1
|
Asim H, Zeidan H, Marti ME. Effective isolation of succinic acid from aqueous media with the use of anion exchange resins. RSC Adv 2024; 14:16765-16777. [PMID: 38799209 PMCID: PMC11124699 DOI: 10.1039/d4ra02110j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
The primary objective of this study was to examine the isolation of succinic acid (SA) from aqueous-based solutions through the utilization of adsorption and ion exchange methods. Four kinds of anion exchange resins were employed, two of which were strong basic (Lewatit M-500 and Lewatit M-600), and the other two were weak basic (Lewatit MP-64 and Lewatit MP-62). The impacts of various variables on the efficiency of the process were examined. The aqueous pH strongly influenced the separation yield. Weak basic exchangers achieved the maximum yield at pH 2.1. However, the highest performance with Lewatit M-600 and Lewatit M-500 was obtained at pH 5 and 6, respectively. The SA separation with the tested resins reached equilibrium in about an hour. The recovery data revealed consistency with the Langmuir isotherm and pseudo-second-order kinetics. Efficiency improved with resin dosage and reduced with SA concentration. It was found that weak basic anion exchange resins were more efficient than strong basic exchangers for the recovery process. Among the resins tested, Lewatit MP-62 demonstrated the highest sorption capacity of 321 mg g-1 and 97.5% yield. The performance of the system decreased with temperature for all alternatives tested; however, its impact was not notable. The isolation process had an exergonic, exothermic, and favorable character based on the thermodynamic constants. Acid-loaded resins were successfully regenerated using trimethylamine and HCl for weak and strong anion exchange resins, respectively.
Collapse
Affiliation(s)
- Hamayoun Asim
- Department of Chemical Engineering, Konya Technical University Konya Turkey +90-332-241-0635 +90-332-223-1837
- Department of Chemical Engineering, Selçuk University Konya Turkey
| | - Hani Zeidan
- Department of Chemical Engineering, Konya Technical University Konya Turkey +90-332-241-0635 +90-332-223-1837
| | - Mustafa Esen Marti
- Department of Chemical Engineering, Konya Technical University Konya Turkey +90-332-241-0635 +90-332-223-1837
| |
Collapse
|
2
|
Rahim NA, Luthfi AAI, Bukhari NA, Tan JP, Abdul PM, Manaf SFA. Biotechnological enhancement of lactic acid conversion from pretreated palm kernel cake hydrolysate by Actinobacillus succinogenes 130Z. Sci Rep 2023; 13:5787. [PMID: 37031272 PMCID: PMC10082786 DOI: 10.1038/s41598-023-32964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
The aim of this study was to establish an improved pretreatment and fermentation method i.e. immobilized cells for high recovery of fermentable sugars from palm kernel cake (PKC) and its effects on fermentability performance by Actinobacillus succinogenes 130Z in the conversion of the fermentable sugar to lactic acid. The effects of oxalic acid concentrations (1-6% w/v) and residence times (1-5 h) on the sugar recovery were initially investigated and it was found that the highest mannose concentration was 25.1 g/L at the optimum hydrolysis conditions of 4 h and 3% (w/v) oxalic acid. The subsequent enzymatic saccharification of the pretreated PKC afforded the highest enzymatic digestibility with the recovered sugars amounting to 25.18 g/L and 9.14 g/L of mannose and glucose, respectively. Subsequently, the fermentability performance of PKC hydrolysate was evaluated and compared in terms of cultivation phases (i.e. mono and dual-phases), carbonate loadings (i.e. magnesium and sodium carbonates), and types of sugars (i.e. glucose and mannose). The highest titer of 19.4 g/L lactic acid was obtained from the fermentation involving A. succinogenes 130Z in dual-phase cultivation supplemented with 30 g/L of magnesium carbonate. Lactic acid production was further enhanced by using immobilized cells with coconut shell-activated carbon (CSAC) of different sizes (A, B, C, and D) in the repeated batch cultivation of dual-phase fermentation producing 31.64 g/L of lactic acid. This work sheds light on the possibilities to enhance the utilization of PKC for lactic acid production via immobilized A. succinogenes 130Z.
Collapse
Affiliation(s)
- Nuraishah Abd Rahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdullah Amru Indera Luthfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Nurul Adela Bukhari
- Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Jian Ping Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Shareena Fairuz Abdul Manaf
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Rahim NA, Luthfi AAI, Bukhari NA, Tan JP, Abdul PM, Manaf SFA. Biotechnological enhancement of lactic acid conversion from palm kernel cake by immobilized Actinobacillus succinogenes 130Z.. [DOI: 10.21203/rs.3.rs-2469941/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The aim of this study was to establish an improved pretreatment and fermentation method i.e. immobilized cells for high recovery of fermentable sugars from PKC and its effects on fermentability performance by Actinobacillus succinogenes 130Z in the conversion of lactic acid. The effects of oxalic acid concentrations (1–6% w/v) and residence times (1–5 h) on the sugar recovery were initially investigated and it was found that the highest mannose concentration was 25.1 g/L at the optimum hydrolysis conditions of 4 h and 3% (w/v) oxalic acid. The subsequent enzymatic saccharification of the pretreated PKC afforded the highest enzymatic digestibility with the recovered sugars amounting to 25.18 g/L and 9.14 g/L of mannose and glucose, respectively. Subsequently, the fermentability performance of PKC hydrolysate was evaluated and compared in terms of cultivation phases (i.e. mono and dual-phases), carbonate loadings (i.e. magnesium and sodium carbonates), and types of sugars (i.e. glucose and mannose). The highest titer of 19.4 g/L lactic acid was obtained from the fermentation involving A. succinogenes 130Z in dual-phase cultivation supplemented with 30 g/L of magnesium carbonate. Lactic acid production was further enhanced by using immobilized cells with coconut shell-activated carbon (CSAC) of different sizes (A, B, C, and D) in the repeated batch cultivation of dual-phase fermentation producing 31.64 g/L of lactic acid. This work sheds light on the possibilities to enhance the utilization of PKC for lactic acid production via immobilized A. succinogenes 130Z.
Collapse
|
4
|
Woo WX, Tan JW, Tan JP, Indera Luthfi AA, Abdul PM, Abdul Manaf SF, Yeap SK. An Insight into Enzymatic Immobilization Techniques on the Saccharification of Lignocellulosic Biomass. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wen Xuan Woo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Jing Wen Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Jian Ping Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Abdullah Amru Indera Luthfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Peer Mohamed Abdul
- Research Centre for Sustainable Process Technology, Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Shareena Fairuz Abdul Manaf
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Bukhari NA, Loh SK, Luthfi AAI, Abdul PM, Jahim JM. Low cost nutrient-rich oil palm trunk bagasse hydrolysate for bio-succinic acid production by Actinobacillus succinogenes. Prep Biochem Biotechnol 2021; 52:950-960. [PMID: 34935581 DOI: 10.1080/10826068.2021.2015692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Economical source of succinic acid (SA) is most sought-after as a key platform chemical for a wide range of applications. Low-cost production of bio-succinic acid (bio-SA) from a renewable biomass resource i.e., oil palm trunk (OPT) is reported in this paper. Apart from carbon source, nitrogen source and mineral salts are other important nutrients affecting microbial cell growth and bio-SA biosynthesis by Actinobacillus succinogenes 130Z. In order to access and optimize nutrient requirement of the latter two sources, their effects in terms of types and concentrations were investigated. The findings highlighted the importance of selecting proper nitrogen source in A. succinogenes fermentation. The possibility of producing bio-SA from OPT economically can be achieved through minimal supply of 5 g/L yeast extract compared to that generally supplemented 15 g/L with a similar yield (0.47 g/g). In addition, a higher bio-SA yield (0.49 g/g) was achieved without adding mineral salts, which could further reduce fermentation cost. The use of minimally supplemented hydrolysate resulted in 21.1 g/L of bio-SA with a satisfactory yield (0.58 g/g) in a batch bioreactor system with an estimated 56.4% in cost savings. Conclusively, OPT bagasse hydrolysate is a nutrient-rich feedstock that can be practically utilized for bio-SA production.
Collapse
Affiliation(s)
- Nurul Adela Bukhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia.,Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia.,Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board (MPOB), Selangor, Kajang, Malaysia
| | - Soh Kheang Loh
- Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board (MPOB), Selangor, Kajang, Malaysia
| | - Abdullah Amru Indera Luthfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia.,Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia.,Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia.,Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
6
|
Chiang YY, Nagarajan D, Lo YC, Chen CY, Ng IS, Chang CH, Lee DJ, Chang JS. Succinic acid fermentation with immobilized Actinobacillus succinogenes using hydrolysate of carbohydrate-rich microalgal biomass. BIORESOURCE TECHNOLOGY 2021; 342:126014. [PMID: 34852448 DOI: 10.1016/j.biortech.2021.126014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to study the efficiency of polyvinyl-alcohol-immobilized Actinobacillus succinogenes ATCC55618 for succinic acid (SA) production. Batch fermentation (pH 7, 45% CO2 gas at 0.04 vvm) using glucose (40 g L-1) resulted in SA titer, 26.7 g L-1; productivity, 3.33 g L-1h-1; yield, 0.621 g g-1. Fed-batch mode with cyclic extrication of SA from the medium markedly enhanced the yield to 0.699 g g-1 and concentration to 59.5 g L-1. Batch fermentation using sugars derived from Chlorella vulgaris ESP-31 without yeast extract gave a SA productivity, concentration, and yield of 1.82 g L-1h-1, 36.1 g L-1, and 0.720 g g-1, respectively. Furthermore, continuous fermentation (at 6 h HRT) with microalgal sugar improved the productivity and yield to 3.53 g L-1h-1 and 0.62 g g-1, respectively, which is comparable to those obtained by using glucose. This study reports the highest productivity for SA fermentation using microalgae-derived sugars.
Collapse
Affiliation(s)
- Ya-Yun Chiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Chung Lo
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
7
|
Improving performance of microbial fuel cell by enhanced bacterial-anode interaction using sludge immobilized beads with activated carbon. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2020. [DOI: 10.1016/j.psep.2020.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Jun KC, Abdul Raman AA, Buthiyappan A. Treatment of oil refinery effluent using bio-adsorbent developed from activated palm kernel shell and zeolite. RSC Adv 2020; 10:24079-24094. [PMID: 35517322 PMCID: PMC9055107 DOI: 10.1039/d0ra03307c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated the potential of palm kernel shell (PKS) as a biomass feed for adsorbent production. This work aims at synthesizing green adsorbent from activated PKS by integrating iron oxide and zeolite. The newly developed adsorbents, zeolite-Fe/AC and Fe/AC, were analyzed for surface area, chemical composition, magnetic properties, crystallinity, and stability. The adsorbent efficiency in removing effluent from the palm oil mill was evaluated. The influence of operating parameters, including adsorbent dosage, H2O2, reaction time, and initial solution pH for adsorption performance was studied. The Fourier transform infrared analysis revealed that the adsorbents contain functional groups including OH, N-H, C[double bond, length as m-dash]O and C[double bond, length as m-dash]C, which are essential for removing pollutants. The SEM-EDX analysis shows holes in the adsorbent surface and that it is smooth. The adsorption study revealed that under optimized conditions, by using 4 g L-1 of adsorbent and 67.7 mM H2O2, zeolite-Fe/AC was able to remove 83.1% colour and 67.2% COD within 30 min. However, Fe/AC requires 5 g L-1 of adsorbent and 87.7 mM to remove 86.8 percent and 65.6 percent, respectively. This study also showed that zeolite-Fe/AC has higher reusability compared to Fe/AC. Among Freundlich and Temkin models, the experimental data were found to be best fitted with the Langmuir isotherm model. The kinetic analysis revealed that for both adsorbents, the adsorption process fitted the pseudo-second-order model (R 2 = 0.9724). The finding reflects monolayer adsorption of zeolite-Fe/AC and Fe/AC. This study thus demonstrates the applicability of low-cost green adsorbents produced from PKS to treat oil refinery effluent and other recalcitrant wastewaters.
Collapse
Affiliation(s)
- Kwong Chia Jun
- Department of Chemical Engineering, University of Malaya 50603 Kuala Lumpur Malaysia +60 3 7967 5319 +60 3 7967 5300
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, University of Malaya 50603 Kuala Lumpur Malaysia +60 3 7967 5319 +60 3 7967 5300
| | - Archina Buthiyappan
- Department of Chemical Engineering, University of Malaya 50603 Kuala Lumpur Malaysia +60 3 7967 5319 +60 3 7967 5300
| |
Collapse
|
9
|
Luthfi AAI, Tan JP, Isa NFAM, Bukhari NA, Shah SSM, Mahmod SS, Jahim JM. Multiple crystallization as a potential strategy for efficient recovery of succinic acid following fermentation with immobilized cells. Bioprocess Biosyst Eng 2020; 43:1153-1169. [PMID: 32095989 DOI: 10.1007/s00449-020-02311-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (< 11 mg/g clay pebbles). The repeated batch-fermentation trials with immobilized cells highlighted that succinic acid with an average concentration of up to 36.3 g/L with a metabolite-production ratio of 3:1 (succinic acid to by-products) could be attained within 130 h. Subsequently, the purification of succinic acid through crystallization was assessed in terms of pH, temperature, crystallization time, initial succinic acid concentration and multiple recrystallization processes. Increasing the crystallization time from 6 h to 9 h afforded an improvement of 17% in the recovery of succinic acid crystals. Moreover, a fourfold concentration coefficient of the broth yielded the highest purity percentage (99.9%). The crystallization in three consecutive stages at 9 h (with a fourfold concentration coefficient) successfully improved the total recovery percentage of succinic acid from 55.0 to 84.8%.
Collapse
Affiliation(s)
- Abdullah Amru Indera Luthfi
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Jian Ping Tan
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Nur Fatin Ajeera Mohd Isa
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Nurul Adela Bukhari
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.,Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Siti Syazwani Mohd Shah
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Safa Senan Mahmod
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Jamaliah Md Jahim
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia. .,Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
10
|
Luthfi AAI, Tan JP, Harun S, Manaf SFA, Jahim JM. Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess Biosyst Eng 2018; 42:117-130. [DOI: 10.1007/s00449-018-2019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/23/2018] [Indexed: 01/22/2023]
|
11
|
Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 2018; 102:9893-9910. [PMID: 30259101 DOI: 10.1007/s00253-018-9379-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
Due to environmental issues and the depletion of fossil-based resources, ecofriendly sustainable biomass-based chemical production has been given more attention recently. Succinic acid (SA) is one of the top value added bio-based chemicals. It can be synthesized through microbial fermentation using various waste steam bioresources. Production of chemicals from waste streams has dual function as it alleviates environmental concerns; they could have caused because of their improper disposal and transform them into valuable products. To date, Actinobacillus succinogenes is termed as the best natural SA producer. However, few reviews regarding SA production by A. succinogenes were reported. Herewith, pathways and metabolic engineering strategies, biomass pretreatment and utilization, and process optimization related with SA fermentation by A. succinogenes were discussed in detail. In general, this review covered vital information including merits, achievements, progresses, challenges, and future perspectives in SA production using A. succinogenes. Therefore, it is believed that this review will provide platform to understand the potential of the strain and tackle existing hurdles so as to develop superior strain for industrial applications. It will also be used as a baseline for identification, isolation, and improvement of other SA-producing microbes.
Collapse
|
12
|
Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Xiong Q, Bai Q, Li C, He Y, Shen Y, Uyama H. A cellulose acetate/Amygdalus pedunculata shell-derived activated carbon composite monolith for phenol adsorption. RSC Adv 2018; 8:7599-7605. [PMID: 35539128 PMCID: PMC9078407 DOI: 10.1039/c7ra13017a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/12/2018] [Indexed: 01/19/2023] Open
Abstract
Amygdalus pedunculata is expected to be a good candidate plant for desert reclamation (“greening”) since it has notable tolerance to cold and drought and can grow in a wide range of areas with different soil types and moisture contents. In this study, we have developed a single-step method to fabricate a cellulose acetate (CA)/A. pedunculata shell (APS)-derived activated carbon (AC) composite monolith by thermally induced phase separation (TIPS) for removal of toxic phenol from aqueous solution. The composite monolith was easily fabricated by TIPS of a CA solution in the presence of the dispersed AC, in which AC was well loaded onto the monolithic skeleton of CA. The as-obtained monolith showed a maximum adsorption capacity of 45 mg g−1 at the initial phenol concentration of 0.8 mg mL−1. The present composite can be prepared with an arbitrary shape by a facile method from cheap materials, and is more convenient to recycle than powder adsorbents. Therefore, the present CA/APS-derived AC composite monolith has great potential as a promising adsorbent of low cost with convenient separation for toxic phenol-containing wastewater. In this study, we have developed a single-step method to fabricate a cellulose acetate (CA)/APS-derived activated carbon (AC) composite monolith by thermally induced phase separation (TIPS) for removal of toxic phenol from aqueous solution. ![]()
Collapse
Affiliation(s)
- Qiancheng Xiong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Qiuhong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Yuanyuan He
- College of Pharmaceutical Engineering
- Shaanxi Fashion Engineering University
- Xi'an 712046
- China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| |
Collapse
|