1
|
Wang D, Haposan T, Fan J, Arramel, Wee ATS. Recent Progress of Imaging Chemical Bonds by Scanning Probe Microscopy: A Review. ACS NANO 2024; 18:30919-30942. [PMID: 39475528 DOI: 10.1021/acsnano.4c10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
In the past decades, the invention of scanning probe microscopy (SPM) as the versatile surface-based characterization of organic molecules has triggered significant interest throughout multidisciplinary fields. In particular, the bond-resolved imaging acquired by SPM techniques has extended its fundamental function of not only unraveling the chemical structure but also allowing us to resolve the structure-property relationship. Here, we present a systematical review on the history of chemical bonds imaged by means of noncontact atomic force microscopy (nc-AFM) and bond-resolved scanning tunneling microscopy (BR-STM) techniques. We first summarize the advancement of real-space imaging of covalent bonds and the investigation of intermolecular noncovalent bonds. Beyond the bond imaging, we also highlight the applications of the bond-resolved SPM techniques such as on-surface synthesis, the determination of the reaction pathway, the identification of molecular configurations and unknown products, and the generation of artificial molecules created via tip manipulation. Lastly, we discuss the current status of SPM techniques and highlight several key technical challenges that must be solved in the coming years. In comparison to the existing reviews, this work invokes researchers from surface science, chemistry, condensed matter physics, and theoretical physics to uncover the bond-resolved SPM technique as an emerging tool in exploiting the molecule/surface system and their future applications.
Collapse
Affiliation(s)
- Dingguan Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Tobias Haposan
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Jinwei Fan
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Arramel
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
2
|
Stähler C, Reynaerts R, Rinkovec T, Verstraete L, Heideman GH, Minoia A, Harvey JN, Mali KS, De Feyter S, Feringa BL. Highly Ordered Co-Assembly of Bisurea Functionalized Molecular Switches at the Solid-Liquid Interface. Chemistry 2024:e202303994. [PMID: 38323675 DOI: 10.1002/chem.202303994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Immobilization of stimulus-responsive systems on solid surfaces is beneficial for controlled signal transmission and adaptive behavior while allowing the characterization of the functional interface with high sensitivity and high spatial resolution. Positioning of the stimuli-responsive units with nanometer-scale precision across the adaptive surface remains one of the bottlenecks in the extraction of cooperative function. Nanoscale organization, cooperativity, and amplification remain key challenges in bridging the molecular and the macroscopic worlds. Here we report on the design, synthesis, and scanning tunneling microscopy (STM) characterization of overcrowded alkene photoswitches merged in self-assembled networks physisorbed at the solid-liquid interface. A detailed anchoring strategy that ensures appropriate orientation of the switches with respect to the solid surface through the use of bis-urea groups is presented. We implement a co-assembly strategy that enables the merging of the photoswitches within physisorbed monolayers of structurally similar 'spacer' molecules. The self-assembly of the individual components and the co-assemblies was examined in detail using (sub)molecular resolution STM which confirms the robust immobilization and controlled orientation of the photoswitches within the spacer monolayers. The experimental STM data is supported by detailed molecular mechanics (MM) simulations. Different designs of the switches and the spacers were investigated which allowed us to formulate guidelines that enable the precise organization of the photoswitches in crystalline physisorbed self-assembled molecular networks.
Collapse
Affiliation(s)
- Cosima Stähler
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Robby Reynaerts
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Tamara Rinkovec
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Lander Verstraete
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- imec, Kapeldreef 75, 3001, Leuven, Belgium
| | - G Henrieke Heideman
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Jeremy N Harvey
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
3
|
Maeda M, Oda K, Hisaki I, Tahara K. Influence of core size on self-assembled molecular networks composed of C3h-symmetric building blocks through hydrogen bonding interactions: structural features and chirality. RSC Adv 2023; 13:29512-29521. [PMID: 37822655 PMCID: PMC10562897 DOI: 10.1039/d3ra05762c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The effect of the core size on the structure and chirality of self-assembled molecular networks was investigated using two aromatic carboxylic acid derivatives with frameworks displaying C3h symmetry, triphenylene derivative H3TTCA and dehydrobenzo[12]annulene (DBA) derivative DBACOOH, each having three carboxy groups per molecule. Scanning tunneling microscopy observations at the 1-heptanoic acid/graphite interface revealed H3TTCA exclusively forming a chiral honeycomb structure, and DBACOOH forming three structures (type I, II, and III structures) depending on its concentration and whether the system is subjected to annealing treatment. Hydrogen bonding interaction patterns and chirality were carefully analyzed based on a modeling study using molecular mechanics simulations. Moreover, DBACOOH forms chiral honeycomb structures through the co-adsorption of guest molecules. Structural diversity observed for DBACOOH is attributed to its relatively large core size, with this feature modulating the balance between molecule-molecule and molecule-substrate interactions.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Kotoka Oda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
4
|
Liu JW, Wang Y, Kang LX, Zhao Y, Xing GY, Huang ZY, Zhu YC, Li DY, Liu PN. Two-Dimensional Crystal Transition from Radialene to Cumulene on Ag(111) via Retro-[2 + 1] Cycloaddition. J Am Chem Soc 2023. [PMID: 37289993 DOI: 10.1021/jacs.3c00962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) crystal-to-crystal transition is an important method in crystal engineering because of its ability to directly create diverse crystal materials from one crystal. However, steering a 2D single-layer crystal-to-crystal transition on surfaces with high chemo- and stereoselectivity under ultra-high vacuum conditions is a great challenge because the transition is a complex dynamic process. Here, we report a highly chemoselective 2D crystal transition from radialene to cumulene with retention of stereoselectivity on Ag(111) via retro-[2 + 1] cycloaddition of three-membered carbon rings and directly visualize the transition process involving a stepwise epitaxial growth mechanism by the combination of scanning tunneling microscopy and non-contact atomic force microscopy. Using progression annealing, we found that isocyanides on Ag(111) at a low annealing temperature underwent sequential [1 + 1 + 1] cycloaddition and enantioselective molecular recognition based on C-H···Cl hydrogen bonding interactions to form 2D triaza[3]radialene crystals. In contrast, a higher annealing temperature induced the transformation of triaza[3]radialenes to generate trans-diaza[3]cumulenes, which were further assembled into 2D cumulene-based crystals through twofold N-Ag-N coordination and C-H···Cl hydrogen bonding interactions. By combining the observed distinct transient intermediates and density functional theory calculations, we demonstrate that the retro-[2 + 1] cycloaddition reaction proceeds via the ring opening of a three-membered carbon ring, sequential dechlorination/hydrogen passivation, and deisocyanation. Our findings provide new insights into the growth mechanism and dynamics of 2D crystals and have implications for controllable crystal engineering.
Collapse
Affiliation(s)
- Jian-Wei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Xia Kang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guang-Yan Xing
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zheng-Yang Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ya-Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Lei P, Ma L, Zhang S, Li J, Gan L, Deng K, Duan W, Li W, Zeng Q. The self-assembly and structural regulation of a hydrogen-bonded dimeric building block formed by two N-H…O hydrogen bonds on HOPG. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Wang D, Wang Z, Liu W, Zhong S, Feng YP, Loh KP, Wee ATS. Real-Space Investigation of the Multiple Halogen Bonds by Ultrahigh-Resolution Scanning Probe Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202368. [PMID: 35719029 DOI: 10.1002/smll.202202368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The chemical bond is of central interest in chemistry, and it is of significance to study the nature of intermolecular bonds in real-space. Herein, non-contact atomic force microscopy (nc-AFM) and low-temperature scanning tunneling microscopy (LT-STM) are employed to acquire real-space atomic information of molecular clusters, i.e., monomer, dimer, trimer, tetramer, formed on Au(111). The formation of the various molecular clusters is due to the diversity of halogen bonds. DFT calculation also suggests the formation of three distinct halogen bonds among the molecular clusters, which originates from the noncovalent interactions of Br-atoms with the positive potential H-atoms, neutral potential Br-atoms, and negative potential N-atoms, respectively. This work demonstrates the real-space investigation of the multiple halogen bonds by nc-AFM/LT-STM, indicating the potential use of this technique to study other intermolecular bonds and to understand complex supramolecular assemblies at the atomic/sub-molecular level.
Collapse
Affiliation(s)
- Dingguan Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Zishen Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Wei Liu
- School of Physics, Southeast University, 2 Southeast University Road, Nanjing, China
| | - Siying Zhong
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| |
Collapse
|
7
|
Kikkawa Y, Nagasaki M, Koyama E, Ito S, Tsuzuki S. Halogen bond-directed self-assembly in bicomponent blends at the solid/liquid interface: Effect of the alkyl chain substitution position. Phys Chem Chem Phys 2022; 24:17088-17097. [DOI: 10.1039/d2cp02206k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of well-organised molecular assemblies on surfaces is fundamental for the creation of functional molecular systems applicable to nanoelectronics and molecular devices. In this study, we investigated the effect...
Collapse
|
8
|
Chovnik O, Cohen SR, Pinkas I, Houben L, Gorelik TE, Feldman Y, Shimon LJW, Iron MA, Lahav M, van der Boom ME. Noncovalent Bonding Caught in Action: From Amorphous to Cocrystalline Molecular Thin Films. ACS NANO 2021; 15:14643-14652. [PMID: 34516094 DOI: 10.1021/acsnano.1c04355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate the solvent-free amorphous-to-cocrystalline transformations of nanoscale molecular films. Exposing amorphous films to vapors of a haloarene results in the formation of a cocrystalline coating. This transformation proceeds by gradual strengthening of halogen-bonding interactions as a result of the crystallization process. The gas-solid diffusion mechanism involves formation of an amorphous metastable phase prior to crystallization of the films. In situ optical microscopy shows mass transport during this process, which is confirmed by cross-section analysis of the final structures using focused ion beam milling combined with scanning electron microscopy. Nanomechanical measurements show that the rigidity of the amorphous films influences the crystallization process. This surface transformation results in molecular arrangements that are not readily obtained through other means. Cocrystals grown in solution crystallize in a monoclinic centrosymmetric space group, whereas the on-surface halogen-bonded assembly crystallizes into a noncentrosymmetric material with a bulk second-order nonlinear optical response.
Collapse
Affiliation(s)
- Olga Chovnik
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sidney R Cohen
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lothar Houben
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tatiana E Gorelik
- Electron Microscopy Group of Materials Science, Ulm University, Ulm 89081, Germany
| | - Yishay Feldman
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mark A Iron
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Lahav
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Milko E van der Boom
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Davidson JA, Sacchi M, Gorrec F, Clarke SM, Jenkins SJ. Halogen Bonding in Bicomponent Monolayers: Self-Assembly of a Homologous Series of Iodinated Perfluoroalkanes with Bipyridine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:627-635. [PMID: 33404242 PMCID: PMC8397337 DOI: 10.1021/acs.langmuir.0c02126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
A homologous series of halogen bonding monolayers based on terminally iodinated perfluoroalkanes and 4,4'-bipyridine have been observed on a graphitic surface and noninvasively probed using powder X-ray diffraction. An excellent agreement is observed between the X-ray structures and density functional theory calculations with dispersion force corrections. Theoretical analysis of the binding energies of the structures indicate that these halogen bonds are strong (25 kJ mol-1), indicating that the layers are highly stable. The monolayer structures are found to be distinct from any plane of the corresponding bulk structures, with limited evidence of partitioning of hydrocarbon and perfluoro tectons. The interchain interactions are found to be slightly stronger than those in related aromatic systems, with important implications for 2D crystal engineering.
Collapse
Affiliation(s)
| | - Marco Sacchi
- Department
of Chemistry, University of Surrey, Guildford, United Kingdom
| | - Fabrice Gorrec
- MRC
Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Stuart M. Clarke
- Department
of Chemistry, University of Cambridge, Cambridge, United Kingdom
- BP
Institute, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Jenkins
- Department
of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Halogen Bonds Fabricate 2D Molecular Self-Assembled Nanostructures by Scanning Tunneling Microscopy. CRYSTALS 2020. [DOI: 10.3390/cryst10111057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Halogen bonds are currently new noncovalent interactions due to their moderate strength and high directionality, which are widely investigated in crystal engineering. The study about supramolecular two-dimensional architectures on solid surfaces fabricated by halogen bonding has been performed recently. Scanning tunneling microscopy (STM) has the advantages of realizing in situ, real-time, and atomic-level characterization. Our group has carried out molecular self-assembly induced by halogen bonds at the liquid–solid interface for about ten years. In this review, we mainly describe the concept and history of halogen bonding and the progress in the self-assembly of halogen-based organic molecules at the liquid/graphite interface in our laboratory. Our focus is mainly on (1) the effect of position, number, and type of halogen substituent on the formation of nanostructures; (2) the competition and cooperation of the halogen bond and the hydrogen bond; (3) solution concentration and solvent effects on the molecular assembly; and (4) a deep understanding of the self-assembled mechanism by density functional theory (DFT) calculations.
Collapse
|
11
|
Kikkawa Y, Nagasaki M, Koyama E, Tsuzuki S, Fouquet T, Hiratani K. Dynamic host-guest behavior in halogen-bonded two-dimensional molecular networks investigated by scanning tunneling microscopy at the solid/liquid interface. NANOSCALE ADVANCES 2020; 2:4895-4901. [PMID: 36132910 PMCID: PMC9419264 DOI: 10.1039/d0na00616e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/14/2023]
Abstract
The fabrication of supramolecularly engineered two-dimensional (2D) networks using simple molecular building blocks is an effective means for studying host-guest chemistry at surfaces toward the potential application of such systems in nanoelectronics and molecular devices. In this study, halogen-bonded molecular networks were constructed by the combination of linear halogen-bond donor and acceptor ligands, and their 2D structures at the highly oriented pyrolytic graphite/1-phenyloctane interface were studied by scanning tunneling microscopy. The bi-component blend of the molecular building blocks possessing tetradecyloxy chains formed a lozenge structure via halogen bonding. Upon the introduction of an appropriate guest molecule (e.g., coronene) into the system, the 2D structure transformed into a hexagonal array, and the central pore of this array was occupied by the guest molecules. Remarkably, the halogen bonding of the original structure was maintained after the introduction of the guest molecule. Thus, the halogen-bonded molecular networks are applicable for assembling guest species on the substrate without the requirement of the conventional rigid molecular building blocks with C 3 symmetry.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Emiko Koyama
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Thierry Fouquet
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
12
|
Lawrence J, Sosso GC, Đorđević L, Pinfold H, Bonifazi D, Costantini G. Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding. Nat Commun 2020; 11:2103. [PMID: 32355173 PMCID: PMC7192931 DOI: 10.1038/s41467-020-15898-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Scanning tunnelling microscopy (STM) is commonly used to identify on-surface molecular self-assembled structures. However, its limited ability to reveal only the overall shape of molecules and their relative positions is not always enough to fully solve a supramolecular structure. Here, we analyse the assembly of a brominated polycyclic aromatic molecule on Au(111) and demonstrate that standard STM measurements cannot conclusively establish the nature of the intermolecular interactions. By performing high-resolution STM with a CO-functionalised tip, we clearly identify the location of rings and halogen atoms, determining that halogen bonding governs the assemblies. This is supported by density functional theory calculations that predict a stronger interaction energy for halogen rather than hydrogen bonding and by an electron density topology analysis that identifies characteristic features of halogen bonding. A similar approach should be able to solve many complex 2D supramolecular structures, and we predict its increasing use in molecular nanoscience at surfaces.
Collapse
Affiliation(s)
- James Lawrence
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Gabriele C Sosso
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
- Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Luka Đorđević
- School of Chemistry, Cardiff University, Park Place Main Building, Cardiff, CF10 3AT, UK
| | - Harry Pinfold
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Park Place Main Building, Cardiff, CF10 3AT, UK.
| | - Giovanni Costantini
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
13
|
Hulushe ST, Manyeruke MH, Louzada M, Rigin S, Hosten EC, Watkins GM. Exploring intermolecular contacts in multi-substituted benzaldehyde derivatives: X-ray, Hirshfeld surface and lattice energy analyses. RSC Adv 2020; 10:16861-16874. [PMID: 35496923 PMCID: PMC9053169 DOI: 10.1039/c9ra10752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/01/2020] [Indexed: 11/21/2022] Open
Abstract
Crystal structures of six benzaldehyde derivatives (1-6) have been determined and their supramolecular networks were established by an X-ray crystallographic study. The study has shown that the compounds are linked by various intermolecular interactions such as weak C-H⋯O hydrogen bonding, and C-H⋯π, π-π and halogen bonding interactions which consolidate and strengthen the formation of these molecular assemblies. The carbonyl group generates diverse synthons in 1-6via intermolecular C-H⋯O hydrogen bonds. An interplay of C-H⋯O hydrogen bonds, and C-H⋯π and π-π stacking interactions facilitates the formation of multi-dimensional supramolecular networks. Crystal packings in 4 and 5 are further generated by type I halogen⋯halogen bonding interactions. The differences in crystal packing are represented by variation of substitution positions in the compounds. Structure 3 is isomorphous with 4 but there are subtle differences in their crystal packing. The nature of intermolecular contacts in the structures has been studied through the Hirshfeld surfaces and two-dimensional fingerprint plots which serve as a comparison in constructing different supramolecular networks. The intermolecular interaction energies are quantified utilizing theorectical calculations for the title compounds and various analogous structures retrieved from the Cambridge Structural Database (CSD). Also intermolecular interactions for the molecular pairs are exctrated from respective crystal structures. Essentially, there are some invariant and variable intermolecular contacts realized between different groups in all six structures. The ab initio DFT total lattice energy (E Tot) calculations showed a direct correlation with thermal strengths of the title compounds.
Collapse
Affiliation(s)
- Siya T Hulushe
- Department of Chemistry, Rhodes University P.O. Box 94 Grahamstown 6139 South Africa
| | - Meloddy H Manyeruke
- Department of Chemistry, Rhodes University P.O. Box 94 Grahamstown 6139 South Africa
| | - Marcel Louzada
- Department of Chemistry, Rhodes University P.O. Box 94 Grahamstown 6139 South Africa
| | - Sergei Rigin
- Department of Chemistry, New Mexico Highlands University Las Vegas New Mexico 87701 USA
| | - Eric C Hosten
- Department of Chemistry, Nelson Mandela University P.O. Box 77000 Port Elizabeth 6031 South Africa
| | - Gareth M Watkins
- Department of Chemistry, Rhodes University P.O. Box 94 Grahamstown 6139 South Africa
| |
Collapse
|
14
|
Yang XQ, Yi ZY, Wang SF, Chen T, Wang D. Construction of 2D extended cocrystals on the Au(111) surface via IO aldehyde halogen bonds. Chem Commun (Camb) 2020; 56:3539-3542. [PMID: 32103215 DOI: 10.1039/d0cc00199f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D extended organic cocrystals were constructed using 1,4-diiodotetrafluorobenzene and aromatic aldehydes via IOaldehyde halogen bonds on an Au(111) surface. The competition and synergy of halogen bonds and hydrogen bonds in 2D co-crystallization were revealed by scanning tunneling microscopy.
Collapse
Affiliation(s)
- Xue-Qing Yang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China. and Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
| | - Zhen-Yu Yi
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sheng-Fu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.
| | - Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Teyssandier J, Mali KS, De Feyter S. Halogen Bonding in Two-Dimensional Crystal Engineering. ChemistryOpen 2020; 9:225-241. [PMID: 32071832 PMCID: PMC7011184 DOI: 10.1002/open.201900337] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Halogen bonds, which provide an intermolecular interaction with moderate strength and high directionality, have emerged as a promising tool in the repertoire of non-covalent interactions. In this review, we provide a survey of the literature where halogen bonding was used for the fabrication of supramolecular networks on solid surfaces. The definitions of, and the distinction between halogen bonding and halogen-halogen interactions are provided. Self-assembled networks formed at the solution/solid interface and at the vacuum-solid interface, stabilized in part by halogen bonding, are discussed. Besides the broad classification based on the interface at which the systems are studied, the systems are categorized further as those sustained by halogen-halogen and halogen-heteroatom contacts.
Collapse
Affiliation(s)
- Joan Teyssandier
- Division of Molecular Imaging and Photonics Department of ChemistryKU Leuven-University of LeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Kunal S. Mali
- Division of Molecular Imaging and Photonics Department of ChemistryKU Leuven-University of LeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics Department of ChemistryKU Leuven-University of LeuvenCelestijnenlaan 200F3001LeuvenBelgium
| |
Collapse
|
16
|
Auffray M, Charra F, Sosa Vargas L, Mathevet F, Attias AJ, Kreher D. Synthesis and photophysics of new pyridyl end-capped 3D-dithia[3.3]paracyclophane-based Janus tectons: surface-confined self-assembly of their model pedestal on HOPG. NEW J CHEM 2020. [DOI: 10.1039/d0nj00110d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Once synthesized, these new tectons demonstrated both ionic and coordination bonding. Surprisingly, P forms a quasi-square self-assembly independently of the underlying HOPG lattice.
Collapse
Affiliation(s)
- M. Auffray
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - F. Charra
- Service de Physique de l’Etat Condensé
- CEA CNRS Université Paris-Saclay
- CEA Saclay
- F-91191 Gif-sur-Yvette Cedex
- France
| | - L. Sosa Vargas
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - F. Mathevet
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - A.-J. Attias
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - D. Kreher
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| |
Collapse
|
17
|
Flores L, López Duarte I, Gómez-Lor B, Gutierrez-Puebla E, Hennrich G. Supramolecular synthesis with N-hetero-tolanes: liquid crystals and hydrogen-bonded and halogen-bonded co-crystals. CrystEngComm 2020. [DOI: 10.1039/c9ce01551e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular, crystalline aggregates are obtained from EO-active N-hetero-tolanes by protonation or halogen bonding.
Collapse
Affiliation(s)
- Linda Flores
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Instituto de Ciencia de Materiales de Madrid
| | - Ismael López Duarte
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Berta Gómez-Lor
- Instituto de Ciencia de Materiales de Madrid
- ICMM-CSIC
- 28049 Madrid
- Spain
| | | | - Gunther Hennrich
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
18
|
Carloni LE, Bezzu CG, Bonifazi D. Patterning Porous Networks through Self-Assembly of Programmed Biomacromolecules. Chemistry 2019; 25:16179-16200. [PMID: 31491049 DOI: 10.1002/chem.201902576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom-up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two-dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self-assembly through specific hydrogen-bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
Collapse
Affiliation(s)
- Laure-Elie Carloni
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - C Grazia Bezzu
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| | - Davide Bonifazi
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| |
Collapse
|
19
|
Tetrahydroberberine pharmaceutical salts/cocrystals with dicarboxylic acids: Charge-assisted hydrogen bond recognitions and solubility regulation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Cheng M, Li M. A C-N Coupling Polymerization on Ice-Surface towards Decimeter-Sized 2D Covalent Materials with High Catalytic Activity for Water-Splitting. Chemistry 2019; 25:13860-13864. [PMID: 31420896 DOI: 10.1002/chem.201902587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/03/2019] [Indexed: 11/11/2022]
Abstract
Compared to other solid templates (metal, ceramic, carbon, etc.), polymerization on ice-surface has many advantages. However, the popularity of this method has been impeded by the lack of appropriate polymerization reactions. To date, only few oxidation polymerizations have been reported to occur on ice-surface, and unfortunately they can only produce supramolecular films rather than fully covalent films. Herein for the first time, 2D covalent materials have been created on ice-surface even at -16 °C through a C-N coupling polymerization, and two free-standing 2D polyarylamines (2DPA)s were synthesized. Both 2DPAs have decimeter-size and nanometer thickness. This study provides the first polymerization reaction to synthesize 2D covalent materials on ice-surface, which can be used to fabricate materials/tools/robots with specific 2D structure by copying ice morphologies. Furthermore, both 2DPAs exhibit higher hydrogen evolution reaction activity than many metal-free catalysts and even some metal-based catalysts, so this study also provides further insight for the development of metal-free catalysts for water-splitting.
Collapse
Affiliation(s)
- Ming Cheng
- Hubei Collaborative Innovation Center for Advanced Organic, Chemical Materials, Ministry-of-Education Key Laboratory for, the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of, Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Organic, Chemical Materials, Ministry-of-Education Key Laboratory for, the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of, Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
21
|
Li SY, Yang XQ, Chen T, Wang D, Zhu GS, Wan LJ. 2D Co-crystallization of molecular homologues promoted by size complementarity of the alkyl chains at the liquid/solid interface. Phys Chem Chem Phys 2019; 21:17846-17851. [PMID: 31378794 DOI: 10.1039/c9cp03863a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co-crystallization of organic molecules is an important strategy for the fabrication of molecular materials. In this contribution, we investigated the mixing behavior of 5-(benzyloxy)-isophthalic acid homologues (BIC-Cn, n = 6, 8, 10, 12, and 14) at the liquid/solid interface using a scanning tunneling microscope. Deposition of the single component of BIC-Cn always results in typical honeycomb networks, whereas co-deposition of two BIC-Cn homologues leads to hybrid double-walled honeycomb networks or phase separation depending on the difference in the length of their alkyl chains. 2D co-crystallization can only be realized for BIC-C6/BIC-C10 or BIC-C8/BIC-C12 which have a four-methyl unit difference in their alkyl chains. The size complementarity of the alkyl chains in the two components suggests that it is responsible for the 2D co-crystallization, though hydrogen bonding contributes a lot both to the pristine honeycomb network and to the hybrid co-crystal. This result is of importance for understanding the role of van der Waals interaction and its interplay with hydrogen bonding in 2D co-crystallization.
Collapse
Affiliation(s)
- Shu-Ying Li
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | | | | | | | | | | |
Collapse
|
22
|
Mukherjee A, Sanz-Matias A, Velpula G, Waghray D, Ivasenko O, Bilbao N, Harvey JN, Mali KS, De Feyter S. Halogenated building blocks for 2D crystal engineering on solid surfaces: lessons from hydrogen bonding. Chem Sci 2019; 10:3881-3891. [PMID: 31015930 PMCID: PMC6461103 DOI: 10.1039/c8sc04499f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Halogen bonding has emerged as a promising tool in two-dimensional (2D) crystal engineering. Since halogen bonds are similar to hydrogen bonds in a number of aspects, the existing knowledge of hydrogen bonded systems can be applied to halogenated systems. Here we evaluate the applicability of a retrosynthetic approach based on topological similarity between hydrogen and halogen bonds to obtain predictable halogen bonded networks. The self-assembly of 1,3-dibromo-5-alkoxybenzene derivatives was studied in analogy with well-explored alkoxy isophthalic acids using a combination of experimental and theoretical tools. Scanning tunneling microscopy (STM) characterization of the networks formed at the liquid-graphite interface revealed that while the retrosynthetic approach works at the level of small clusters of molecules within the 2D network, the overall structure of the network deviates from the anticipated structure. The monolayers consist of fractured rows of halogen-bonded modules instead of the expected continuous lamellar structure. Each module consists of a discrete number of halogen-bonded molecules. The interactions responsible for the stabilization of halogen bonded dimers are delineated through detailed density functional theory (DFT) calculations coupled with natural bonding orbitals (NBO) and perturbation analysis. A modified force field that includes an extra charged site to imitate the σ hole on the halogen atom was developed and applied to extract total potential energies of the anticipated and observed networks. Plausible reasons for the deviation from the anticipated structure are discussed. Finally, a modified molecular design that allows successful application of the hydrogen bond-halogen bond analogy was tested experimentally.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Division of Molecular Imaging and Photonics , Department of Chemistry , KU Leuven , Celestijnenlaan, 200F , B-3001 Leuven , Belgium . ;
| | - Ana Sanz-Matias
- Quantum Chemistry and Physical Chemistry , Department of Chemistry , KU Leuven , BE-3001 Leuven , Belgium .
| | - Gangamallaiah Velpula
- Division of Molecular Imaging and Photonics , Department of Chemistry , KU Leuven , Celestijnenlaan, 200F , B-3001 Leuven , Belgium . ;
| | - Deepali Waghray
- Division of Molecular Imaging and Photonics , Department of Chemistry , KU Leuven , Celestijnenlaan, 200F , B-3001 Leuven , Belgium . ;
| | - Oleksandr Ivasenko
- Division of Molecular Imaging and Photonics , Department of Chemistry , KU Leuven , Celestijnenlaan, 200F , B-3001 Leuven , Belgium . ;
| | - Nerea Bilbao
- Division of Molecular Imaging and Photonics , Department of Chemistry , KU Leuven , Celestijnenlaan, 200F , B-3001 Leuven , Belgium . ;
| | - Jeremy N Harvey
- Quantum Chemistry and Physical Chemistry , Department of Chemistry , KU Leuven , BE-3001 Leuven , Belgium .
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics , Department of Chemistry , KU Leuven , Celestijnenlaan, 200F , B-3001 Leuven , Belgium . ;
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics , Department of Chemistry , KU Leuven , Celestijnenlaan, 200F , B-3001 Leuven , Belgium . ;
| |
Collapse
|
23
|
Kikkawa Y, Nagasaki M, Koyama E, Tsuzuki S, Hiratani K. Hexagonal array formation by intermolecular halogen bonding using a binary blend of linear building blocks: STM study. Chem Commun (Camb) 2019; 55:3955-3958. [PMID: 30874258 DOI: 10.1039/c9cc00532c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hexagonal arrays were fabricated via intermolecular halogen bonding between two linear molecular building blocks in a bicomponent blend. The substitution position of the pyridine N atom involved in the halogen bond plays an important role in the formation of the hexagonal structures.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Emiko Koyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
24
|
Jana A, Mishra P, Das N. Polymorphic self-assembly of pyrazine-based tectons at the solution-solid interface. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:494-499. [PMID: 30873321 PMCID: PMC6404514 DOI: 10.3762/bjnano.10.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Exploring the surface self-assembly of small molecules that act as building blocks (tectons) for complex supramolecular structures is crucial for realizing surface-supported functional molecular devices. Here, we report on the synthesis and surface self-assembly of a new pyrazine-derived molecule with pyridine pendants. Ambient scanning tunneling microscopy investigation at the solution-solid interface reveals polymorphic self-assembly of these molecules on a HOPG substrate. Two different molecular packing structures with equal distribution are observed. Detailed analysis of the STM images emphasizes the crucial role of weak intermolecular hydrogen bonding, and molecule-substrate interactions in the formation of the observed polymorphs. Such weak hydrogen bonding interactions are highly desirable for the formation of modular supramolecular architectures since they can provide sufficiently robust molecular structures and also facilitate error correction.
Collapse
Affiliation(s)
- Achintya Jana
- Indian Institute of Technology Patna, Bihta, Patna-801106, India
| | - Puneet Mishra
- Central University of South Bihar, Gaya-824236, India
| | - Neeladri Das
- Indian Institute of Technology Patna, Bihta, Patna-801106, India
| |
Collapse
|
25
|
Li A, Wang J, Liu Y, Xu S, Chu N, Geng Y, Li B, Xu B, Cui H, Xu W. Remarkable pressure-induced emission enhancement based on intermolecular charge transfer in halogen bond-driven dual-component co-crystals. Phys Chem Chem Phys 2018; 20:30297-30303. [PMID: 30484469 DOI: 10.1039/c8cp06363j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of two-component co-crystals driven by IN interactions based on the bipyridine (BIPY) chromophore with one among three different co-former building blocks, iodopentafluorobenzene (IPFB), 1,4-diiodotetrafluorobenzene (DITFB) and 1,3,5-trifluoro-2,4,6-triiodobenzene (IFB), were prepared and analysed via infared spectroscopy and single-crystal X-ray diffraction. By comparing the IN distances in the co-crystal structures, we found that the higher the -F ratio in the building blocks the closer the contact of the IN bond, enhancing the intermolecular interactions in these co-crystals as well. That is, the positive electrostatic potential on the iodine atom(s) in the co-formers was enhanced by the presence of strong electron-withdrawing groups. The distinct spectroscopic behaviours (fluorescence and Raman spectra) among the two-component BIPY co-crystal systems in response to hydrostatic pressure were also investigated. Interestingly, the fluorescence of BIPY-DITFB presented intriguing abnormal evolution from dark to bright, suggesting a new charge transfer state due to the decreased intermolecular distance and the enhanced IN interactions. Theoretical simulations by Materials Studio also showed the shortened IN distance and the increased angle of C-IN, evidencing the enhanced IN interactions. In contrast, BIPY-IFB showed only slightly enhanced fluorescence intensity at 550 nm consistent with BIPY-DITFB. Once the pressure was relieved, both the Raman and fluorescence spectra for BIPY co-crystal systems entirely self-recovered. Remarkable emission enhancement in a solid-state co-crystal has been rarely reported in previous publications and in fact, this study paves a unique way for designing and developing novel stimuli-responsive photo-functional materials.
Collapse
Affiliation(s)
- Aisen Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699 Qianjin Street, Changchun, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kinzhalov MA, Kashina MV, Mikherdov AS, Mozheeva EA, Novikov AS, Smirnov AS, Ivanov DM, Kryukova MA, Ivanov AY, Smirnov SN, Kukushkin VY, Luzyanin KV. Dramatically Enhanced Solubility of Halide-Containing Organometallic Species in Diiodomethane: The Role of Solvent⋅⋅⋅Complex Halogen Bonding. Angew Chem Int Ed Engl 2018; 57:12785-12789. [DOI: 10.1002/anie.201807642] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Mikhail A. Kinzhalov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Mariya V. Kashina
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Alexander S. Mikherdov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Ekaterina A. Mozheeva
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Alexander S. Novikov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Andrey S. Smirnov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Daniil M. Ivanov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Mariya A. Kryukova
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Aleksandr Yu. Ivanov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Sergej N. Smirnov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
- Institute of Macromolecular Compounds; Russian Academy of Sciences; 31, Bolshoii Pr. Saint Petersburg 199004 Russia
| | - Konstantin V. Luzyanin
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
- Department of Chemistry; University of Liverpool; Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
27
|
Kinzhalov MA, Kashina MV, Mikherdov AS, Mozheeva EA, Novikov AS, Smirnov AS, Ivanov DM, Kryukova MA, Ivanov AY, Smirnov SN, Kukushkin VY, Luzyanin KV. Dramatically Enhanced Solubility of Halide-Containing Organometallic Species in Diiodomethane: The Role of Solvent⋅⋅⋅Complex Halogen Bonding. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mikhail A. Kinzhalov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Mariya V. Kashina
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Alexander S. Mikherdov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Ekaterina A. Mozheeva
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Alexander S. Novikov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Andrey S. Smirnov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Daniil M. Ivanov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Mariya A. Kryukova
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Aleksandr Yu. Ivanov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Sergej N. Smirnov
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
- Institute of Macromolecular Compounds; Russian Academy of Sciences; 31, Bolshoii Pr. Saint Petersburg 199004 Russia
| | - Konstantin V. Luzyanin
- Saint Petersburg State University; 7/9, Universitetskaya nab. Saint Petersburg 199034 Russia
- Department of Chemistry; University of Liverpool; Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
28
|
Garah ME, Cook TR, Sepehrpour H, Ciesielski A, Stang PJ, Samorì P. Concentration-dependent supramolecular patterns of C 3 and C 2 symmetric molecules at the solid/liquid interface. Colloids Surf B Biointerfaces 2018; 168:211-216. [PMID: 29198983 DOI: 10.1016/j.colsurfb.2017.11.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022]
Abstract
Here we report on a scanning tunnelling microscopy (STM) investigation on the self-assembly of C3- and C2-symmetric molecules at the solution/graphite interface. 1,3,5-tris((E)-2-(pyridin-4-yl)vinyl)benzene and 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane are used as model systems. These molecules displayed a concentration dependent self-assembly behaviour on graphite, resulting in highly ordered supramolecular structures, which are stabilized jointly by van der Waals substrate-adsorbate interactions and in-plane intermolecular H-bonding. Denser packing is obtained when applying a relatively high concentration solution to the basal plane of the surface whereas a less dense porous network is observed upon lowering the concentration. We show that the molecular conformation does not influence the stability of the self-assembly and a twisted molecule can pack into dense and porous architectures under the concentration effect.
Collapse
Affiliation(s)
- Mohamed El Garah
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| | - Timothy R Cook
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, United State
| | - Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, United State
| | - Artur Ciesielski
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France.
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, United State.
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France.
| |
Collapse
|
29
|
Ma L, Peng H, Lu X, Liu L, Shao X. Building up 1-D, 2-D, and 3-D Polyiodide Frameworks by Finely Tuning the Size of Aryls on Ar-S-TTF in the Charge-Transfer (CT) Complexes of Ar-S-TTFs and Iodine. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Longfei Ma
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Haili Peng
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Xiaofeng Lu
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Lei Liu
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| |
Collapse
|
30
|
Sivchik V, Sarker RK, Liu ZY, Chung KY, Grachova EV, Karttunen AJ, Chou PT, Koshevoy IO. Improvement of the Photophysical Performance of Platinum-Cyclometalated Complexes in Halogen-Bonded Adducts. Chemistry 2018; 24:11475-11484. [PMID: 29874401 DOI: 10.1002/chem.201802182] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 01/28/2023]
Abstract
Three groups of luminescent platinum complexes [Pt(C^N)(L)(Y)] [C^N=benzothienyl-pyridine (1), bezofuryl-pyridine (2), phenyl-pyridine (3); L/Y=DMSO/Cl (a), PPh3 /Cl (b), PPh3 /CN (c)] have been probed as halogen-bond (XB) acceptors towards iodofluorobenzenes (IC6 F5 and I2 C6 F4 ). Compounds 1 a and 2 a (L/Y=DMSO/Cl) afford the adducts 1 a⋅⋅⋅I2 C6 F4 and 2 a⋅⋅⋅I2 C6 F4 , which feature I⋅⋅⋅Sbtpy /I⋅⋅⋅πbtpy and I⋅⋅⋅ODMSO /I⋅⋅⋅Cl short contacts, respectively. The phosphane-cyanide derivatives 1 c and 2 c (L/Y=PPh3 /CN) co-crystallise with both IC6 F5 and I2 C6 F4 . None of the phpy-based species 3 a-3 c participated in XB interactions. Although the native complexes are rather poor luminophores in the solid state (Φem =0.023-0.089), the adducts exhibit an up to 10-fold increase of the intensity with a minor alteration of the emission energy. The observed gain in the quantum efficiency is mainly attributed to the joint influence of non-covalent interactions (halogen/hydrogen bonding, π-π stacking), which govern the crystal-packing mode and diminish the radiationless pathways for the T1 →S0 transition by providing a rigid environment around the chromophore.
Collapse
Affiliation(s)
- Vasily Sivchik
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Rajib Kumar Sarker
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Zong-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Kun-You Chung
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Elena V Grachova
- Institute of Chemistry, St.-Petersburg State University, 26 Universitetskiy pr., Petergof, St.-Petersburg, Russia
| | - Antti J Karttunen
- Department of Chemistry and Materials Science, Aalto University, FI-00076, Aalto, Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| |
Collapse
|
31
|
Dong R, Zhang T, Feng X. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chem Rev 2018; 118:6189-6235. [DOI: 10.1021/acs.chemrev.8b00056] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Renhao Dong
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Tao Zhang
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
32
|
Cheng KY, Lee SL, Kuo TY, Lin CH, Chen YC, Kuo TH, Hsu CC, Chen CH. Template-Assisted Proximity for Oligomerization of Fullerenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5416-5421. [PMID: 29676918 DOI: 10.1021/acs.langmuir.8b00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Demonstrated herein is an unprecedented porous template-assisted reaction at the solid-liquid interface involving bond formation, which is typically collision-driven and occurs in the solution and gas phases. The template is a TMA (trimesic acid) monolayer with two-dimensional pores that host fullerenes, which otherwise exhibit an insignificant affinity to an undecorated graphite substrate. The confinement of C84 units in the TMA pores formulates a proximity that is ideal for bond formation. The oligomerization of C84 is triggered by an electric pulse via a scanning tunneling microscope tip. The spacing between C84 moieties becomes 1.4 nm, which is larger than the edge-to-edge diameter of 1.1-1.2 nm of C84 due to the formation of intermolecular single bonds. In addition, the characteristic mass-to-charge ratios of dimers and trimers are observed by mass spectrometry. The experimental findings shed light on the active role of spatially tailored templates in facilitating the chemical activity of guest molecules.
Collapse
Affiliation(s)
- Kum-Yi Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Shern-Long Lee
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Ting-Yang Kuo
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Chih-Hsun Lin
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Yen-Chen Chen
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Ting-Hao Kuo
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Center for Emerging Material and Advanced Devices , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| |
Collapse
|
33
|
Poppe S, Chen C, Liu F, Tschierske C. A skeletal double gyroid formed by single coaxial bundles of catechol based bolapolyphiles. Chem Commun (Camb) 2018; 54:11196-11199. [DOI: 10.1039/c8cc06956e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new cubic phase is reported, formed by two networks of rod-bundles with one molecule length and containing discrete polar aggregates at the junctions.
Collapse
Affiliation(s)
- Silvio Poppe
- Institute of Chemistry
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle
- Germany
| | - Changlong Chen
- State Key Laboratory for Mechanical Behaviour of Materials
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Carsten Tschierske
- Institute of Chemistry
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle
- Germany
| |
Collapse
|
34
|
Nishitani N, Hirose T, Matsuda K. Influence of Multidirectional Interactions on Domain Size and Shape of 2-D Molecular Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9151-9159. [PMID: 28783345 DOI: 10.1021/acs.langmuir.7b02094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of molecule-molecule interactions on the size and shape of two-dimensional (2-D) ordering domains was investigated using scanning tunneling microscopy (STM) at the liquid/solid interface. Synthesized alkoxybenzene derivatives bearing amide group tend to form very large domains of 2-D orderings (>0.25 μm2), whereas the domain size of corresponding urea derivatives was significantly small in the same condition. The quantitative analysis of the concentration dependence of surface coverage using a nucleation-elongation model suggests that the replacement of amide functionality by urea increased the equilibrium constant of the nucleation process of 2-D self-assembly, which is a key factor for the domain size at the liquid/solid interface. Interestingly, the STM observation revealed that a slight difference of molecular structure influences the shape of 2-D ordering domains, and needle-shaped domains with large aspect ratio around 10 were observed by tuning molecule-molecule intramolecular interactions in 2-D self-assembly formed at a liquid/graphite interface.
Collapse
Affiliation(s)
- Nobuhiko Nishitani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
35
|
Baillargeon P, Rahem T, Caron-Duval É, Tremblay J, Fortin C, Blais É, Fan V, Fortin D, Dory YL. Isomorphous crystal structures of chlorodi-acetyl-ene and iododi-acetyl-ene derivatives: simultaneous hydrogen and halogen bonds on carbon-yl. Acta Crystallogr E Crystallogr Commun 2017; 73:1175-1179. [PMID: 28932431 PMCID: PMC5598843 DOI: 10.1107/s2056989017010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 07/07/2017] [Indexed: 12/02/2022]
Abstract
The crystal structures of tert-butyl (5-chloro-penta-2,4-diyn-1-yl)carbamate, C10H12ClNO2 (II), and tert-butyl (5-iodo-penta-2,4-diyn-1-yl)carbamate, C10H12INO2 (IV), are isomorphous to previously reported structures and accordingly their mol-ecular and supra-molecular structures are similar. In the crystals of (II) and (IV), mol-ecules are linked into very similar two-dimensional wall organizations with anti-parallel carbamate groups involved in a combination of hydrogen and halogen bonds (bifurcated N-H⋯O=C and C≡C-X⋯O=C inter-actions on the same carbonyl group). There is no long-range parallel stacking of diynes, so the topochemical polymerization of di-acetyl-ene is prevented. A Cambridge Structural Database search revealed that C≡C-X⋯O=C contacts shorter than the sum of the van der Waals radii are scarce (only one structure for the C≡C-Cl⋯O=C inter-action and 13 structures for the similar C≡C-I⋯O=C inter-action).
Collapse
Affiliation(s)
- Pierre Baillargeon
- Département de Chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada
| | - Tarik Rahem
- Département de Chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada
| | - Édouard Caron-Duval
- Département de Chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada
| | - Jacob Tremblay
- Département de Chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada
| | - Cloé Fortin
- Département de Chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada
| | - Étienne Blais
- Département de Chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada
| | - Victor Fan
- Département de Chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada
| | - Daniel Fortin
- Laboratoire d’Analyses Structurales par Diffraction des Rayons-X, Département de Chimie, Université de Sherbrooke, 2500, boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Yves L. Dory
- Laboratoire de Synthèse Supramoléculaire, Département de Chimie, Institut de Pharmacologie, Université de Sherbrooke, 3001 12e avenue nord, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|