Stampfl C, Park J. Strong tribo-piezoelectric effect in bilayer indium nitride (InN). Sci Rep 2021; 11:18669. [PMID: 34548564 PMCID: PMC8455586 DOI: 10.1038/s41598-021-98130-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
The high electronegativity between the atoms of two-dimensional (2D) group-III nitrides makes them attractive to demonstrating a strong out-of-plane piezo-electricity effect. Energy harvesting devices can be predicted by cultivating such salient piezoelectric features. This work explores the tribo-piezoelectric properties of 2D-indium nitride (InN) as a promising candidate in nanogenerator applications by means of first-principles calculations. In-plane interlayer sliding between two InN monolayers leads to a noticeable rise of vertical piezoelectricity. The vertical resistance between the InN bilayer renders tribological energy by the sliding effect. During the vertical sliding, a shear strength of 6.6-9.7 GPa is observed between the monolayers. The structure can be used as a tribo-piezoelectric transducer to extract force and stress from the generated out-of-plane tribo-piezoelectric energy. The A-A stacking of the bilayer InN elucidates the highest out-of-plane piezoelectricity. Any decrease in the interlayer distance between the monolayers improves the out-of-plane polarization and thus, increases the inductive voltage generation. Vertical compression of bilayer InN produces an inductive voltage in the range of 0.146-0.196 V. Utilizing such a phenomenon, an InN-based bilayer compression-sliding nanogenerator is proposed, which can tune the generated tribo-piezoelectric energy by compressing the interlayer distance between the InN monolayers. The considered model can render a maximum output power density of ~ 73 mWcm-2 upon vertical sliding.
Collapse
Affiliation(s)
- Md Sherajul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh.
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh.
| | - Md Yasir Zamil
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Md Rayid Hasan Mojumder
- Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Catherine Stampfl
- School of Physics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jeongwon Park
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
10
|
Wang W, Jiang H, Li L, Li G. Two-dimensional group-III nitrides and devices: a critical review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:086501. [PMID: 34229312 DOI: 10.1088/1361-6633/ac11c4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
As third-generation semiconductors, group-III nitrides are promising for high power electronic and optoelectronic devices because of their wide bandgap, high electron saturation mobility, and other unique properties. Inspired by the thickness-dependent properties of two-dimensional (2D) materials represented by graphene, it is predicted that the 2D counterparts of group-III nitrides would have similar properties. However, the preparation of 2D group-III nitride-based materials and devices is limited by the large lattice mismatch in heteroepitaxy and the low rate of lateral migration, as well as the unsaturated dangling bonds on the surfaces of group-III nitrides. The present review focuses on theoretical and experimental studies on 2D group-III nitride materials and devices. Various properties of 2D group-III nitrides determined using simulations and theoretical calculations are outlined. Moreover, the breakthroughs in their synthesis methods and their underlying physical mechanisms are detailed. Furthermore, devices based on 2D group-III nitrides are discussed accordingly. Based on recent progress, the prospect for the further development of the 2D group-III nitride materials and devices is speculated. This review provides a comprehensive understanding of 2D group-III nitride materials, aiming to promote the further development of the related fields of nano-electronic and nano-optoelectronics.
Collapse
Affiliation(s)
- Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong Special Administrative Region of China
| | - Hongsheng Jiang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Linhao Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
11
|
Ben J, Liu X, Wang C, Zhang Y, Shi Z, Jia Y, Zhang S, Zhang H, Yu W, Li D, Sun X. 2D III-Nitride Materials: Properties, Growth, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006761. [PMID: 34050555 DOI: 10.1002/adma.202006761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
2D III-nitride materials have been receiving considerable attention recently due to their excellent physicochemical properties, such as high stability, wide and tunable bandgap, and magnetism. Therefore, 2D III-nitride materials can be applied in various fields, such as electronic and photoelectric devices, spin-based devices, and gas detectors. Although the developments of 2D h-BN materials have been successful, the fabrication of other 2D III-nitride materials, such as 2D h-AlN, h-GaN, and h-InN, are still far from satisfactory, which limits the practical applications of these materials. In this review, recent advances in the properties, growth methods, and potential applications of 2D III-nitride materials are summarized. The properties of the 2D III-nitride materials are mainly obtained by first-principles calculations because of the difficulties in the growth and characterizations of these materials. The discussion on the growth of 2D III-nitride materials is focused on 2D h-BN and h-AlN, as the developments of 2D h-GaN and h-InN are yet to be realized. Therefore, applications have been realized mostly based on the 2D h-BN materials; however, many potential applications are cited for the entire range of 2D III-nitride materials. Finally, future research directions and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jianwei Ben
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cong Wang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yupeng Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiming Shi
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Yuping Jia
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Shanli Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenjie Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Dabing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| |
Collapse
|
12
|
Prete MS, Grassano D, Pulci O, Kupchak I, Olevano V, Bechstedt F. Giant excitonic absorption and emission in two-dimensional group-III nitrides. Sci Rep 2020; 10:10719. [PMID: 32612146 PMCID: PMC7329854 DOI: 10.1038/s41598-020-67667-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/02/2020] [Indexed: 11/10/2022] Open
Abstract
Absorption and emission of pristine-like semiconducting monolayers of BN, AlN, GaN, and InN are systematically studied by ab-initio methods. We calculate the absorption spectra for in-plane and out-of-plane light polarization including quasiparticle and excitonic effects. Chemical trends with the cation of the absorption edge and the exciton binding are discussed in terms of the band structures. Exciton binding energies and localization radii are explained within the Rytova-Keldysh model for excitons in two dimensions. The strong excitonic effects are due to the interplay of low dimensionality, confinement effects, and reduced screening. We find exciton radiative lifetimes ranging from tenths of picoseconds (BN) to tenths of nanoseconds (InN) at room temperature, thus making 2D nitrides, especially InN, promising materials for light-emitting diodes and high-performance solar cells.
Collapse
Affiliation(s)
- Maria Stella Prete
- Dipartimento di Fisica, Università di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Davide Grassano
- Dipartimento di Fisica, Università di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| | - Olivia Pulci
- Dipartimento di Fisica, Università di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ihor Kupchak
- V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Valerio Olevano
- Dipartimento di Fisica, Università di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, 00133, Rome, Italy
- CNRS, Institut Neel, 38042, Grenoble, France
| | - Friedhelm Bechstedt
- IFTO, Friedrich Schiller Universität, Max-Wien Platz 1, 07743, Jena, Germany
| |
Collapse
|
13
|
Hess P. Thickness of elemental and binary single atomic monolayers. NANOSCALE HORIZONS 2020; 5:385-399. [PMID: 32118242 DOI: 10.1039/c9nh00658c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The thickness of monolayers is a fundamental property of two-dimensional (2D) materials that has not found the necessary attention. It plays a crucial role in their mechanical behavior, the determination of related physical properties such as heat transfer, and especially the properties of multilayer systems. Measurements of the thickness of free-standing monolayers are widely lacking and notoriously too large. Consistent thicknesses have been reported for single layers of graphene, boronitrene, and SiC derived from interlayer spacing measured by X-ray diffraction in multilayer systems, first-principles calculations of the interlayer spacing, and tabulated van der Waals (vdW) diameters. Furthermore, the electron density-based volume model agrees with the geometric slab model for graphene and boronitrene. For other single-atom monolayers DFT calculations and molecular dynamics (MD) simulations deliver interlayer distances that are often much smaller than the vdW diameter, owing to further electrostatic and (weak) covalent interlayer interaction. Monolayers strongly bonded to a surface also show this effect. If only weak vdW forces exist, the vdW diameter delivers a reasonable thickness not only for free-standing monolayers but also for few-layer systems and adsorbed monolayers. Adding the usually known corrugation effect of buckled or puckered monolayers to the vdW diameter delivers an upper limit of the monolayer thickness. The study presents a reference database of thickness values for elemental and binary group-IV and group-V monolayers, as well as binary III-V and IV-VI compounds.
Collapse
Affiliation(s)
- Peter Hess
- Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Liang D, Zhu P, Han L, Zhang T, Li Y, Li S, Wang S, Lu P. Composition Dependence of Structural and Electronic Properties of Quaternary InGaNBi. NANOSCALE RESEARCH LETTERS 2019; 14:178. [PMID: 31139956 PMCID: PMC6538720 DOI: 10.1186/s11671-019-2968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
To realize feasible band structure engineering and hence enhanced luminescence efficiency, InGaNBi is an attractive alloy which may be exploited in photonic devices of visible light and mid-infrared. In present study, the structural, electronic properties such as bandgap, spin-orbit splitting energy, and substrate strain of InGaNBi versus In and Bi compositions are studied by using first-principles calculations. The lattice parameters increase almost linearly with increasing In and Bi compositions. By bismuth doping, the quaternary InGaNBi bandgap could cover a wide energy range from 3.273 to 0.651 eV for Bi up to 9.375% and In up to 50%, corresponding to the wavelength range from 0.38-1.9 µm. The calculated spin-orbit splitting energy are about 0.220 eV for 3.125%, 0.360 eV for 6.25%, and 0.600 eV for 9.375% Bi, respectively. We have also shown the strain of InGaNBi on GaN; it indicates that through adjusting In and Bi compositions, InGaNBi can be designed on GaN with an acceptable strain.
Collapse
Affiliation(s)
- Dan Liang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Pengfei Zhu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Lihong Han
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Tao Zhang
- College of Electrical Engineering and Information Technology, Sichuan University, Chengdu, 610065, China
| | - Yang Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Shanjun Li
- College of Electrical Engineering and Information Technology, Sichuan University, Chengdu, 610065, China.
| | - Shumin Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Pengfei Lu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| |
Collapse
|
15
|
Feng C, Qin H, Yang D, Zhang G. First-Principles Investigation of the Adsorption Behaviors of CH₂O on BN, AlN, GaN, InN, BP, and P Monolayers. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E676. [PMID: 30823524 PMCID: PMC6416566 DOI: 10.3390/ma12040676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
Abstract
CH₂O is a common toxic gas molecule that can cause asthma and dermatitis in humans. In this study the adsorption behaviors of the CH₂O adsorbed on the boron nitride (BN), aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), boron phosphide (BP), and phosphorus (P) monolayers were investigated using the first-principles method, and potential materials that could be used for detecting CH₂O were identified. The gas adsorption energies, charge transfers and electronic properties of the gas adsorption systems have been calculated to study the gas adsorption behaviors of CH₂O on these single-layer materials. The electronic characteristics of these materials, except for the BP monolayer, were observed to change after CH₂O adsorption. For CH₂O on the BN, GaN, BP, and P surfaces, the gas adsorption behaviors were considered to follow a physical trend, whereas CH₂O was chemically adsorbed on the AlN and InN monolayers. Given their large gas adsorption energies and high charge transfers, the AlN, GaN, and InN monolayers are potential materials for CH₂O detection using the charge transfer mechanism.
Collapse
Affiliation(s)
- Chuang Feng
- School of Mechanical and Electronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Hongbo Qin
- School of Mechanical and Electronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Daoguo Yang
- School of Mechanical and Electronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Guoqi Zhang
- School of Mechanical and Electronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
- EEMCS Faculty, Delft University of Technology, 2628 Delft, The Netherlands.
| |
Collapse
|
16
|
Song Z, Sun X, Zheng J, Pan F, Hou Y, Yung MH, Yang J, Lu J. Spontaneous valley splitting and valley pseudospin field effect transistors of monolayer VAgP 2Se 6. NANOSCALE 2018; 10:13986-13993. [PMID: 29995051 DOI: 10.1039/c8nr04253e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Valleytronics has attracted much attention due to its potential applications in the information processing industry. Creation of permanent valley polarization (PVP), i.e. unbalanced occupation at different valleys, is a vital requirement for practical devices in valleytronics. However, the development of an appropriate material with PVP remains a main challenge. Here we used first-principles calculations to predict that the spin-orbit coupling and magnetic ordering allow spontaneous valley Zeeman-type splitting in the pristine monolayer of VAgP2Se6. After suitable doping of VAgP2Se6, the Zeeman-type valley splitting results in a PVP, similar to the effect of spin polarization in spintronics. The VAgP2Se6 monolayer has nonequivalent valleys which can emit or absorb circularly polarized photons with opposite chirality. It thus shows great potential to be used as a photonic chirality filter and a circularly polarized light source. We then designed a valley pseudospin field effect transistor (VPFET) based on the monolayer VAgP2Se6, akin to the spin field effect transistors. In contrast to the current common transistors, VPFETs carry information of not only the electrons but also the valley pseudospins, far beyond common transistors.
Collapse
Affiliation(s)
- Zhigang Song
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, P. R. China. and Institute for Quantum Science and Engineering and Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China.
| | - Xiaotian Sun
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Jiaxin Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Yanglong Hou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Man-Hong Yung
- Institute for Quantum Science and Engineering and Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China.
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, P. R. China. and Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, P. R. China and Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
| | - Jing Lu
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, P. R. China. and Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
| |
Collapse
|
17
|
Zhao RN, Han JG, Duan Y. A Density Functional Prediction of the Geometries, Stabilities, and Electronic Properties of Nanosize Cage-Like (InN)2
n
(n
= 6-27, 45, 54) Semiconductor Materials. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Run-Ning Zhao
- Institute of Applied Mathematics and Physics; Shanghai DianJi University; Shanghai 201306 People's Republic of China
| | - Ju-Guang Han
- National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei 230029 People's Republic of China
| | - Yuhua Duan
- U.S. Department of Energy; National Energy Technology Laboratory; Pittsburgh PA 15236 USA
- Parsons Project Services Inc.; South Park PA 15129 USA
| |
Collapse
|