1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Chang J, Wang Y, Wei H, Kong X, Dong B, Yue T. Development of a "double reaction" type-based fluorescent probe for the imaging of superoxide anion in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123080. [PMID: 37392536 DOI: 10.1016/j.saa.2023.123080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Superoxide anion (O2•-) is an important ROS in living systems, and rapid and in situ detection of O2•- is critical for the in-depth study of its roles in the closely related diseases. Herein, we present a "double reaction" type-based fluorescent probe (BZT) for the imaging of O2•- in living cells. BZT employed a triflate group as a recognition site for O2•-. In response to O2•-, the probe BZT underwent double chemical reactions, including the nucleophilic reaction between O2•- and triflate, and the cyclization reaction through the other nucleophilic reaction between hydroxyl and cyano group. BZT could show high sensitivity and selectivity to O2•-. Biological imaging experiments demonstrated that the probe BZT could be successfully applied to detect the exogenous and endogenous O2•- in living cells, and the results suggested that rutin could efficiently scavenge the endogenous O2•- induced by rotenone. We expected that the developed probe could provide a valuable tool to investigate the pathological roles of O2•- in relevant diseases.
Collapse
Affiliation(s)
- Jia Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Yan Wang
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong 250014, China
| | - Hua Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong 250014, China.
| |
Collapse
|
3
|
Xu C, Xu W, Yang Z, Li S, Wang Y, Hua J. A turn-on mitochondria-targeted near-infrared fluorescent probe with a large Stokes shift for detecting and imaging endogenous superoxide anion in cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Wu L, Liu J, Tian X, Groleau RR, Bull SD, Li P, Tang B, James TD. Fluorescent probe for the imaging of superoxide and peroxynitrite during drug-induced liver injury. Chem Sci 2021; 12:3921-3928. [PMID: 34163661 PMCID: PMC8179478 DOI: 10.1039/d0sc05937d] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is an important cause of potentially fatal liver disease. Herein, we report the development of a molecular probe (LW-OTf) for the detection and imaging of two biomarkers involved in DILI. Initially, primary reactive oxygen species (ROS) superoxide (O2˙-) selectively activates a near-infrared fluorescence (NIRF) output by generating fluorophore LW-OH. The C[double bond, length as m-dash]C linker of this hemicyanine fluorophore is subsequently oxidized by reactive nitrogen species (RNS) peroxynitrite (ONOO-), resulting in cleavage to release xanthene derivative LW-XTD, detected using two-photon excitation fluorescence (TPEF). An alternative fluorescence pathway can occur through cleavage of LW-OTf by ONOO- to non-fluorescent LW-XTD-OTf, which can react further with the second analyte O2˙- to produce the same LW-XTD fluorescent species. By combining NIRF and TPEF, LW-OTf is capable of differential and simultaneous detection of ROS and RNS in DILI using two optically orthogonal channels. Probe LW-OTf could be used to detect O2˙- or O2˙- and ONOO- in lysosomes stimulated by 2-methoxyestradiol (2-ME) or 2-ME and SIN-1 respectively. In addition, we were able to monitor the chemoprotective effects of tert-butylhydroxyanisole (BHA) against acetaminophen (APAP) toxicity in living HL-7702 cells. More importantly, TPEF and NIRF imaging confirmed an increase in levels of both O2˙- and ONOO- in mouse livers during APAP-induced DILI (confirmed by hematoxylin and eosin (H&E) staining).
Collapse
Affiliation(s)
- Luling Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China .,Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China .,Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Xue Tian
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | | | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China .,Department of Chemistry, University of Bath Bath BA2 7AY UK .,School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 P. R. China
| |
Collapse
|
5
|
Jiao S, Zhai J, Yang S, Meng X. A highly responsive, sensitive NIR fluorescent probe for imaging of superoxide anion in mitochondria of oral cancer cells. Talanta 2020; 222:121566. [PMID: 33167262 DOI: 10.1016/j.talanta.2020.121566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
Superoxide anion (O2•-) is an important biomarker for reactive oxygen species (ROS) generated through physiological and pathological processes. However, due to the short half-life of O2•- and high autofluorescence of cell tissues, in situ real-time tracking and monitoring of endogenous O2•- can be difficult. In this paper, a fluorescent probe IFP-O2 was developed to detect endogenous O2•- in cells. The probe could instantaneously react with O2•- to produce fluorescence off-on effect; its detection limit was as low as 10 nM. Cell experiments also showed that the probe had low toxicity and mitochondrial targeting ability. The article presents, for the first time, a probe that can be employed to measure endogenous O2•- in oral cancer Cal-27 cells and is a promising tool for monitoring and evaluating apoptosis.
Collapse
Affiliation(s)
- Shan Jiao
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130021, China
| | - Jingjie Zhai
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130021, China
| | - Si Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Xiuping Meng
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130021, China.
| |
Collapse
|
6
|
Wang Y, Wang X, Zhang L, Huang Y, Bi L, Lv C, Chen L. A ratiometric fluorescent probe for detecting the endogenous biological signaling molecule superoxide anion and bioimaging during tumor treatment. J Mater Chem B 2020; 8:1017-1025. [PMID: 31934713 DOI: 10.1039/c9tb02453k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor resistance and drug-induced nephrotoxicity pose great challenges to the clinical treatment of tumors, and they also limit the clinical application of oncology drugs. Finding an effective adjuvant, which can sensitize tumor treatment, is an effective method for tumor treatment. Here, we developed a ratiometric fluorescent probe, TP-Tfs, for superoxide anion (O2˙-) detection in living cells and in vivo during the process of tumor treatment for the first time. TP-Tfs with simple synthesis steps and high yields can detect O2˙- sensitively and selectively, and the detection limit was determined to be 37 nM. Using TP-Tfs, we found that cis-diaminodichloroplatinum(ii) (DDP) was effective in treating tumors by inducing O2˙- burst. Curcumin (cum) can sensitize tumor treatment effectively by inducing more severe O2˙- burst. These results indicated that the probe TP-Tfs was a promising candidate for drug screening and tumor treatment evaluation.
Collapse
Affiliation(s)
- Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Liyan Bi
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and School of Pharmacy, Binzhou Medical University, Yantai 264003, China and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China and Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
7
|
Zhang Y, Li H, Gao W, Pu S. Dual recognition of Al 3+ and Zn 2+ ions by a novel probe based on diarylethene and its application. RSC Adv 2019; 9:27476-27483. [PMID: 35529243 PMCID: PMC9070649 DOI: 10.1039/c9ra05652a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
We synthesized a new fluorescent probe 1O by attaching a diarylethene molecule to a functional group. The probe can be used to detect Al3+ and Zn2+ at the same time with high selectivity, and its detection limit is very low. When Al3+ was added, the fluorescence intensity was increased 310 folds, and was accompanied by a fluorescent color change from black to grass-green. Similarly, after the addition of Zn2+, the fluorescence intensity was enhanced 110 folds, with a concomitant color change from black to yellow-green. Moreover, based on the properties of 1O, we designed a logic circuit, and that also can be used for water sample testing.
Collapse
Affiliation(s)
- Yaping Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-83831996 +86-791-83831996
| | - Hui Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-83831996 +86-791-83831996
| | - Wendan Gao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-83831996 +86-791-83831996
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-83831996 +86-791-83831996
| |
Collapse
|
8
|
Multiorgan Development of Oxidative and Nitrosative Stress in LPS-Induced Endotoxemia in C57Bl/6 Mice: DHE-Based In Vivo Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7838406. [PMID: 31249650 PMCID: PMC6556324 DOI: 10.1155/2019/7838406] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Detection of free radicals in tissues is challenging. Most approaches rely on incubating excised sections or homogenates with reagents, typically at supraphysiologic oxygen tensions, to finally detect surrogate, nonspecific end products. In the present work, we explored the potential of using intravenously (i.v.) injected dihydroethidine (DHE) to detect superoxide radical (O2 ∙-) abundance in vivo by quantification of the superoxide-specific DHE oxidation product, 2-hydroxyethidium (2-OH-E+), as well as ethidium (E+) and DHE in multiple tissues in a murine model of endotoxemia induced by lipopolysaccharide (LPS). LPS was injected intraperitoneally (i.p.), while DHE was delivered via the tail vein one hour before sacrifice. Tissues (kidney, lung, liver, and brain) were harvested and subjected to HPLC/fluorescent analysis of DHE and its monomeric oxidation products. In parallel, electron spin resonance (EPR) spin trapping was used to measure nitric oxide (∙NO) production in the aorta, lung, and liver isolated from the same mice. Endotoxemic inflammation was validated by analysis of plasma biomarkers. The concentration of 2-OH-E+ varied in the liver, lung, and kidney; however, the ratios of 2-OH-E+/E+ and 2-OH-E+/DHE were increased in the liver and kidney but not in the lung or the brain. An LPS-induced robust level of ∙NO burst was observed in the liver, whereas the lung demonstrated a moderate yet progressive increase in the rate of ∙NO production. Interestingly, endothelial dysfunction was observed in the aorta, as evidenced by decreased ∙NO production 6 hours post-LPS injection that coincided with the inflammatory burden of endotoxemia (e.g. elevated serum amyloid A and prostaglandin E2). Combined, these data demonstrate that systemic delivery of DHE affords the capacity to specifically detect O2 ∙- production in vivo. Furthermore, the ratio of 2-OH-E+/E+ oxidation products in tissues provides a tool for comparative insight into the oxidative environments in various organs. Based on our findings, we demonstrate that the endotoxemic liver is susceptible to both O2 ∙--mediated and nonspecific oxidant stress as well as nitrosative stress. Oxidant stress in the lung was detected to a lesser extent, thus underscoring a differential response of liver and lung to endotoxemic injury induced by intraperitoneal LPS injection.
Collapse
|
9
|
Wang Y, Ding H, Wang S, Fan C, Tu Y, Liu G, Pu S. A ratiometric and colorimetric probe for detecting Hg 2+ based on naphthalimide-rhodamine and its staining function in cell imaging. RSC Adv 2019; 9:11664-11669. [PMID: 35516999 PMCID: PMC9063400 DOI: 10.1039/c9ra01459d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
In this work, a rhodamine derivative was developed as a colorimetric and ratiometric fluorescent probe for Hg2+. It exhibited a highly sensitive fluorescence response toward Hg2+. Importantly, studies revealed that the probe could be used for ratiometric detection of Hg2+, with a low detection limit of 0.679 μM. The mechanism of Hg2+ detection using compound 1 was confirmed by ESI-MS, 1H NMR, and HPLC. Upon the addition of Hg2+, the rhodamine receptor was induced to be in the ring-opening form via an Hg2+-promoted hydrolysis of rhodamine hydrazide to rhodamine acid. In addition to Hg2+ detection, the naphthalimide-rhodamine compound was proven to be effective in cell imaging.
Collapse
Affiliation(s)
- Yuesong Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Shuai Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Yayi Tu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| |
Collapse
|
10
|
Das A, Anbu N, SK M, Dhakshinamoorthy A, Biswas S. A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation. Dalton Trans 2019; 48:17371-17380. [DOI: 10.1039/c9dt03638e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MOF based sensor is reported for specific, rapid, and sensitive sensing of O2·− and effective and recyclable catalysis of Knoevenagel condensation.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| | - Nagaraj Anbu
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Mostakim SK
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| | | | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| |
Collapse
|
11
|
Cai X, Chen K, Wang Z, Sun W, Zhao H, Zhang H, Chen H, Lan M. Fabricating carbon-nanotubes-based porous foam for superoxide electrochemical sensing through one-step hydrothermal process induced by phytic acid. Anal Chim Acta 2018; 1038:132-139. [DOI: 10.1016/j.aca.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|