1
|
Dilinaer AD, J Jobin G, Drover MW. A catalytic collaboration: pairing transition metals and Lewis acids for applications in organic synthesis. Dalton Trans 2024. [PMID: 38976284 DOI: 10.1039/d4dt01550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The use of metal catalysts to accelerate an organic transformation has proven indispensable for access to structural motifs having applications across medicinal, polymer, materials chemistry, and more. Most catalytic approaches have cast transition metals in the "leading role"; these players mediate important reactions such as C-C cross coupling and the hydrogenation of unsaturated bonds. These catalysts may require collaboration, featuring Lewis acidic or basic additives to promote a desired reaction outcome. Lewis acids can serve to accelerate reactions by way of substrate stabilization and/or activation, and as such, are valuable in optimizing catalytic transformations. A burgeoning area of chemical research which unifies these concepts has thus sought to develop transition metal complexes having ambiphilic (containing a Lewis basic and acidic unit) ligands. This approach takes advantage of metal-ligand cooperativity to increase the efficiency of a given chemical transformation, leveraging intramolecular interactions between a transition metal and an adjacent secondary ligand site. While this has shown significant potential to facilitate challenging and important transformations, there remains unexplored depth for creativity and future advancement. This Frontier highlights inter- and intramolecular combinations of transition metals and Lewis acids that together, provide a collaborative platform for chemical synthesis.
Collapse
Affiliation(s)
- A Dina Dilinaer
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada.
| | - Gabriel J Jobin
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada.
| | - Marcus W Drover
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada.
| |
Collapse
|
2
|
Wang B, Huang X, Bi H, Liu J. Electroreductive alkylations of (hetero)arenes with carboxylic acids. Nat Commun 2024; 15:4970. [PMID: 38862567 PMCID: PMC11166922 DOI: 10.1038/s41467-024-49355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Carboxylic acids are widely available and generally inexpensive from abundant biomass feedstocks, and they are suitable and generic coupling partners in synthetic chemistry. Reported herein is an electroreductive coupling of stable and versatile carboxylic acids with (hetero)arenes using protons as the hydrogen source. The application of an earth-abundant titanium catalyst has significantly improved the deoxygenative reduction process. Preliminary mechanistic studies provide insights into the deoxygenative reduction of in-situ generated ketone pathway, and the intermediacy generation of ketyl radical and alkylidene titanocene. Without the necessity of pressurized hydrogen or stoichiometric hydride as reductants, this protocol enables highly selective and straightforward synthesis of various functionalized and structurally diverse alkylbenzenes under mild conditions. The utility of this reaction is further demonstrated through practical and valuable isotope incorporation from readily available deuterium source.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Xianshuai Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Huihua Bi
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China.
- Greater Bay Area Institute for Innovation, Hunan University, 511300, Guangzhou, China.
| |
Collapse
|
3
|
Zhang R, Ma R, Chen R, Wang L, Ma Y. Regioselective C 3Alkylation of Indoles for the Synthesis of Bis(indolyl)methanes and 3-Styryl Indoles. J Org Chem 2024; 89:1846-1857. [PMID: 38214898 DOI: 10.1021/acs.joc.3c02551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Herein, we describe an efficient transition-metal-free regioselective C3alkylation of indoles for the synthesis of bis(indolyl)methanes and 3-styryl indoles. Nitrobenzene is employed as the oxidant to oxidize the alcohols in the presence of a strong base and the reaction avoids the use of transition metals such as Ru and Mn. The protocol provides a favorable route to access biologically active compounds such as arundine, vibrindole A, and turbomycin B.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| |
Collapse
|
4
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. Oxygen Dependent Switchable Selectivity during Ruthenium Catalyzed Selective Synthesis of C3-Alkylated Indoles and Bis(indolyl)methanes. J Org Chem 2023. [PMID: 38015094 DOI: 10.1021/acs.joc.3c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, we report a ligand-centered redox-controlled oxygen-dependent switchable selectivity during ruthenium-catalyzed selective synthesis of C3-alkylated indoles and bis(indolyl)methanes (BIMs). A wide variety of C3-alkylated indoles and BIMs were prepared selectively in moderate to good isolated yields by coupling a wide variety of indoles and alcohols, catalyzed by a well-defined, air-stable, and easy-to-prepare Ru(II)-catalyst (1a) bearing a redox-active tridentate pincer (L1a). Catalyst 1a efficiently catalyzed the C3-alkylation of indoles under an argon atmosphere while, under an oxygen environment, exclusively producing the BIMs. A few drug molecules containing BIMs were also synthesized efficiently. 1a exhibited excellent chemoselectivity with alcohols containing internal carbon-carbon double bonds. Mechanistic investigation revealed that the coordinated azo-aromatic ligand actively participates during the catalysis. During the dehydrogenation of alcohols, the azo-moiety of the ligand stores the hydrogen removed from the alcohols and subsequently transfers the hydrogen to the alkylideneindolenine intermediate, forming the C3-alkylated indoles. While under an oxygen environment, the transfer of hydrogen from the ligand scaffold to the molecular oxygen generates H2O2, leaving no scope for hydrogenation of the alkylideneindolenine intermediate, rather than it undergoing 1,4-Michael-type addition forming the BIMs.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
5
|
Ghosh P, Kwon NY, Byun Y, Mishra NK, Park JS, Kim IS. Cobalt(II)-Catalyzed C–H Alkylation of N-Heterocycles with 1,4-Dihydropyridines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Jung Su Park
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Cheng X, Wang L, Liu Y, Wan X, Xiang Z, Li R, Wan X. Molecular Iodine‐Catalysed Reductive Alkylation of Indoles: Late‐Stage Diversification for Bioactive Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xionglve Cheng
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Lili Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Yide Liu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiao Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Zixin Xiang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Ruyi Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiaobing Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Renai road 215123 Suzhou CHINA
| |
Collapse
|
7
|
Mondal A, Sharma R, Dutta B, Pal D, Srimani D. Well-Defined NNS-Mn Complex Catalyzed Selective Synthesis of C-3 Alkylated Indoles and Bisindolylmethanes Using Alcohols. J Org Chem 2022; 87:3989-4000. [PMID: 35258302 DOI: 10.1021/acs.joc.1c02702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we demonstrated Mn-catalyzed selective C-3 functionalization of indoles with alcohols. The developed catalyst can also furnish bis(indolyl)methanes from the same set of substrates under slightly modified reaction conditions. Mechanistic studies reveal that the C-3 functionalization of indoles is going via a borrowing hydrogen pathway. To highlight the practical utility, a diverse range of substrates including nine structurally important drug molecules are synthesized. Furthermore, we also introduced a one-pot cascade strategy for synthesizing C-3 functionalized indoles directly from 2-aminophenyl ethanol and alcohol.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Rahul Sharma
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Bishal Dutta
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
8
|
Abstract
Cobalt-NHC complexes have emerged as an attractive class of 3d transition metal catalysts for a broad range of chemical processes, including cross-coupling, hydrogenation, hydrofunctionalization and cycloaddition reactions. Herein, we present a comprehensive review of catalytic methods utilizing cobalt-NHC complexes with a focus on catalyst structure, the role of the NHC ligand, properties of the catalytic system, mechanism and synthetic utility. The survey clearly suggests that the recent emergence of well-defined cobalt-NHC catalysts may have a tremendous utility in the design and application of catalytic reactions using more abundant 3d transition metals.
Collapse
Affiliation(s)
- Sourav Sekhar Bera
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
9
|
Li J, Huang C, Li C. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chia‐Yu Huang
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chao‐Jun Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
10
|
Li J, Li CJ, Huang CY. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2021; 61:e202112770. [PMID: 34780098 DOI: 10.1002/anie.202112770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Conversion of carbonyl compounds, including aldehydes, ketones and carboxylic acids, into functionalized alkanes via deoxygenation would be highly desirable from a sustainability perspective and very enabling in chemical synthesis. This review covers the recent methodology development in carbonyl and carboxyl deoxygenative functionalizations, highlighting some typical and significant contributions in this field. These advances will be categorized based on types of bond formation, and in each part, selected examples will be discussed from their generalized mechanistic perspectives. Four summarized reactivity modes of aldehydes and ketones during the deoxygenation, namely, bis-electrophile, carbenoid, bis-nucleophile and alkyl radical, are presented, while the carboxylic acids are deoxygenated mainly via activated carbonyl or acetal intermediates.
Collapse
Affiliation(s)
| | - Chao-Jun Li
- McGill University, Chemistry, 801 Sherbrooke St. West, H3A0B8, Montreal, CANADA
| | | |
Collapse
|
11
|
Bijoy R, Agarwala P, Roy L, Thorat BN. Unconventional Ethereal Solvents in Organic Chemistry: A Perspective on Applications of 2-Methyltetrahydrofuran, Cyclopentyl Methyl Ether, and 4-Methyltetrahydropyran. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rachel Bijoy
- Institute of Chemical Technology Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Pratibha Agarwala
- Institute of Chemical Technology Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Bhaskar N. Thorat
- Institute of Chemical Technology Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| |
Collapse
|
12
|
Zhang S, Duan YN, Qian Y, Tang W, Zhang R, Wen J, Zhang X. Cobalt-Catalyzed Hydrogenative Transformation of Nitriles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shaoke Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ya-Nan Duan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Yu Qian
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Wenyue Tang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Runtong Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
13
|
Xie R, Mao W, Jia H, Sun J, Lu G, Jiang H, Zhang M. Reductive electrophilic C-H alkylation of quinolines by a reusable iridium nanocatalyst. Chem Sci 2021; 12:13802-13808. [PMID: 34760165 PMCID: PMC8549771 DOI: 10.1039/d1sc02967c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
The incorporation of a coupling step into the reduction of unsaturated systems offers a desirable way for diverse synthesis of functional molecules, but it remains to date a challenge due to the difficulty in controlling the chemoselectivity. Herein, by developing a new heterogeneous iridium catalyst composed of Ir-species (Irδ+) and N-doped SiO2/TiO2 support (Ir/N-SiO2/TiO2), we describe its application in reductive electrophilic mono and dialkylations of quinolines with various 2- or 4-functionalized aryl carbonyls or benzyl alcohols by utilizing renewable formic acid as the reductant. This catalytic transformation offers a practical platform for direct access to a vast range of alkyl THQs, proceeding with excellent step and atom-efficiency, good substrate scope and functional group tolerance, a reusable catalyst and abundantly available feedstocks, and generation of water and carbon dioxide as by-products. The work opens a door to further develop more useful organic transformations under heterogeneous reductive catalysis. By developing a heterogeneous iridium catalyst composed of a N-doped SiO2/TiO2 support and Ir-species (Ir/N-SiO2/TiO2), its application in reductive electrophilic alkylation of quinolines with various aryl carbonyls or benzyl alcohols is presented.![]()
Collapse
Affiliation(s)
- Rong Xie
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Wenhui Mao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Huanhuan Jia
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Jialu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Guangpeng Lu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510641 People's Republic of China
| |
Collapse
|
14
|
Ankade SB, Samal PP, Soni V, Gonnade RG, Krishnamurty S, Punji B. Ni(II)-Catalyzed Intramolecular C–H/C–H Oxidative Coupling: An Efficient Route to Functionalized Cycloindolones and Indenoindolones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shidheshwar B. Ankade
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pragnya Paramita Samal
- Physical and Materials Chemistry Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vineeta Soni
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh G. Gonnade
- Centre for Material Characterization, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO 2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021; 14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Ether derivatives have myriad applications in several areas of chemical industry and academia. Hence, the development of more effective and sustainable protocols for their production is highly desired. Among the different methodologies reported for ether synthesis, catalytic reductive alcohol etherifications with carbonyl-based moieties (aldehydes/ketones and carboxylic acid derivatives) have emerged in the last years as a potential tool. These processes constitute appealing routes for the selective production of both symmetrical and asymmetrical ethers (including O-heterocycles) with an increased molecular complexity. Likewise, ester-to-ether catalytic reductions and hydrogenative alcohol etherifications with CO2 to dialkoxymethanes and other acetals, albeit in less extent, have undergone important advances, too. In this Review, an update of the recent progresses in the area of catalytic reductive alcohol etherifications using carbonyl-based compounds and CO2 have been described with a special focus on organic synthetic applications and catalyst design. Complementarily, recent progress made in catalytic acetal/ketal-to-ether or ester-to-ether reductions and other related transformations have been also summarized.
Collapse
Affiliation(s)
- Carles Lluna‐Galán
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Luis Izquierdo‐Aranda
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Rosa Adam
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Jose R. Cabrero‐Antonino
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
16
|
Kumar P, Nagtilak PJ, Kapur M. Transition metal-catalyzed C–H functionalizations of indoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01696b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarises a wide range of transformations on the indole skeleton, including arylation, alkenylation, alkynylation, acylation, nitration, borylation, and amidation, using transition-metal catalyzed C–H functionalization as the key step.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
17
|
Bai ST, De Smet G, Liao Y, Sun R, Zhou C, Beller M, Maes BUW, Sels BF. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem Soc Rev 2021; 50:4259-4298. [DOI: 10.1039/d0cs01331e] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes the concepts, mechanisms, drawbacks and challenges of the state-of-the-art catalysis for CO2 to MeOH under mild conditions. Thoughtful guidelines and principles for future research are presented and discussed.
Collapse
Affiliation(s)
- Shao-Tao Bai
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Gilles De Smet
- Division of Organic Synthesis
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | - Yuhe Liao
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Ruiyan Sun
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | | | - Bert U. W. Maes
- Division of Organic Synthesis
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| |
Collapse
|
18
|
Liu W, Leischner T, Li W, Junge K, Beller M. A General Regioselective Synthesis of Alcohols by Cobalt-Catalyzed Hydrogenation of Epoxides. Angew Chem Int Ed Engl 2020; 59:11321-11324. [PMID: 32196878 PMCID: PMC7383699 DOI: 10.1002/anie.202002844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 11/16/2022]
Abstract
A straightforward methodology for the synthesis of anti-Markovnikov-type alcohols is presented. By using a specific cobalt triphos complex in the presence of Zn(OTf)2 as an additive, the hydrogenation of epoxides proceeds with high yields and selectivities. The described protocol shows a broad substrate scope, including multi-substituted internal and terminal epoxides, as well as a good functional-group tolerance. Various natural-product derivatives, including steroids, terpenoids, and sesquiterpenoids, gave access to the corresponding alcohols in moderate-to-excellent yields.
Collapse
Affiliation(s)
- Weiping Liu
- College of Chemistry, Chemical Engineering and BiotechnologyDonghua University201620ShanghaiP. R. China
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Wu Li
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
19
|
Delacroix K, Perez M, Petit L. Radical addition-transfer of xanthates to 3,3,3-trifluoro-1-propene. A versatile and inexpensive access to trifluoromethyl substituted building blocks. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Liu W, Leischner T, Li W, Junge K, Beller M. A General Regioselective Synthesis of Alcohols by Cobalt‐Catalyzed Hydrogenation of Epoxides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weiping Liu
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai P. R. China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Wu Li
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
21
|
Banerjee S, Vivek Kumar S, Punniyamurthy T. Site-Selective Rh-Catalyzed C-7 and C-6 Dual C–H Functionalization of Indolines: Synthesis of Functionalized Pyrrolocarbazoles. J Org Chem 2020; 85:2793-2805. [DOI: 10.1021/acs.joc.9b03180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sundaravel Vivek Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
22
|
Papa V, Cabrero-Antonino JR, Spannenberg A, Junge K, Beller M. Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01078b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the first general and efficient homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines is presented.
Collapse
Affiliation(s)
- Veronica Papa
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | - Jose R. Cabrero-Antonino
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
- Instituto de Tecnología Química
- Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | |
Collapse
|
23
|
Emayavaramban B, Chakraborty P, Sundararaju B. Cobalt-Catalyzed Reductive Alkylation of Amines with Carboxylic Acids. CHEMSUSCHEM 2019; 12:3089-3093. [PMID: 30418691 DOI: 10.1002/cssc.201802144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Direct reductive alkylation of amines with carboxylic acid is carried out by using an inexpensive, air-stable cobalt/triphos catalytic system with molecular hydrogen as the reductant. This efficient synthetic method proceeds through reduction and condensation, followed by reduction of the in situ-generated imine into the amine in a green catalytic process.
Collapse
Affiliation(s)
- Balakumar Emayavaramban
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| |
Collapse
|
24
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
25
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
26
|
Banerjee S, De PB, Pradhan S, Shah TA, Punniyamurthy T. RuII
-Catalysed Regioselective C-N
Bond Formation of Indolines and Carbazole with Acyl Azides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Guwahati India
| | - Pinaki Bhusan De
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Guwahati India
| | - Sourav Pradhan
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Guwahati India
| | - Tariq A. Shah
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Guwahati India
| | | |
Collapse
|
27
|
Azzena U, Carraro M, Pisano L, Monticelli S, Bartolotta R, Pace V. Cyclopentyl Methyl Ether: An Elective Ecofriendly Ethereal Solvent in Classical and Modern Organic Chemistry. CHEMSUSCHEM 2019; 12:40-70. [PMID: 30246930 PMCID: PMC6391966 DOI: 10.1002/cssc.201801768] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/23/2018] [Indexed: 05/07/2023]
Abstract
Solvents represent one of the major contributions to the environmental impact of fine-chemical synthesis. As a result, the use of environmentally friendly solvents in widely employed reactions is a challenge of vast real interest in contemporary organic chemistry. Within this Review, a great variety of examples showing how cyclopentyl methyl ether has been established as particularly useful for this purpose are reported. Indeed, its low toxicity, high boiling point, low melting point, hydrophobicity, chemical stability towards a wide range of conditions, exceptional stability towards the abstraction of hydrogen atoms, relatively low latent heat of vaporization, and the ease with which it can be recovered and recycled enable its successful employment as a solvent in a wide range of synthetic applications, including organometallic chemistry, catalysis, biphasic reactions, oxidations, and radical reactions.
Collapse
Affiliation(s)
- Ugo Azzena
- Department of Chemistry and PharmacyUniversity of Sassarivia Vienna 2, I07100SassariItaly
| | - Massimo Carraro
- Department of Chemistry and PharmacyUniversity of Sassarivia Vienna 2, I07100SassariItaly
| | - Luisa Pisano
- Department of Chemistry and PharmacyUniversity of Sassarivia Vienna 2, I07100SassariItaly
| | - Serena Monticelli
- Department of Pharmaceutical ChemistryUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Roberta Bartolotta
- Department of Pharmaceutical ChemistryUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Vittorio Pace
- Department of Pharmaceutical ChemistryUniversity of ViennaAlthanstrasse 141090ViennaAustria
| |
Collapse
|
28
|
Becica J, Dobereiner GE. The roles of Lewis acidic additives in organotransition metal catalysis. Org Biomol Chem 2019; 17:2055-2069. [DOI: 10.1039/c8ob02856g] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present recent advances in prominent organotransition metal-catalysed reactions in which Lewis acid cocatalysts are employed to increase catalyst activity or selectivity. The roles of Lewis acids are discussed.
Collapse
Affiliation(s)
- Joseph Becica
- Department of Chemistry
- Temple University
- Philadelphia
- USA
| | | |
Collapse
|
29
|
Seck C, Mbaye MD, Gaillard S, Renaud JL. Bifunctional Iron Complexes Catalyzed Alkylation of Indoles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800924] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charlotte Seck
- Normandie Univ.; LCMT; ENSICAEN; UNICAEN, CNRS; 6 boulevard du Maréchal Juin 14050 Caen France
- Université Assane Seck de Ziguinchor, BP 523, Ziguinchor; Sénégal
| | - Mbaye Diagne Mbaye
- Normandie Univ.; LCMT; ENSICAEN; UNICAEN, CNRS; 6 boulevard du Maréchal Juin 14050 Caen France
- Université Assane Seck de Ziguinchor, BP 523, Ziguinchor; Sénégal
| | - Sylvain Gaillard
- Normandie Univ.; LCMT; ENSICAEN; UNICAEN, CNRS; 6 boulevard du Maréchal Juin 14050 Caen France
| | - Jean-Luc Renaud
- Normandie Univ.; LCMT; ENSICAEN; UNICAEN, CNRS; 6 boulevard du Maréchal Juin 14050 Caen France
| |
Collapse
|
30
|
Liu W, Sahoo B, Junge K, Beller M. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations. Acc Chem Res 2018; 51:1858-1869. [PMID: 30091891 DOI: 10.1021/acs.accounts.8b00262] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catalytic hydrogenation using molecular hydrogen represents a green and practical approach for reductions of all kinds of organic chemicals. Traditionally, in the majority of these processes the presence of transition metal catalysts is required. In this regard, noble-metal-based catalysts have largely been implemented, such as the application of iridium, palladium, rhodium, ruthenium, and others. Recently, the employment of earth-abundant 3d metals has emerged to replace the utilization of scarce noble metals because of their availability, lower cost, and often reduced toxicity. In this respect, several cobalt complexes, in the form of either molecularly well-defined or in situ-formed complexes, are receiving increasing attention from the scientific community. Importantly, the stability and reactivity of the complexes have greatly been supported by multidentate ligands under steric and/or electronic influences. For instance, tridentate or tetradentate phosphine ligands indirectly tune the reactivity of the metal center to accelerate the overall process, whereas direct participation of the ligand in pincer-type complexes through ligand-metal cooperation regulates the elementary steps in the catalytic cycle. In this Account, we emphasize specifically the advancements in cobalt-catalyzed hydrogenations using molecular hydrogen accomplished in our group. A variety of substrate classes ranging from simple molecules (e.g., carbon dioxide) to complex compounds were explored under the mild and efficient catalytic conditions. Notable examples include the reduction of carbon dioxide to afford either formates using a Co(BF4)2·6H2O/Tetraphos catalyst system or methanol employing a Co(acac)3/Triphos complex in the presence of HNTf2. As interesting examples of the synthesis of fine chemicals, cobalt-promoted hydrogenations of nitriles to primary amines and reductive alkylations of indoles using carboxylic acids as alkylating agents are highlighted. Moreover, highly selective hydrogenations of N-heteroarenes under additive-free conditions were possible by the application of specific cobalt complexes. More recently, a set of carboxylic esters could be hydrogenated to the corresponding alcohols with high efficiency by the use of a well-defined cobalt-PNP pincer catalyst. In particular, the decent reactivity of cobalt catalysts enabled high selectivity and functional group tolerance to be achieved. Throughout our studies, it was found that the pairing of a suitable cobalt precursor and an appropriate tridentate or tetradentate phosphine ligand plays a crucial role harnessing the desired reactivity, while other monodentate and bidentate phosphine ligands showed no reactivity in these investigations. Our developments could provide supervisory information for the future exploration of cobalt-catalyzed hydrogenation reactions and other types of reactions involving cobalt catalysis. Furthermore, relevant contributions from other groups, remaining challenges, and future perspectives in this research area are also presented.
Collapse
Affiliation(s)
- Weiping Liu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Basudev Sahoo
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
31
|
Liu W, Sahoo B, Spannenberg A, Junge K, Beller M. Tailored Cobalt-Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weiping Liu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Basudev Sahoo
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
32
|
Liu W, Sahoo B, Spannenberg A, Junge K, Beller M. Tailored Cobalt-Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angew Chem Int Ed Engl 2018; 57:11673-11677. [PMID: 30019810 DOI: 10.1002/anie.201806132] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 11/09/2022]
Abstract
The first cobalt-catalyzed hydrogenative N-methylation and alkylation of amines with readily available carboxylic acid feedstocks as alkylating agents and H2 as ideal reductant is described. Combination of tailor-made triphos ligands with cobalt(II) tetrafluoroborate significantly improved the efficiency, thus promoting the reaction under milder conditions. This novel protocol allows for a broad substrate scope with good functional group tolerance, even in the presence of reducible alkenes, esters, and amides.
Collapse
Affiliation(s)
- Weiping Liu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Basudev Sahoo
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
33
|
Filonenko GA, van Putten R, Hensen EJM, Pidko EA. Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chem Soc Rev 2018; 47:1459-1483. [DOI: 10.1039/c7cs00334j] [Citation(s) in RCA: 406] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review is aimed at introducing the remarkable progress made in the last three years in the development of base metal catalysts for hydrogenations and dehydrogenative transformations.
Collapse
Affiliation(s)
- Georgy A. Filonenko
- Inorganic Materials Chemistry Group
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Robbert van Putten
- Inorganic Materials Chemistry Group
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Emiel J. M. Hensen
- Inorganic Materials Chemistry Group
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Evgeny A. Pidko
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
- ITMO University
| |
Collapse
|
34
|
Nishino H, Inoue T. Facile Synthesis of Indolelactones Using Mn(III)-Based Oxidative Substitution-Cyclization Reaction. HETEROCYCLES 2018. [DOI: 10.3987/com-18-s(t)31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|