1
|
Pouso MR, Melo BL, Gonçalves JJ, Mendonça AG, Correia IJ, de Melo-Diogo D. Development of dual-crosslinked Pluronic F127/Chitosan injectable hydrogels incorporating graphene nanosystems for breast cancer photothermal therapy and antibacterial applications. Eur J Pharm Biopharm 2024; 203:114476. [PMID: 39209129 DOI: 10.1016/j.ejpb.2024.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Nanomaterials with responsiveness to near-infrared light can mediate the photoablation of cancer cells with an exceptional spatio-temporal resolution. However, the therapeutic outcome of this modality is limited by the nanostructures' poor tumor uptake. To address this bottleneck, it is appealing to develop injectable in situ forming hydrogels due to their capacity to perform a tumor-confined delivery of the nanomaterials with minimal off-target leakage. In particular, injectable in situ forming hydrogels based on Pluronic F127 have been emerging due to their FDA-approval status, biocompatibility, and thermosensitive sol-gel transition. Nevertheless, the application of Pluronic F127 hydrogels has been limited due to their fast dissociation in aqueous media. Such limitation may be addressed by combining the thermoresponsive sol-gel transition of Pluronic F127 with other polymers with crosslinking capabilities. In this work, a novel dual-crosslinked injectable in situ forming hydrogel based on Pluronic F127 (thermosensitive gelation) and Chitosan (ionotropic gelation in the presence of NaHCO3), loaded with Dopamine-reduced graphene oxide (DOPA-rGO; photothermal nanoagent), was developed for application in breast cancer photothermal therapy. The dual-crosslinked hydrogel incorporating DOPA-rGO showed a good injectability (through 21 G needles), in situ gelation capacity and cytocompatibility (viability > 73 %). As importantly, the dual-crosslinking improved the hydrogel's porosity and prevented its premature degradation. After irradiation with near-infrared light, the dual-crosslinked hydrogel incorporating DOPA-rGO produced a photothermal heating (ΔT ≈ 22 °C) that reduced the breast cancer cells' viability to just 32 %. In addition, this formulation also demonstrated a good antibacterial activity by reducing the viability of S. aureus and E. coli to 24 and 33 %, respectively. Overall, the dual-crosslinked hydrogel incorporating DOPA-rGO is a promising macroscale technology for breast cancer photothermal therapy and antimicrobial applications.
Collapse
Affiliation(s)
- Manuel R Pouso
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade Da Beira Interior, Covilhã, Portugal
| | - Joaquim J Gonçalves
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade Da Beira Interior, Covilhã, Portugal
| | - António G Mendonça
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal; Departamento de Química, Universidade Da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade Da Beira Interior, Covilhã, Portugal; University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Karmakar A, Silswal A, Koner AL. Review of NIR-responsive ''Smart'' carriers for photothermal chemotherapy. J Mater Chem B 2024; 12:4785-4808. [PMID: 38690723 DOI: 10.1039/d3tb03004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review focuses on the versatile applications of near-infrared (NIR)-responsive smart carriers in biomedical applications, particularly drug delivery and photothermal chemotherapy. These carriers demonstrate multi-responsive theranostics capabilities, including pH-dependent drug release, targeted delivery of chemotherapeutics, heat-mediated drug release, and photothermal tumor damage. Biological samples are transparent to NIR light with a suitable wavelength, and therefore, NIR light is advantageous for deep-tissue penetration. It also generates sufficient heat in tissue samples, which is beneficial for on-demand NIR-responsive drug delivery in vivo systems. The development of biocompatible materials with sufficient NIR light absorption properties and drug-carrying functionality has shown tremendous growth in the last five years. Thus, this review offers insights into the current research development of NIR-responsive materials with therapeutic potential and prospects aimed at overcoming challenges to improve the therapeutic efficacy and safety in the dynamic field of NIR-responsive drug delivery.
Collapse
Affiliation(s)
- Abhijit Karmakar
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
3
|
Charles Kunene S, Lin KS, Weng MT, Janina Carrera Espinoza M, Lin YS, Lin YT. Biomimetic targeting magnetite hollow nanostructures based on pH-responsive benzoic-imine bonds for antitumor activity. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Charles Kunene S, Lin KS, Weng MT, Janina Carrera Espinoza M, Lin YS, Lin YT. Design of biomimetic targeting nanoclusters for enhanced doxorubicin delivery to liver cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Davidopoulou C, Ouranidis A. Pharma 4.0-Artificially Intelligent Digital Twins for Solidified Nanosuspensions. Pharmaceutics 2022; 14:pharmaceutics14102113. [PMID: 36297548 PMCID: PMC9609441 DOI: 10.3390/pharmaceutics14102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/25/2023] Open
Abstract
Digital twins capacitate the industry 4.0 paradigm by predicting and optimizing the performance of physical assets of interest, mirroring a realistic in-silico representation of their functional behaviour. Although advanced digital twins set forth disrupting opportunities by delineating the in-service product and the related process dynamic performance, they have yet to be adopted by the pharma sector. The latter, currently struggles more than ever before to improve solubility of BCS II i.e., hard-to-dissolve active pharmaceutical ingredients by micronization and subsequent stabilization. Herein we construct and functionally validate the first artificially intelligent digital twin thread, capable of describing the course of manufacturing of such solidified nanosuspensions given a defined lifecycle starting point and predict and optimize the relevant process outcomes. To this end, we referenced experimental data as the sampling source, which we then augmented via pattern recognition utilizing neural network propagations. The zeta-dynamic potential metrics of the nanosuspensions were correlated to the interfacial Gibbs energy, while the density and heat capacity of the material system was calculated via the Saft-γ-Mie statistical fluid theory. The curated data was then fused to physical and empirical laws to choose the appropriate theory and numeric description, respectively, before being polished by tuning the critical parameters to achieve the best fit with reality.
Collapse
Affiliation(s)
- Christina Davidopoulou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreas Ouranidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
6
|
Hardiansyah A, Randy A, Dewi RT, Angelina M, Yudasari N, Rahayu S, Ulfah IM, Maryani F, Cheng YW, Liu TY. Magnetic Graphene-Based Nanosheets with Pluronic F127-Chitosan Biopolymers Encapsulated α-Mangosteen Drugs for Breast Cancer Cells Therapy. Polymers (Basel) 2022; 14:polym14153163. [PMID: 35956678 PMCID: PMC9370913 DOI: 10.3390/polym14153163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, multifunctional chitosan-pluronic F127 with magnetic reduced graphene oxide (MRGO) nanocomposites were developed through the immobilization of chitosan and an amphiphilic polymer (pluronic F127) onto the MRGO. Physicochemical characterizations and in-vitro cytotoxicity of nanocomposites were investigated through field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, particle size analysis, vibrating sample magnetometer, Raman spectroscopy and resazurin-based in-vitro cytotoxicity assay. FESEM observation shows that the magnetic nanoparticles could tethered on the surface of MRGO, promoting the magnetic properties of the nanocomposites. FTIR identification analysis revealed that the chitosan/pluronic F127 were successfully immobilized on the surface of MRGO. Furthermore, α-mangosteen, as a model of natural drug compound, was successfully encapsulated onto the chitosan/pluronic F127@MRGO nanocomposites. According to in-vitro cytotoxicity assay, α-mangosteen-loaded chitosan/pluronic F127@MRGO nanocomposites could significantly reduce the proliferation of human breast cancer (MFC-7) cells. Eventually, it would be anticipated that the novel α-mangosteen-loaded chitosan/pluronic F127@MRGO nanocomposites could be promoted as a new potential material for magnetically targeting and killing cancer cells.
Collapse
Affiliation(s)
- Andri Hardiansyah
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (S.R.); (I.M.U.)
- Correspondence: (A.H.); (T.-Y.L.)
| | - Ahmad Randy
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (A.R.); (R.T.D.); (M.A.)
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (A.R.); (R.T.D.); (M.A.)
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (A.R.); (R.T.D.); (M.A.)
| | - Nurfina Yudasari
- Research Center for Photonics, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia;
| | - Sri Rahayu
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (S.R.); (I.M.U.)
| | - Ika Maria Ulfah
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (S.R.); (I.M.U.)
| | - Faiza Maryani
- Research Center for Advanced Chemistry, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia;
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan;
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Correspondence: (A.H.); (T.-Y.L.)
| |
Collapse
|
7
|
Espinoza MJC, Lin KS, Weng MT, Kunene SC, Liu SY, Lin YS. In vivo and in vitro studies of magnetic silica nanocomposites decorated with Pluronic F127 for controlled drug delivery system. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Zhang X, Tan B, Wu Y, Zhang M, Liao J. A Review on Hydrogels with Photothermal Effect in Wound Healing and Bone Tissue Engineering. Polymers (Basel) 2021; 13:2100. [PMID: 34202237 PMCID: PMC8271463 DOI: 10.3390/polym13132100] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 02/05/2023] Open
Abstract
Photothermal treatment (PTT) is a promising strategy to deal with multidrug-resistant bacteria infection and promote tissue regeneration. Previous studies demonstrated that hyperthermia can effectively inhibit the growth of bacteria, whereas mild heat can promote cell proliferation, further accelerating wound healing and bone regeneration. Especially, hydrogels with photothermal properties could achieve remotely controlled drug release. In this review, we introduce a photothermal agent hybrid in hydrogels for a photothermal effect. We also summarize the potential mechanisms of photothermal hydrogels regarding antibacterial action, angiogenesis, and osteogenesis. Furthermore, recent developments in photothermal hydrogels in wound healing and bone regeneration applications are introduced. Finally, future application of photothermal hydrogels is discussed. Hydrogels with photothermal effects provide a new direction for wound healing and bone regeneration, and this review will give a reference for the tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Z.); (B.T.); (Y.W.); (M.Z.)
| |
Collapse
|
9
|
Borandeh S, Hosseinbeigi H, Abolmaali SS, Monajati M, Tamaddon AM. Steric stabilization of β-cyclodextrin functionalized graphene oxide by host-guest chemistry: A versatile supramolecule for dual-stimuli responsive cellular delivery of doxorubicin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
In vitro studies of Pluronic F127 coated magnetic silica nanocarriers for drug delivery system targeting liver cancer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Li P, Dai X, Sui Y, Li R, Zhang C. Thermally induced and physically cross-linked hydrogel doped with graphene oxide for controlled release. SOFT MATTER 2021; 17:3664-3671. [PMID: 33667289 DOI: 10.1039/d1sm00151e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) is an ideal hydrogel material because of its water solubility, non-toxicity, and excellent mechanical properties. Here, we added GO to oligo(lysine)-modified F127 to prepare a series of FLGO composite hydrogels. The FLGO hydrogel was thermally induced, stable and injectable. And the content of GO would affect the sol-gel transition, rheological properties and glass transition temperature of the FLGO hydrogel. GO was connected to the matrix through electrostatic interactions and hydrogen bonds. The cross-linking effect of GO enhanced the FLGO hydrogel. We also studied the release properties of the FLGO hydrogel loaded with anticancer drug 5-fluorouracil. Compared with F127 hydrogel, the FLGO hydrogel showed a linear, slower and stable release pattern within one week. The release rate of FLGO hydrogel could be adjusted by the pH and it was faster under acidic conditions. Therefore, the FLGO hydrogel is expected to be used as a drug release system in the field of biomedicine.
Collapse
Affiliation(s)
- Peihong Li
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Phan LMT, Vo TAT, Hoang TX, Cho S. Graphene Integrated Hydrogels Based Biomaterials in Photothermal Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:906. [PMID: 33918204 PMCID: PMC8065877 DOI: 10.3390/nano11040906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022]
Abstract
Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea; (T.A.T.V.); (T.X.H.)
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea; (T.A.T.V.); (T.X.H.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
13
|
Shamsi S, Alagan AA, Sarchio SNE, Md Yasin F. Synthesis, Characterization, and Toxicity Assessment of Pluronic F127-Functionalized Graphene Oxide on the Embryonic Development of Zebrafish ( Danio rerio). Int J Nanomedicine 2020; 15:8311-8329. [PMID: 33149578 PMCID: PMC7604977 DOI: 10.2147/ijn.s271159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/29/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In the current literature, there are ongoing debates on the toxicity of graphene oxide (GO) that demonstrate contradictory findings regarding its toxicity profile. As a potential drug carrier, these findings are very concerning due to the safety concerns in humans, as well as the dramatic rise of GO being excreted into the environment. Therefore, there is an imperative need to mitigate the potential toxicity of GO to allow for a safer application in the future. PURPOSE The present study aims to address this issue by functionalizing GO with Pluronic F127 (PF) as a means to mitigate toxicity and resolve the biocompatibility of GO. Although results from previous studies generally indicated that Pluronic functionalized GO exhibits relatively low toxicity to living organisms, reports that emphasize on its toxicity, particularly during embryonic developmental stage, are still scarce. METHODS In the present study, two different sizes of native GO samples, GO and NanoGO, as well as PF-functionalized GO, GO-PF and NanoGO-PF, were prepared and characterized using DLS, UV-Vis, Raman spectroscopy, FTIR, and FESEM analyses. Toxicological assessment of all GO samples (0-100 µg/mL) on zebrafish embryonic developmental stages (survival, hatching and heart rates, and morphological changes) was recorded daily for up to 96 hours post-fertilization (hpf). RESULTS The toxicity effects of each GO sample were observed to be higher at increasing concentrations and upon prolonged exposure. NanoGO demonstrated lower toxicity effects compared to GO. GO-PF and NanoGO-PF were also found to have lower toxicity effects compared to native GO samples. GO-PF showed the lowest toxicity response on zebrafish embryo. CONCLUSION These findings highlight that toxicity is dependent on the concentration, size, and exposure period of GO. Functionalization of GO with PF through surface coating could potentially mitigate the toxicity effects of GO in embryonic developmental stages, but further investigation is warranted for broader future applications.
Collapse
Affiliation(s)
- Suhaili Shamsi
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Addison Alvin Alagan
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Seri Narti Edayu Sarchio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Faizah Md Yasin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Institute of Advanced Technology, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
14
|
Zhang H, Ren P, Wei H, Halila S, Osi AR, Zhou Y, Dai Z, Wang R, Chen J. Reinforced macromolecular micelle-crosslinked hyaluronate gels induced by water/DMSO binary solvent. SOFT MATTER 2020; 16:8647-8654. [PMID: 32856677 DOI: 10.1039/d0sm01099e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Introducing macromolecular micelles into a biocompatible hyaluronic acid (HA) hydrogel is a promising strategy to improve its mechanical properties for biomedical applications. However, it is still unclear whether the solvent nature has an influence on the structure and property of HA gels especially when they are used for those cases containing binary solvents because reversible hydrophobic association within micelles could be weakened or even dissociated by organic solvents. In this work, we demonstrated that a binary solvent consisting of water and low-toxic dimethyl sulfoxide (DMSO), a commonly used cryoprotectant agent in biomedicine, can enhance the mechanical properties of hydrophobic-associated methacrylated hyaluronate (MeHA) gels crosslinked by diacrylated PEO99-PPO65-PEO99 (F127DA) macromolecular micelles, namely FH gels. The resulting FH hydro/organo-gels showed a crystalline structure due to polymer/solvent interactions. The FH gels showed a low swelling degree and the maximum strength (10.12 MPa), modulus (106.8 kPa) and toughness (1540 J m-2) in DMSO with a volume fraction of around 0.6. Moreover, the FH gels displayed a rapid recoverability under cyclic loading-unloading stress particularly in the presence of DMSO within the network due to their dual-dynamic dissipation networks. Such novel hydrophobic associated polysaccharide gels with tunable mechanical properties in binary solvents would be attractive in a cryopreservation system for cell-based applications.
Collapse
Affiliation(s)
- Hua Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China. and Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Penggang Ren
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Hua Wei
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Sami Halila
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV, UPR-CNRS 5301), F-38000 Grenoble, France
| | - Amarachi Rosemary Osi
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Yang Zhou
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Zhong Dai
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Rong Wang
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Jing Chen
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| |
Collapse
|
15
|
SLN based alendronate in situ gel as an implantable drug delivery system – A full factorial design approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Deliormanlı AM, Türk M. Flow Behavior and Drug Release Study of Injectable Pluronic F-127 Hydrogels containing Bioactive Glass and Carbon-Based Nanopowders. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01346-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Tang T, Zhang T, Li W, Huang X, Wang X, Qiu H, Hou Y. Mesoporous N-doped graphene prepared by a soft-template method with high performance in Li-S batteries. NANOSCALE 2019; 11:7440-7446. [PMID: 30938721 DOI: 10.1039/c8nr09495k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lithium sulfur (Li-S) batteries, which have high theoretical capacity, are promising candidates for energy storage systems; however, several obstacles, including insulating nature and volumetric expansion of sulfur as well as shuttle effects of polysulfides, impede the commercialization of these batteries. Herein, we utilized mesoporous N-doped graphene (NGM) as a sulfur host, which was synthesized using a type of triblock copolymer, Pluronic F127 (PF127), as a soft template. PF127 not only acted as a spacer to prevent the graphene layers from restacking during the hydrothermal reaction, but also resulted in the formation of high-density wrinkles on the surface of the graphene sheets after annealing. The crumpled NGM with a nitrogen doping content of 4.80 at% had the high specific area and total pore volume of up to 958.72 m2 g-1 and 2.39 cm3 g-1, respectively, providing space for the accommodation and uniform distribution of sulfur in the cathode. Therefore, the sulfur content was increased to 87.2 wt% in the graphene sulfur composite, achieving the discharge capacity of 492.2 mA h g-1TE at 1.08 A g-1TE with a low capacity decay rate of 0.12% per cycle after 400 cycles. Thus, this study provides an effective strategy for enhancing the specific surface area and pore volume of graphene to develop Li-S batteries with high performance.
Collapse
Affiliation(s)
- Tianyu Tang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Guilbaud-Chéreau C, Dinesh B, Schurhammer R, Collin D, Bianco A, Ménard-Moyon C. Protected Amino Acid-Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13147-13157. [PMID: 30865420 DOI: 10.1021/acsami.9b02482] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular gels formed by the self-assembly of low-molecular-weight gelators have received increasing interest because of their potential applications in drug delivery. In particular, the ability of peptides and amino acids to spontaneously self-assemble into three-dimensional fibrous network has been exploited in the development of hydrogels. In this context, we have investigated the capacity of binary mixtures of aromatic amino acid derivatives to form hydrogels. Carbon nanomaterials, namely oxidized carbon nanotubes or graphene oxide, were incorporated in the two most stable hydrogels, formed by Fmoc-Tyr-OH/Fmoc-Tyr(Bzl)-OH and Fmoc-Phe-OH/Fmoc-Tyr(Bzl)-OH, respectively. The structural and physical properties of these gels were assessed using microscopic techniques and rheology. Circular dichroism and molecular dynamics simulations demonstrated that the hydrogel formation was mainly driven by aromatic interactions. Finally, a model hydrophilic drug (l-ascorbic acid) was loaded into the hybrid hydrogels at a high concentration. Under near-infrared light irradiation, a high amount of drug was released triggered by the heat generated by the carbon nanomaterials, thus offering interesting perspectives for controlled drug delivery.
Collapse
Affiliation(s)
- Chloé Guilbaud-Chéreau
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | - Bhimareddy Dinesh
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | - Rachel Schurhammer
- Laboratoire de Chimie Moléculaire de l'état Solide (UMR 7140 CNRS), Université de Strasbourg , 1 rue Blaise Pascal , 67081 Strasbourg , France
| | - Dominique Collin
- Institut Charles Sadron , Université de Strasbourg , 23 rue du Loess, BP 84047 , 67034 Strasbourg Cedex , France
| | - Alberto Bianco
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | - Cécilia Ménard-Moyon
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| |
Collapse
|
19
|
Huang G, Huang H. Application of dextran as nanoscale drug carriers. Nanomedicine (Lond) 2018; 13:3149-3158. [DOI: 10.2217/nnm-2018-0331] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dextran is a kind of biocompatible, nontoxic and nonimmunogenic biological substance that has been widely used in drug-delivery systems. With further research and understanding of dextran and its derivatives, people can more precisely control the sequence of dextran by chemical and biosynthetic methods as needed, and modify various structures to improve the properties of dextran, such as hydrophilicity, hydrophobicity, temperature sensitivity, pH sensitivity and ionic strength sensitivity, which will further expand the application of dextran and its derivatives in drug-delivery systems. Herein, the application of dextran and its derivatives in gene transfection and drug delivery was summarized and analyzed, and the problems were studied. At the same time, its application prospects are forecasted.
Collapse
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Hualiang Huang
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|