1
|
Zhang H, Xu G, Yu Y. Co single atoms anchored on straw biochar as an efficient peroxydisulfate activator for ultrafast removal of antibiotics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121983. [PMID: 37301459 DOI: 10.1016/j.envpol.2023.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The removal efficiency of antibiotics decreases at low temperature, which is an urgent problem to be solved in cold regions. This study prepared a low-cost single atom catalyst (SAC) from straw biochar, which can rapidly degrade antibiotics at different temperatures by activating peroxydisulfate (PDS). Co SA/CN-900 + PDS system can degrade 100% of tetracycline hydrochloride (TCH, 10 mg/L) in 6 min. The high concentration of TCH (25 mg/L) was degraded by 96.3% in 10 min at 4 °C. The system was also tested in simulated wastewater and showed a good removal efficiency. TCH was primarily degraded by 1O2 and direct electron transfer pathway. Electrochemical experiments and density functional theory (DFT) calculations showed that CoN4 improved the electron transfer capacity of biochar and thus enhanced the oxidation capacity of Co SA/CN-900 + PDS complex. This work optimizes the application of agricultural waste biochar and provides a design strategy of efficient heterogenous Co SACs to degrade antibiotics in cold regions.
Collapse
Affiliation(s)
- Hongda Zhang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
2
|
Wang D, Liu H, Lv D, Wang C, Yang J, Qian Y. Rational Screening of Artificial Solid Electrolyte Interphases on Zn for Ultrahigh-Rate and Long-Life Aqueous Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207908. [PMID: 36245304 DOI: 10.1002/adma.202207908] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Solid electrolyte interphase (SEI) on Zn anodes plays a pivotal role for high-rate and long-life aqueous batteries, because it effectively inhibits side reactions and dendritic growth. Many materials are explored as SEIs by a trial-and-error approach. Herein, an exercisable way is proposed to screen the potential SEIs on Zn anodes in view of dendrite-suppressing ability and charge-transfer property theoretically. As an output of this screening, Zn3 (BO3 )2 (ZBO) is checked experimentally. In symmetrical cells, Zn@ZBO runs over 250 h at an ultrahigh current density of 50 mA cm-2 for a large areal capacity 10 mAh cm-2 . In full cells, Zn@ZBO||MnO2 shows an impressive cumulative capacity (≈406 mAh cm-2 ) under harsh conditions, i.e., a lean electrolyte condition (10 µL mAh-1 ), limited Zn supply (negative/positive electrode capacity ratio, N/P ratio = 2.3), and high areal capacity (5.0 mAh cm-2 ). The significance of this work lies in not only the first report of ZBO on Zn showing excellent electrochemical performance, but also a feasible way to screen the promising SEI materials for other metal anodes.
Collapse
Affiliation(s)
- Dongdong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hongxia Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Dan Lv
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Cheng Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yitai Qian
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
3
|
Zhang J, Zhou X, Wang J, Fang D. A red-emitting Europium(III) complex as a luminescent probe with large Stokes shift for the sequential determination of Cu 2+ and biothiols in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121663. [PMID: 35917616 DOI: 10.1016/j.saa.2022.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In this work, a novel Eu3+-DTPA-bis(AMC) complex with red luminescence was designed and synthesized for sequential detection of Cu2+ and biothiols (Cys/Hcy/GSH) based on the displacement strategy with the good selectivity, high sensitivity, and large Stokes shift (288 nm). The possible detection mechanism was verified by UV-vis, the high-resolution mass spectrometry, and the fluorescence decay curve. The experimental parameters, including the solution pH, the incubation time, the concentration ratio of Eu3+-DTPA-bis(AMC) to Cu2+ and biothiols concentration, were optimized. Under the optimal conditions, it shows a good linear relationship between the concentration (0-10 μM) of Cu2+ and the fluorescence intensity of Eu3+-DTPA-bis(AMC), with a low detection limit of 0.065 μM. The linear range and the limit of detection of the Eu3+-DTPA-bis(AMC)/Cu2+ system for Cys/Hcy/GSH were 2.5-22.5/5-45/5-50 μM and 0.11/0.07/0.05 μM, respectively. Surprisingly, the high or low concentration of Eu3+-DTPA-bis(AMC)/Cu2+ can significantly affect the selectivity of the sensing system to biothiols (Cys/GSH/Hcy). When the concentration of the Eu3+-DTPA-bis(AMC)/Cu2+ system is 10.0 μΜ, it could recognize biothiols (Cys/GSH/Hcy) from other substances, but when the concentration is as low as 3.3 μM, it could further specifically distinguished Cys from Hcy/GSH. Owing to the high anti-interference characteristics, accuracy and specificity, the sensing system was well applied to the cascade detection of Cu2+ in actual environmental samples and Cys in biological and food samples, including FBS, urine, milk, beverage, fresh juice with the satisfactory recoveries from 96.20 to 106.80 %.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China; College of Pharmacy, Jinzhou Medical University, 121001, PR China
| | - Xibin Zhou
- College of Pharmacy, Jinzhou Medical University, 121001, PR China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Dawei Fang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
4
|
Lin J, Yang S, Wang Y, Cui Y, Li Q, Chen Y, Ding L. Sensitive detection of levofloxacin and copper (II) based on fluorescence “turn on-off” of biomass carbonized polymer dots. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Yang L, Yang H, Yin S, Wang X, Xu M, Lu G, Liu Z, Sun H. Fe Single-Atom Catalyst for Efficient and Rapid Fenton-Like Degradation of Organics and Disinfection against Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104941. [PMID: 34989127 DOI: 10.1002/smll.202104941] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/24/2021] [Indexed: 06/14/2023]
Abstract
The Fenton-like reaction has great potential in water treatment. Herein, an efficient and reusable catalytic system is developed based on atomically dispersed Fe catalyst by anchoring Fe atoms on nitrogen-doped porous carbon (Fe SA/NPCs). The catalyst of Fe SA/NPCs exhibits enhanced performance in activating peroxymonosulfate (PMS) for organic pollutant degradation and bacterial inactivation. The Fe SA/NPCs + PMS system demonstrates a high turnover frequency of 39.31 min-1 in Rhodamine B (RhB) degradation as well as a strong bactericidal activity that can completely sterilize an Escherichia coli culture within 5 min. Meanwhile, the degradation activity of RhB by Fe SA/NPCs is improved up to 28 to 371-fold in comparison with the controls. Complete degradation of RhB can be achieved in 30 s by the Fe SA/NPCs + PMS system, demonstrating an efficiency much higher than most traditional Fenton-like processes. Experiments with different radical scavengers and density functional theory calculations have revealed that singlet oxygen (1 O2 ) generated on the N-coordinated single Fe atom (Fe-N4 ) sites is the key reactive species for the effective and rapid pollutant degradation and bacterial inactivation. This work innovatively affords a promising single-Fe-atom catalyst/PMS system for applying Fenton-like reactions in water treatment.
Collapse
Affiliation(s)
- Lixue Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Haoqi Yang
- State Key Laboratory of New Building Materials, Beixin Academy of Sciences, Beijing New Building Materials (BNBM) Public Limited Company, Beijing, 102209, P. R. China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xiuyan Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Mingwei Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
6
|
Yan J, Lu Y, Xie S, Tan H, Tan W, Li N, Xu L, Xu J. Highly Fluorescent N-Doped Carbon Quantum Dots Derived from Bamboo Stems for Selective Detection of Fe 3+ Ions in Biological Systems. J Biomed Nanotechnol 2021; 17:312-321. [PMID: 33785101 DOI: 10.1166/jbn.2021.3034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The establishment of sensing platform for trace analysis of Fe3+ in biological systems is meaningful for health monitoring. Herein, a Fe3+ sensitive fluorescent nanoprobe was constructed based on highly fluorescent N-doped carbon quantum dots (NCQDs) derived from bamboo stems through a hydrothermal method employing ethylenediamine as the nitrogen dopant. The prepared NCQDs had a uniformly distributed size and their mean size was around 2.43 nm. Abundant functional groups (C=N, N-H, C=O, and carboxyl) anchored on NCQDs demonstrated successful doping of N in CQDs. The obtained NCQDs possessed a high fluorescence quantum yield of 20.02% and outstanding fluorescence stability over a wide pH range and at high ionic strengths. Moreover, Fe3+ ions presented a specific fluorescent quenching effect to the as-prepared NCQDs. The calibration curve for fluorescence quenching degree corresponding to Fe3+ concentration showed a linear response in a range of 0.01-10 µM, and detection limit was 0.486 µM, which indicated that the NCQDs had high sensitivity to Fe3+ ions. Ascribed to these unique properties, the NCQDs were selected as luminescent probes for trace amount of Fe3+ ions in human serum. These results demonstrated their promising use in clinical diagnostics and other biologically relevant studies.
Collapse
Affiliation(s)
- Jiamin Yan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Yuneng Lu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Shaowen Xie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Haihu Tan
- College of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou, 412007, P. R. China
| | - Weilan Tan
- Department of Clinical Laboratory, Zhuzhou Maternal and Child Health Hospital, Zhuzhou, 412099, P. R. China
| | - Na Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry Hunan University of Technology Zhuzhou 412007, P. R. China
| |
Collapse
|
7
|
Mohammed LJ, Omer KM. Dual functional highly luminescence B, N Co-doped carbon nanodots as nanothermometer and Fe 3+/Fe 2+ sensor. Sci Rep 2020; 10:3028. [PMID: 32080282 PMCID: PMC7033239 DOI: 10.1038/s41598-020-59958-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Dual functional fluorescence nanosensors have many potential applications in biology and medicine. Monitoring temperature with higher precision at localized small length scales or in a nanocavity is a necessity in various applications. As well as the detection of biologically interesting metal ions using low-cost and sensitive approach is of great importance in bioanalysis. In this paper, we describe the preparation of dual-function highly fluorescent B, N-co-doped carbon nanodots (CDs) that work as chemical and thermal sensors. The CDs emit blue fluorescence peaked at 450 nm and exhibit up to 70% photoluminescence quantum yield with showing excitation-independent fluorescence. We also show that water-soluble CDs display temperature-dependent fluorescence and can serve as highly sensitive and reliable nanothermometers with a thermo-sensitivity 1.8% °C-1, and wide range thermo-sensing between 0-90 °C with excellent recovery. Moreover, the fluorescence emission of CDs are selectively quenched after the addition of Fe2+ and Fe3+ ions while show no quenching with adding other common metal cations and anions. The fluorescence emission shows a good linear correlation with concentration of Fe2+ and Fe3+ (R2 = 0.9908 for Fe2+ and R2 = 0.9892 for Fe3+) with a detection limit of of 80.0 ± 0.5 nM for Fe2+ and 110.0 ± 0.5 nM for Fe3+. Considering the high quantum yield and selectivity, CDs are exploited to design a nanoprobe towards iron detection in a biological sample. The fluorimetric assay is used to detect Fe2+ in iron capsules and total iron in serum samples successfully.
Collapse
Affiliation(s)
- Lazo Jazaa Mohammed
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, Sulaimani City, Kurdistan Region, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, Sulaimani City, Kurdistan Region, Iraq.
| |
Collapse
|
8
|
Liu N, Hao J, Chen L, Song Y, Wang L. Ratiometric fluorescent detection of Cu2+
based on dual-emission ZIF-8@rhodamine-B nanocomposites. LUMINESCENCE 2019; 34:193-199. [DOI: 10.1002/bio.3593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Nan Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Juan Hao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Lili Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| |
Collapse
|
9
|
Zhao X, Lin X, Wang J, Chen X. Facile preparation of N,S-graphene oxide nanosheets as a fluorescence “off–on” sensing platform for sensitive detection of biothiols. NEW J CHEM 2019. [DOI: 10.1039/c8nj06024j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fluorescent N,S-graphene oxide was prepared via a one-step, solvent-free approach, and used as a probe for sensitive detection of biothiols.
Collapse
Affiliation(s)
- Xiuxiu Zhao
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Xin Lin
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Jianhua Wang
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Xuwei Chen
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
- China
| |
Collapse
|
10
|
Chan KK, Yap SHK, Yong KT. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. NANO-MICRO LETTERS 2018; 10:72. [PMID: 30417004 PMCID: PMC6208800 DOI: 10.1007/s40820-018-0223-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage, and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties, as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them. Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers, nitroaromatic explosives, pollutants, vitamins, and drugs. Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
Collapse
Affiliation(s)
- Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephanie Hui Kit Yap
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
11
|
Yang L, Zeng M, Du Y, Wang L, Peng B. Ratiometric fluorescence detection of Cu
2+
based on carbon dots/bovine serum albumin–Au nanoclusters. LUMINESCENCE 2018; 33:1268-1274. [DOI: 10.1002/bio.3545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Li Yang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang China
| | - Mulan Zeng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang China
| | - Yue Du
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang China
| | - Bingxian Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang China
| |
Collapse
|
12
|
Wang ZX, Gao YF, Yu XH, Kong FY, Lv WX, Wang W. Photoluminescent coral-like carbon-branched polymers as nanoprobe for fluorometric determination of captopril. Mikrochim Acta 2018; 185:422. [PMID: 30128634 DOI: 10.1007/s00604-018-2961-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/11/2018] [Indexed: 01/07/2023]
Abstract
The authors describe the synthesis of fluorescent coral-like carbon nano-branched polymers (PCNBPs) co-doped with nitrogen and phosphorus. Uric acid and phosphoric acid act as nitrogen and phosphorus sources, respectively. The PCNBPs have a coral-like branched structure, are cross-connected, and < 20 nm in skeleton diameter. Their blue fluorescence, best measured at excitation/emission wavelengths of 330/425 nm, is quenched by mercury (II) ions due to the specifically restricted rigid conformation caused by the interaction of phosphorus, nitrogen, and oxygen groups on the surface of the PCNBPs. Fluorescence is selectivity quenched by Hg(II) but restored in addition of the hypertension drug captopril (CAP) in the range 50 nM to 40 μM concentration range. Fluorescence recovery is attributed to the effectively specific interactions between the thiol group of CAP and Hg(II). The method was applied to the determination of the concentration of Cap in pharmaceutical samples, and recoveries were between 97.6 and 105.1%. Graphical abstract Fluorescent coral-like carbon nano-branched polymers (PCNBPs) co-doped with nitrogen and phosphorus are described. Their fluorescence is selectivity quenched by Hg(II) but restored in addition of the hypertension drug captopril (Cap) in the range 50 nM to 40 μM concentration range.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yuan-Fei Gao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xian-He Yu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei-Xin Lv
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
13
|
Gao B, Sun Y, Miao Y, Min H, Xu L, Huang C. Facile Preparation of Highly Luminescent Nitrogen-Doped Carbonaceous Nanospheres and Potential Application in Intracellular Imaging of Quercetin. Aust J Chem 2018. [DOI: 10.1071/ch18370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly luminescent nitrogen-doped carbonaceous nanospheres (LNCNs) were synthesized by a one-pot hydrothermal reaction of β-cyclodextrin (β-CD) and branched polyethylenimine (BPEI). Both the N-doping and amino-functionalisation of LNCNs were achieved simultaneously. The prepared LNCNs display excellent properties such as high physical and chemical stability, excitation wavelength-independent emission, and high photoluminescence quantum yields. Importantly, the LNCNs exhibit a quenching of photoluminescence in the presence of quercetin (Qc) based on the simple static quenching mechanism, making it possible to quantify concentrations from 0.5 to 80 μg mL−1 with a detection limit of 0.21 μg mL−1. Furthermore, the LNCNs probe was further used for imaging Qc in living cells.
Collapse
|