1
|
Baerends EJ, Aguirre NF, Austin ND, Autschbach J, Bickelhaupt FM, Bulo R, Cappelli C, van Duin ACT, Egidi F, Fonseca Guerra C, Förster A, Franchini M, Goumans TPM, Heine T, Hellström M, Jacob CR, Jensen L, Krykunov M, van Lenthe E, Michalak A, Mitoraj MM, Neugebauer J, Nicu VP, Philipsen P, Ramanantoanina H, Rüger R, Schreckenbach G, Stener M, Swart M, Thijssen JM, Trnka T, Visscher L, Yakovlev A, van Gisbergen S. The Amsterdam Modeling Suite. J Chem Phys 2025; 162:162501. [PMID: 40260801 DOI: 10.1063/5.0258496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
In this paper, we present the Amsterdam Modeling Suite (AMS), a comprehensive software platform designed to support advanced molecular and materials simulations across a wide range of chemical and physical systems. AMS integrates cutting-edge quantum chemical methods, including Density Functional Theory (DFT) and time-dependent DFT, with molecular mechanics, fluid thermodynamics, machine learning techniques, and more, to enable multi-scale modeling of complex chemical systems. Its design philosophy allows for seamless coupling between components, facilitating simulations that range from small molecules to complex biomolecular and solid-state systems, making it a versatile tool for tackling interdisciplinary challenges, both in industry and in academia. The suite also emphasizes user accessibility, with an intuitive graphical interface, extensive scripting capabilities, and compatibility with high-performance computing environments.
Collapse
Affiliation(s)
- Evert Jan Baerends
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Nestor F Aguirre
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Nick D Austin
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, New York 14260-3000, USA
| | - F Matthias Bickelhaupt
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Rosa Bulo
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- IMT School for Advanced Studies Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Franco Egidi
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Arno Förster
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Mirko Franchini
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Theodorus P M Goumans
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstraße 66c, 01069 Dresden, Germany
| | - Matti Hellström
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, USA
| | - Mykhaylo Krykunov
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, P.O. Box 145748, Abu Dhabi, United Arab Emirates
| | - Erik van Lenthe
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Artur Michalak
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mariusz M Mitoraj
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, 48149 Münster, Germany
| | | | - Pier Philipsen
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Harry Ramanantoanina
- Department Chemie, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, 55128 Mainz, Germany
| | - Robert Rüger
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Marcel Swart
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- IQCC and Department Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Jos M Thijssen
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Tomáš Trnka
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucas Visscher
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Alexei Yakovlev
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Stan van Gisbergen
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Weiss PS, Paz AS, Avalos CE. An investigation of contributors to the spin exchange interactions in organic pentacene-radical dyads using quasi-degenerate perturbation theory. Phys Chem Chem Phys 2025; 27:8052-8076. [PMID: 40181782 DOI: 10.1039/d4cp04908j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Chromophore-radical (C-R) dyads are a promising class of molecules with potential applications in magnetometry, nuclear magnetic resonance and quantum sensing. Given the vast chemical space that is possible in these systems, computational studies are vital to aid in the rational design of C-R molecules with desired electronic and spin properties. Multireference perturbation theory (MRPT) calculations have been shown to be useful for rationalizing spin correlations in C-R dyads. In this work we apply quasi-degenerate perturbation theory, specifically QD-NEVPT2, for the prediction of vertical transition energies (VTEs) as well as spin-correlation parameters in three-spin-center pentacene-radical dyads containing up to 153 atoms. We find that QD-NEVPT2 performs well in the prediction of JTR, the magnetic coupling parameter between the excited-state triplet and the radical, but underestimates VTEs; this underestimation is attributed to variational averaging over different spin states and active space limitations, and we show that addressing these shortcomings reduces error. The calculated magnitudes and signs of JTR are rationalized through molecular symmetry, coupling distance, and π-structure considerations. The predicted signs of JTR are consistent with and explained via mechanisms of kinetic and potential spin-exchange, allowing for future functional design of magnetic organic molecules. The role of active space choice on VTE accuracy and predicted magnetic coupling is additionally explored.
Collapse
Affiliation(s)
- Philip S Weiss
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | - Amiel S Paz
- Department of Chemistry, New York University, New York, New York 10003, USA.
- NYU Shanghai, 567 West Yangsi Road, Shanghai 20012, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshang Road, Shanghai 200062, China
| | - Claudia E Avalos
- Department of Chemistry, New York University, New York, New York 10003, USA.
| |
Collapse
|
3
|
Charistos ND, Lawrence SR, Muñoz‐Castro A. Global and Local Shielding/Deshielding Variation in C 60 and C 70 Fullerenes Upon Reduction: Evaluation of Aromaticity, 13C-NMR and Anisotropy Patterns. Chemistry 2025; 31:e202404182. [PMID: 39869486 PMCID: PMC11855234 DOI: 10.1002/chem.202404182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Fullerenes are statically pleasant species featuring symmetric cages, which can be modified upon reduction. Here, we theoretically account for the variation of 13C-NMR patterns in C60 and C70 upon six-fold reduction and the overall variation of the enabled shielding/deshielding regions induced by π and σ electrons according to different orientations of the external field and the related anisotropy. Our results show a significant modification of the chemical shift given by the main variation of the σ33 (or δ33) shielding component under the principal axis system (PAS) of the chemical shift anisotropy (CSA) at the representative carbon nucleus. For C60 6- a shielding cone property is enabled from any orientation, accounting for a significant spherical aromatic character. In contrast, in C70 6-, a shielding cone is reserved only for an axial-oriented field, with a deshielding cone behavior obtained from the complementary equatorial orientations. The overall anisotropy shows an inner isotropic region for C60 and C60 6-, with a continuous anisotropic outer contour for the latter. In contrast, C70 and C70 6- both show larger anisotropies, given the lesser spherical shape in addition to the modified π-surface. Such information is useful for further rationalizing the implementation of magnetic anisotropic molecular devices into fullerene-based materials.
Collapse
Affiliation(s)
| | - Samuel R. Lawrence
- Institute of ChemistryChemnitz University of TechnologyChemnitz09111Germany
| | - Alvaro Muñoz‐Castro
- Facultad de IngenieríaArquitectura y DiseñoUniversidad San SebastiánBellavista 7Santiago8420524Chile
| |
Collapse
|
4
|
Ariai J, Gellrich U. An Acceptor-Substituted N-Heterocyclic ortho-Quinodimethane: Pushing the Boundaries of Polarization in Donor-Acceptor-Substituted Polyenes. J Am Chem Soc 2024; 146:32859-32869. [PMID: 39540923 DOI: 10.1021/jacs.4c13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report the synthesis, isolation, and characterization of a stable donor-acceptor substituted ortho-quinodimethane (oQDM). This system with an imidazolidine scaffold as the donor can also be referred to as acceptor-substituted ortho-N-heterocyclic quinodimethane (oNHQ). We have examined the extent of polarization of the conjugated π-system using single-crystal X-ray diffraction, NMR and UV/vis spectroscopy, cyclic voltammetry, and DFT computations. The bond lengths in the phenyl linker do not exhibit the alternation typical of oQDMs. In addition, the 13C and 15N NMR shifts suggest significant charge separation, an interpretation supported by the diatropic ring current determined by NICSZZ(r) computations, which is characteristic of aromatic compounds. DFT calculations show that polarization is an electronic effect that is amplified by steric influences. More strikingly, the oxidation and reduction potentials of the push-pull substituted oQDM are virtually identical to those of authenticated anionic and cationic derivatives. The results therefore indicate that an aromatic zwitterionic structure represents the electronic structure more accurately than a neutral quinoidal Lewis structure, which indicates that the acceptor-substituted oNHQ is a rare example of an organic zwitterion in which the centers of charge are in conjugation. The ambiphilic reactivity of the acceptor-substituted oNHQ, which is evidenced by the dehydrogenation of ammonia borane and the addition of phenylacetylene via heterolytic C-H bond cleavage, further supports its notation as an organic zwitterion and is reminiscent of frustrated Lewis pairs (FLPs). Thus, the acceptor-substituted oNHQ can be considered to be an intramolecular carbogenic FLP in terms of its reactivity.
Collapse
Affiliation(s)
- Jama Ariai
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Urs Gellrich
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
- Fachgebiet Organische Chemie, Universität Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
5
|
Gui X, Sorbelli D, Caló FP, Leutzsch M, Patzer M, Fürstner A, Bistoni G, Auer AA. Elucidating the Electronic Nature of Rh-based Paddlewheel Catalysts from 103 Rh NMR Chemical Shifts: Insights from Quantum Mechanical Calculations. Chemistry 2024; 30:e202301846. [PMID: 37721802 DOI: 10.1002/chem.202301846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
The tremendous importance of dirhodium paddlewheel complexes for asymmetric catalysis is largely the result of an empirical optimization of the chiral ligand sphere about the bimetallic core. It was only recently that a H(C)Rh triple resonance 103 Rh NMR experiment provided the long-awaited opportunity to examine - with previously inconceivable accuracy - how variation of the ligands impacts on the electronic structure of such catalysts. The recorded effects are dramatic: formal replacement of only one out of eight O-atoms surrounding the metal centers in a dirhodium tetracarboxylate by an N-atom results in a shielding of the corresponding Rh-site of no less than 1000 ppm. The current paper provides the theoretical framework that allows this and related experimental observations made with a set of 19 representative rhodium complexes to be interpreted. In line with symmetry considerations, it is shown that the shielding tensor responds only to the donor ability of the equatorial ligands along the perpendicular principal axis. Axial ligands, in contrast, have no direct effect on shielding but may come into play via the electronicc i s ${cis}$ -effect that they exert onto the neighboring equatorial sites. On top of these fundamental interactions, charge redistribution within the core as well as the electronict r a n s ${trans}$ -effect of ligands of different donor strengths is reflected in the recorded 103 Rh NMR shifts.
Collapse
Affiliation(s)
- Xin Gui
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Diego Sorbelli
- Dipartmento di Chimica, Biologia e Biotechnologie, Università Degli Studi Di Perugia, 06123, Perugia, Italy
| | - Fabio P Caló
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Michael Patzer
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
- Dipartmento di Chimica, Biologia e Biotechnologie, Università Degli Studi Di Perugia, 06123, Perugia, Italy
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der RuhrMülheim/Ruhr, Germany
| |
Collapse
|
6
|
Reinhardt E, Lenz T, Bauer L, Stierstorfer J, Klapötke TM. Synthesis and Characterization of Azido- and Nitratoalkyl Nitropyrazoles as Potential Melt-Cast Explosives. Molecules 2023; 28:6489. [PMID: 37764265 PMCID: PMC10535347 DOI: 10.3390/molecules28186489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Desirable advancements in the field of explosive materials include the development of novel melt-castable compounds with melting points ranging from 80 to 110 °C. This is particularly important due to the limited performance and high toxicity associated with TNT (trinitrotoluene). In this study, a series of innovative melt-castable explosives featuring nitratoalkyl and azidoalkyl functionalities attached to the 3-nitro-, 4-nitro-, 3,4-dinitropyrazole, or 3-azido-4-nitropyrazole scaffold are introduced. These compounds were synthesized using straightforward methods and thoroughly characterized using various analytical techniques, including single-crystal X-ray diffraction, IR spectroscopy, multinuclear nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, elemental analysis, and DTA. Furthermore, the energetic properties such as (theoretical) performance data, sensitivities, and compatibilities of the compounds were evaluated and compared among the different structures.
Collapse
Affiliation(s)
| | | | | | - Jörg Stierstorfer
- Department of Chemistry, Ludwig-Maximilians-University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany; (E.R.); (T.L.); (L.B.)
| | - Thomas M. Klapötke
- Department of Chemistry, Ludwig-Maximilians-University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany; (E.R.); (T.L.); (L.B.)
| |
Collapse
|
7
|
Castro AC, Cascella M, Perutz RN, Raynaud C, Eisenstein O. Solid-State 19F NMR Chemical Shift in Square-Planar Nickel-Fluoride Complexes Linked by Halogen Bonds. Inorg Chem 2023; 62:4835-4846. [PMID: 36920236 PMCID: PMC10052355 DOI: 10.1021/acs.inorgchem.2c04063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 03/16/2023]
Abstract
The halogen bond (XB) is a highly directional class of noncovalent interactions widely explored by experimental and computational studies. However, the NMR signature of the XB has attracted limited attention. The prediction and analysis of the solid-state NMR (SSNMR) chemical shift tensor provide useful strategies to better understand XB interactions. In this work, we employ a computational protocol for modeling and analyzing the 19F SSNMR chemical shifts previously measured in a family of square-planar trans NiII-L2-iodoaryl-fluoride (L = PEt3) complexes capable of forming self-complementary networks held by a NiF···I(C) halogen bond [Thangavadivale, V.; Chem. Sci. 2018, 9, 3767-3781]. To understand how the 19F NMR resonances of the nickel-bonded fluoride are affected by the XB, we investigate the origin of the shielding in trans-[NiF(2,3,5,6-C6F4I)(PEt3)2], trans-[NiF(2,3,4,5-C6F4I)(PEt3)2], and trans-[NiF(C6F5)(PEt3)2] in the solid state, where a XB is present in the two former systems but not in the last. We perform the 19F NMR chemical shift calculations both in periodic and molecular models. The results show that the crystal packing has little influence on the NMR signatures of the XB, and the NMR can be modeled successfully with a pair of molecules interacting via the XB. Thus, the observed difference in chemical shift between solid-state and solution NMR can be essentially attributed to the XB interaction. The very high shielding of the fluoride and its driving contributor, the most shielded component of the chemical shift tensor, are well reproduced at the 2c-ZORA level. Analysis of the factors controlling the shielding shows how the highest occupied Ni/F orbitals shield the fluoride in the directions perpendicular to the Ni-F bond and specifically perpendicular to the coordination plane. This shielding arises from the magnetic coupling of the Ni(3d)/F(2p lone pair) orbitals with the vacant σNi-F* orbital, thereby rationalizing the very highly upfield (shielded) resonance of the component (δ33) along this direction. We show that these features are characteristic of square-planar nickel-fluoride complexes. The deshielding of the fluoride in the halogen-bonded systems is attributed to an increase in the energy gap between the occupied and vacant orbitals that are mostly responsible for the paramagnetic terms, notably along the most shielded direction.
Collapse
Affiliation(s)
- Abril C. Castro
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Michele Cascella
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Robin N. Perutz
- Department
of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom
| | | | - Odile Eisenstein
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
- ICGM,
Université Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
8
|
Samudrala KK, Conley MP. Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chem Commun (Camb) 2023; 59:4115-4127. [PMID: 36912586 DOI: 10.1039/d3cc00047h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Well-defined organometallics supported on high surface area oxides are promising heterogeneous catalysts. An important design factor in these materials is how the metal interacts with the functionalities on an oxide support, commonly anionic X-type ligands derived from the reaction of an organometallic M-R with an -OH site on the oxide. The metal can either form a covalent M-O bond or form an electrostatic M+⋯-O ion-pair, which impacts how well-defined organometallics will interact with substrates in catalytic reactions. A less common reaction pathway involves the reaction of a Lewis site on the oxide with the organometallic, resulting in abstraction to form an ion-pair, which is relevant to industrial olefin polymerization catalysts. This Feature Article views the spectrum of reactivity between an organometallic and an oxide through the prism of Brønsted and/or Lewis acidity of surface sites and draws analogies to the molecular frame where Lewis and Brønsted acids are known to form reactive ion-pairs. Applications of the well-defined sites developed in this article are also discussed.
Collapse
Affiliation(s)
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
9
|
Fernández-Alarcón A, Autschbach J. Relativistic Density Functional NMR Tensors Analyzed with Spin-free Localized Molecular Orbitals. Chemphyschem 2023; 24:e202200667. [PMID: 36169984 DOI: 10.1002/cphc.202200667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Indexed: 01/07/2023]
Abstract
The implementation of fast relativistic methods based on density functional theory, in conjunction with localized molecular orbital (LMO) based analysis, allows straightforward interpretations of NMR parameters in terms of contributions from core shells, lone pairs, and bonds, for compounds containing elements from across the periodic table. We present a conceptual review of a frequently used LMO analysis of NMR parameters calculated in the presence of spin-orbit interactions and other relativistic effects. An accompanying example focuses on the 15 N shielding in a heavy metal complex.
Collapse
Affiliation(s)
- Alberto Fernández-Alarcón
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| |
Collapse
|
10
|
Yang C, Wan S, Zhu B, Yu J, Cao S. Calcination‐regulated Microstructures of Donor‐Acceptor Polymers towards Enhanced and Stable Photocatalytic H
2
O
2
Production in Pure Water. Angew Chem Int Ed Engl 2022; 61:e202208438. [DOI: 10.1002/anie.202208438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Sijie Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| |
Collapse
|
11
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
12
|
Yang C, Wan S, Zhu B, Yu J, Cao S. Calcination‐regulated Microstructures of Donor‐Acceptor Polymers towards Enhanced and Stable Photocatalytic H2O2 Production in Pure Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Yang
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Sijie Wan
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Bicheng Zhu
- China University of Geosciences Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry CHINA
| | - Jiaguo Yu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Shaowen Cao
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing 122 Luoshi Road 430070 Wuhan CHINA
| |
Collapse
|
13
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann-Beckett Method. Angew Chem Int Ed Engl 2022; 61:e202114550. [PMID: 34757692 PMCID: PMC9299668 DOI: 10.1002/anie.202114550] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/03/2023]
Abstract
IUPAC defines Lewis acidity as the thermodynamic tendency for Lewis pair formation. This strength property was recently specified as global Lewis acidity (gLA), and is gauged for example by the fluoride ion affinity. Experimentally, Lewis acidity is usually evaluated by the effect on a bound molecule, such as the induced 31 P NMR shift of triethylphosphine oxide in the Gutmann-Beckett (GB) method. This type of scaling was called effective Lewis acidity (eLA). Unfortunately, gLA and eLA often correlate poorly, but a reason for this is unknown. Hence, the strength and the effect of a Lewis acid are two distinct properties, but they are often granted interchangeably. The present work analyzes thermodynamic, NMR specific, and London dispersion effects on GB numbers for 130 Lewis acids by theory and experiment. The deformation energy of a Lewis acid is identified as the prime cause for the critical deviation between gLA and eLA but its correction allows a unification for the first time.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Department of Chemistry and Biochemistry—Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
14
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department of Chemistry and Biochemistry—Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
15
|
Wang H, Wang X, Tian X, Cheng W, Zheng Y, Obenchain DA, Xu X, Gou Q. Competitive tetrel bond and hydrogen bond in benzaldehyde-CO 2: characterization via rotational spectroscopy. Phys Chem Chem Phys 2021; 23:25784-25788. [PMID: 34757355 DOI: 10.1039/d1cp03608d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rotational spectrum of the 1 : 1 benzaldehyde-CO2 complex has been investigated using pulsed-jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Two isomers, both characterized by one C⋯O tetrel bond (n → π* interaction) and one C-H⋯O hydrogen bond (n → σ* interaction), have been observed in the pulsed jet. Competition between the tetrel bond and the hydrogen bond has been disclosed by natural bond orbital analysis: isomer I is characterized by one dominating OCCO2⋯O tetrel bond (12.6 kJ mol-1) and a secondary (C-H)formyl⋯O hydrogen bond (2.2 kJ mol-1); by contrast, in isomer II the (C-H)phenyl⋯O hydrogen bond (7.6 kJ mol-1) becomes the dominant bond, while the OCCO2⋯O tetrel bond (5.8 kJ mol-1) becomes much weaker with respect to that of isomer I. Using intensity measurements the relative population ratio of the two isomers was estimated to be NI/NII ≈ 2/1.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiujuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Wanying Cheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yang Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Daniel A Obenchain
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Xuefang Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China. .,Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd 55, 401331, Chongqing, China
| |
Collapse
|
16
|
Kent GT, Yu X, Wu G, Autschbach J, Hayton TW. Synthesis and electronic structure analysis of the actinide allenylidenes, [{(NR 2) 3}An(CCCPh 2)] - (An = U, Th; R = SiMe 3). Chem Sci 2021; 12:14383-14388. [PMID: 34880989 PMCID: PMC8580070 DOI: 10.1039/d1sc04666g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022] Open
Abstract
The reaction of [AnCl(NR2)3] (An = U, Th, R = SiMe3) with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [{(NR2)3}An(CH[double bond, length as m-dash]C[double bond, length as m-dash]CPh2)] (An = U, 1; Th, 2) in good yields after work-up. Deprotonation of 1 or 2 with LDA/2.2.2-cryptand results in formation of the anionic allenylidenes, [Li(2.2.2-cryptand)][{(NR2)3}An(CCCPh2)] (An = U, 3; Th, 4). The calculated 13C NMR chemical shifts of the Cα, Cβ, and Cγ nuclei in 2 and 4 nicely reproduce the experimentally assigned order, and exhibit a characteristic spin-orbit induced downfield shift at Cα due to involvement of the 5f orbitals in the Th-C bonds. Additionally, the bonding analyses for 3 and 4 show a delocalized multi-center character of the ligand π orbitals involving the actinide. While a single-triple-single-bond resonance structure (e.g., An-C[triple bond, length as m-dash]C-CPh2) predominates, the An[double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]CPh2 resonance form contributes, as well, more so for 3 than for 4.
Collapse
Affiliation(s)
- Greggory T Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260 USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
17
|
Huynh W, Taylor JW, Harman WH, Conley MP. Solid-state 11B NMR studies of coinage metal complexes containing a phosphine substituted diboraanthracene ligand. Dalton Trans 2021; 50:14855-14863. [PMID: 34604875 DOI: 10.1039/d1dt02981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal interactions with Lewis acids (M → Z linkages) are fundamentally interesting and practically important. The most common Z-type ligands contain boron, which contains an NMR active 11B nucleus. We measured solid-state 11B{1H} NMR spectra of copper, silver, and gold complexes containing a phosphine substituted 9,10-diboraanthracene ligand (B2P2) that contain planar boron centers and weak M → BR3 linkages ([(B2P2)M][BArF4] (M = Cu (1), Ag (2), Au (3)) characterized by large quadrupolar coupling (CQ) values (4.4-4.7 MHz) and large span (Ω) values (93-139 ppm). However, the solid-state 11B{1H} NMR spectrum of K[Au(B2P2)]- (4), which contains tetrahedral borons, is narrow and characterized by small CQ and Ω values. DFT analysis of 1-4 shows that CQ and Ω are expected to be large for planar boron environments and small for tetrahedral boron, and that the presence of a M → BR3 linkage relates to the reduction in CQ and 11B NMR shielding properties. Thus solid-state 11B NMR spectroscopy contains valuable information about M → BR3 linkages in complexes containing the B2P2 ligand.
Collapse
Affiliation(s)
- Winn Huynh
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Jordan W Taylor
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - W Hill Harman
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
18
|
Lingas R, Charistos ND, Muñoz-Castro A. Aromaticity of ortho and meta 8-Cycloparaphenylene and Their Dications: Induced Magnetic Field Analysis with Localized and Delocalized Orbitals in Strained Nanohoops. Chemphyschem 2021; 22:741-751. [PMID: 33620136 DOI: 10.1002/cphc.202100057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Indexed: 11/06/2022]
Abstract
Dications of cycloparaphenyles ([n]CPPs) are known to exhibit in-plane global aromaticity, contained in a nanobelt structure. Recently synthesized ortho and meta isomers of [n]CPPs break the radial symmetry of π structure incorporating perpendicular oriented π orbitals. Herein we set to explore the aromaticity of neutral and dicationic ortho and meta isomers of [8]CPP by dissecting the induced magnetic field to contributions of the twofold radial/perpendicular π system using delocalized canonical molecular orbitals (CMO), and introducing the natural localized molecular orbitals (NLMO) analysis with DFT methods. The dications sustain a reduced global aromatic character of the radial π system under a perpendicular orientation of the external field which declines from ortho to meta isomer and reinforces local aromaticity of ortho ring while it destroys aromaticity of meta ring. Aromaticity variations are determined by symmetry governed rotational excitations of frontier π orbitals. The parallel orientation reveals a substantial reduction of local aromaticity verified with NICSπ analysis and electron delocalization indices.
Collapse
Affiliation(s)
- Rafael Lingas
- Department of Chemistry Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece
| | - Nickolas D Charistos
- Department of Chemistry Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux, 2801, Santiago, Chile
| |
Collapse
|
19
|
Maudrich J, Diab F, Weiß S, Zweigart M, Eichele K, Schubert H, Müller R, Kaupp M, Wesemann L. Tetryl-Tetrylene Addition to Phenylacetylene. Chemistry 2021; 27:4691-4699. [PMID: 33332670 PMCID: PMC7986144 DOI: 10.1002/chem.202005119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/30/2022]
Abstract
Phenylacetylene adds [Ar*GeH2 -SnAr'], [Ar*GeH2 -PbAr'] and [Ar'SnH2 -PbAr*] at rt in a regioselective and stereoselective reaction. The highest reactivity was found for the stannylene, which reacts immediately upon addition of one equivalent of alkyne. However, the plumbylenes exhibit addition to the alkyne only in reaction with an excess of phenylacetylene. The product of the germylplumbylene addition reacts with a second equivalent of alkyne and the product of a CH-activation, a dimeric lead acetylide, were isolated. In the case of the stannylplumbylene the trans-addition product was characterized as the kinetically controlled product which isomerizes at rt to yield the cis-addition product, which is stabilized by an intramolecular Sn-H-Pb interaction. NMR chemical shifts of the olefins were investigated using two- and four-component relativistic DFT calculations, as spin-orbit effects can be large. Hydride abstraction was carried out by treating [Ar'SnPhC=CHGeH2 Ar*] with the trityl salt [Ph3 C][Al(OC{CF3 })4 ] to yield a four membered ring cation.
Collapse
Affiliation(s)
- Jakob‐Jonathan Maudrich
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Fatima Diab
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Sebastian Weiß
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Magda Zweigart
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Klaus Eichele
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Hartmut Schubert
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Robert Müller
- Institut für ChemieTheoretische Chemie/QuantenchemieSekr. C7Technische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Martin Kaupp
- Institut für ChemieTheoretische Chemie/QuantenchemieSekr. C7Technische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Lars Wesemann
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
20
|
Abstract
Halogens cause pronounced and systematic effects on the 13C NMR chemical shift (δ13C) of an adjacent carbon nucleus, usually leading to a decrease in the values across the halogen series. Although this normal halogen dependence (NHD) is known in organic and inorganic compounds containing the carbon atom in its neutral and cationic forms, information about carbanions is scarce. To understand how δ13C changes in molecules with different charges, the shielding mechanisms of CHX3, CX3+, and CX3- (X = Cl, Br, or I) systems are investigated via density functional theory calculations and further analyzed by decomposition into contributions of natural localized molecular orbitals. An inverse halogen dependence (IHD) is determined for the anion series as a result of the negative spin-orbit contribution instead of scalar paramagnetic effects. The presence of a carbon nonbonding orbital in anions allows magnetic couplings that generate a deshielding effect on the nucleus and contradicts the classical association between δ13C and atomic charge.
Collapse
Affiliation(s)
- Renan V Viesser
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Cláudio F Tormena
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
21
|
Raynaud C, Norbert-Agaisse E, James BR, Eisenstein O. 31P Chemical Shifts in Ru(II) Phosphine Complexes. A Computational Study of the Influence of the Coordination Sphere. Inorg Chem 2020; 59:17038-17048. [PMID: 33156986 DOI: 10.1021/acs.inorgchem.0c02256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NMR chemical shift has been the most versatile marker of chemical structures, by reflecting global and local electronic structures, and is very sensitive to any change within the chemical species. In this work, Ru(II) complexes with the same five ligands and a variable sixth ligand L (none, H2O, H2S, CH3SH, H2, N2, N2O, NO+, C═CHPh, and CO) are studied by using as the NMR reporter the phosphorus PA of a coordinated bidentate PA-N ligand (PA-N = o-diphenylphosphino-N,N'-dimethylaniline). The chemical shift of PA in RuCl2(PA-N)(PR3)(L) (R = phenyl, p-tolyl, or p-FC6H4) was shown to increase as the Ru-PA bond distance decreases, an observation that was not rationalized. This work, using density functional theory (DFT) calculations, reproduces reasonably well the observed 31P chemical shifts for these complexes and the correlation between the shifts and the Ru-PA bond distance as L varies. An interpretation of this correlation is proposed by using a natural chemical shift (NCS) analysis based on the natural bonding orbital (NBO) method. This analysis of the principal components of the chemical shift tensors shows how the σ-donating properties of L have a particularly high influence on the phosphine chemical shifts.
Collapse
Affiliation(s)
| | | | - Brian R James
- Department of Chemistry, University of Vancouver, Vancouver, BC V6T 1Z1, Canada
| | - Odile Eisenstein
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France.,Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo 0315, Norway
| |
Collapse
|
22
|
Saqib M, Arthur-Baidoo E, Ončák M, Denifl S. Electron Attachment Studies with the Potential Radiosensitizer 2-Nitrofuran. Int J Mol Sci 2020; 21:ijms21238906. [PMID: 33255344 PMCID: PMC7727711 DOI: 10.3390/ijms21238906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrofurans belong to the class of drugs typically used as antibiotics or antimicrobials. The defining structural component is a furan ring with a nitro group attached. In the present investigation, electron attachment to 2-nitrofuran (C4H3NO3), which is considered as a potential radiosensitizer candidate for application in radiotherapy, has been studied in a crossed electron-molecular beams experiment. The present results indicate that low-energy electrons with kinetic energies of about 0-12 eV effectively decompose the molecule. In total, twelve fragment anions were detected within the detection limit of the apparatus, as well as the parent anion of 2-nitrofuran. One major resonance region of ≈0-5 eV is observed in which the most abundant anions NO2-, C4H3O-, and C4H3NO3- are detected. The experimental results are supported by ab initio calculations of electronic states in the resulting anion, thermochemical thresholds, connectivity between electronic states of the anion, and reactivity analysis in the hot ground state.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Eugene Arthur-Baidoo
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Milan Ončák
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Correspondence: (M.O.); (S.D.)
| | - Stephan Denifl
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Correspondence: (M.O.); (S.D.)
| |
Collapse
|
23
|
Kashihara M, Gordon CP, Copéret C. Reactivity of Substituted Benzenes toward Oxidative Addition Relates to NMR Chemical Shift of the Ipso-Carbon. Org Lett 2020; 22:8910-8915. [PMID: 33147975 DOI: 10.1021/acs.orglett.0c03300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidative addition of benzene derivatives to Pd0 catalysts is a key step in cross-coupling reactions. In this work, we show that the ipso-carbon chemical shift of substituted benzenes, and in particular the δ22 component of the chemical shift tensor, correlates with the free energy barrier for oxidative addition. This correlation is traced back to the electron density in the pz orbital of the ipso-carbon (perpendicular of the ring-plane), with high electron densities favoring oxidative addition. The correlation between chemical shift and free energy barrier holds true for a variety of substituted benzenes, making chemical shift a useful descriptor for predicting the reactivity of aromatic substrates in oxidative addition.
Collapse
Affiliation(s)
- Myuto Kashihara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Christopher P Gordon
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| |
Collapse
|
24
|
Viesser RV, Tormena CF. Counterintuitive deshielding on the 13 C NMR chemical shift for the trifluoromethyl anion. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:540-547. [PMID: 31705544 DOI: 10.1002/mrc.4958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The trifluoromethyl anion (CF3 - ) displays 13 C NMR chemical shift (175.0 ppm) surprisingly larger than neutral (CHF3 , 122.2 ppm) and cation (CF3 + , 150.7 ppm) compounds. This unexpected deshielding effect for a carbanion is investigated by density functional theory calculations and decomposition analyses of the 13 C shielding tensor into localized molecular orbital contributions. The present work determines the shielding mechanisms involved in the observed behaviour of the fluorinated anion species, shedding light on the experimental NMR data and demystify the classical correlation between electron density and NMR chemical shift. The presence of fluorine atoms induces the carbon lone pair to create a paramagnetic shielding on the carbon nucleus.
Collapse
Affiliation(s)
- Renan V Viesser
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Cláudio F Tormena
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
25
|
Beaumier EP, Gordon CP, Harkins RP, McGreal ME, Wen X, Copéret C, Goodpaster JD, Tonks IA. Cp 2Ti(κ 2-tBuNCN tBu): A Complex with an Unusual κ 2 Coordination Mode of a Heterocumulene Featuring a Free Carbene. J Am Chem Soc 2020; 142:8006-8018. [PMID: 32240590 PMCID: PMC7201867 DOI: 10.1021/jacs.0c02487] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although there are myriad binding modes of heterocumulenes to metal centers, the monometallic κ2-ECE (E = O, S, NR) coordination mode has not been reported. Herein, the synthesis, isolation, and physical characterization of Cp2Ti(κ2-tBuNCNtBu) (3) (Cp = cyclopentadienyl, tBu = tert-butyl), a strained 4-membered metallacycle bearing a free carbene, is described. Computational (DFT, CASSCF, QT-AIM, ELF) and solid-state CP-MAS 13C NMR spectroscopic analysis indicate that 3 is best described as a free carbene with partial Ti-Cβ bonding that results from Ti-N π-bonding mixing with N-C-N σ-bonding of the bent N-C-N framework. Reactivity studies of 3 corroborate its carbene-like nature: protonation with [LutH]I results in the formation of a Ti-formamidinate (4), while oxidation with S8 yields a Ti-thioureate (5). Additionally, a related bridged dititanamidocarbene, (Cp2Ti)2(μ-η1,η1-CyNCNCy) (10) (Cy = cyclohexyl) is reported. Taken together, this work suggests that the 2-electron reduction of heterocumulene moieties can allow access to unusual free carbene coordination geometries given the proper stabilizing coordination environment from the reducing transition metal fragment.
Collapse
Affiliation(s)
- Evan P. Beaumier
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Robin P. Harkins
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Meghan E. McGreal
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Xuelan Wen
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| |
Collapse
|
26
|
Ludwig M, Himmel D, Hillebrecht H. GIAO versus GIPAW: Comparison of Methods To Calculate 11B NMR Shifts of Icosahedral Closo-Heteroboranes toward Boron-Rich Borides. J Phys Chem A 2020; 124:2173-2185. [PMID: 31999459 DOI: 10.1021/acs.jpca.9b06582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we perform first-principle density functional theory calculations with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional to compare the results of the gauge-including atomic orbital (GIAO) method with the gauge-including projector-augmented wave (GIPAW) approach for isotropic 11B nuclear magnetic resonance shifts. GIPAW had been used successfully for the theoretical calculation of nuclear magnetic parameters of 11B species in strong ionic solid-phase compounds such as borates but had been applied very rarely to structures where boron is mainly involved in complex covalent bonding situations, for example, in icosahedra of boron-rich borides. Thus, we investigate the accuracy of both well-known methods and reliability of the effective treatment of core electrons on a test set containing 16 experimentally known closo-(hetero)dodecaboranes. In general, we find very good agreement between GIAO and GIPAW when compared to experimental observations. However, accidental degeneracies of the shift values are better predicted by GIPAW. The optimized molecular geometries on the PBE level agree well with gaseous electron diffraction data and lead to theoretical isotropic chemical 11B shifts with root-mean-square errors of 2.1 and 1.0 ppm depending on the used model of converting absolute shieldings to chemical shifts. The comparison with results from hybrid functionals (B3LYP, B3LYP-D2, and PBE0) shows a minor improvement in accuracy, which is in agreement with 13C shifts of sp3-hybridized species. In order to prove the reliability of the conversion parameters obtained by PBE, we report the calculated 11B shifts of 1,2-, 1,7-, and 1,12-PCB10H11 with GIAO and GIPAW to our knowledge for the first time. Additionally, Bader's analysis is carried out on the converged electron density for all boron species within the molecular test set, yielding no simple direct relation between charge and isotropic shifts.
Collapse
Affiliation(s)
- Martin Ludwig
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| | - Daniel Himmel
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| | - Harald Hillebrecht
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Pietrasiak E, Gordon CP, Copéret C, Togni A. Understanding 125Te NMR chemical shifts in disymmetric organo-telluride compounds from natural chemical shift analysis. Phys Chem Chem Phys 2020; 22:2319-2326. [DOI: 10.1039/c9cp05934b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Magnetic coupling of the lone pair: theoretical investigations reveal the origin of 125Te chemical shift in disymmetric organotellurides
Collapse
Affiliation(s)
- Ewa Pietrasiak
- ETH Zürich
- Department of Chemistry and Applied Sciences
- Vladimir-Prelog-Weg 2
- CH-8093 Zürich
- Switzerland
| | - Christopher P. Gordon
- ETH Zürich
- Department of Chemistry and Applied Sciences
- Vladimir-Prelog-Weg 2
- CH-8093 Zürich
- Switzerland
| | - Christophe Copéret
- ETH Zürich
- Department of Chemistry and Applied Sciences
- Vladimir-Prelog-Weg 2
- CH-8093 Zürich
- Switzerland
| | - Antonio Togni
- ETH Zürich
- Department of Chemistry and Applied Sciences
- Vladimir-Prelog-Weg 2
- CH-8093 Zürich
- Switzerland
| |
Collapse
|
28
|
Huynh W, Conley MP. Origin of the 29Si NMR chemical shift in R3Si–X and relationship to the formation of silylium (R3Si+) ions. Dalton Trans 2020; 49:16453-16463. [DOI: 10.1039/d0dt02099k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin in deshielding of 29Si NMR chemical shifts in R3Si–X, where X = H, OMe, Cl, OTf, [CH6B11X6], toluene, and OX (OX = surface oxygen), as well as iPr3Si+ and Mes3Si+ were studied using DFT methods.
Collapse
Affiliation(s)
- Winn Huynh
- Department of Chemistry
- University of California
- Riverside
- USA
| | | |
Collapse
|
29
|
Gordon CP, Raynaud C, Andersen RA, Copéret C, Eisenstein O. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds. Acc Chem Res 2019; 52:2278-2289. [PMID: 31339693 DOI: 10.1021/acs.accounts.9b00225] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal-bonded carbon atoms in metal-alkyl, metal-carbene/alkylidene, and metal-carbyne/alkylidyne species often show significantly more deshielded isotropic chemical shifts than their organic counterparts (alkanes, alkenes, and alkynes). While isotropic chemical shift is universally used to characterize a chemical compound in solution, it is an average value of the three principal components of the chemical shift tensor (δ11 > δ22 > δ33). The tensor components, which are accessible by solid-state NMR spectroscopy, can provide detailed information about the electronic structure (frontier molecular orbitals) at the observed nuclei. This information can be accessed in detail by quantum chemical calculations, most notably by an analysis of the paramagnetic contribution to the NMR shielding tensor. The paramagnetic term mainly results from the coupling of occupied and empty molecular orbitals close in energy-the frontier molecular orbitals-under the effect of the external magnetic field (B0). In organometallic compounds, a large deshielding of the isotropic carbon-13 chemical shift of the metal-bonded carbon atom is commonly related to the coupling between the occupied σM-C orbital and low-lying vacant orbitals of πM═C* character. The deshielding at the α-carbon hence probes the extent of σM-C and πM═C* interactions. This molecular orbital view readily explains the strong deshielding and large anisotropy (evidenced by the span Ω = δ11 - δ33) observed in metal alkylidenes and alkylidynes (200 < δiso < 400 ppm). Fischer carbenes are generally more deshielded than Schrock or Grubbs alkylidenes due to their low-lying πM═C* orbital. Chemical shift hence shows their higher electrophilic character, connecting NMR spectroscopy to reactivity patterns. Similarly, the α-carbon of metal-alkyls display deshielded chemical shifts in specific coordination environments. This deshielding, which is often prominently pronounced for cationic species, indicates the presence of partial π-bond character in the metal-carbon bond, making these bonds topologically equivalent to alkylidene π-bonds. The π-character in metal-alkyl bonds favors (i) α-H abstraction processes in metal bis-alkyl compounds yielding metal alkylidenes, (ii) [2 + 2]-retrocyclization of metallacyclobutanes that participate in olefin metathesis, (iii) olefin insertion in cationic metal alkyls thus explaining polymerization activity trends and the importance of α-H agostic interactions, and (iv) C-H bond activation on metal-alkyls via σ-bond metathesis. The presence of π-character in the metal-carbon bonds involved in these processes rationalizes the parallel reactivity patterns of metal-alkyls toward olefin insertion and σ-bond metathesis and the fact that σ-bond metathesis, olefin insertion, and olefin metathesis are commonly observed with metal atoms in the same ligand field. Because of the similarities in the frontier molecular orbitals involved in these processes, these reactions can be viewed as isolobal. This explains why certain fragments, such as bent metallocenes (d0 Cp2M) or T-shaped L3M, are ubiquitous in these reactions.
Collapse
Affiliation(s)
- Christopher P. Gordon
- ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg. 1-5, CH-8093 Zürich, Switzerland
| | | | - Richard A. Andersen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christophe Copéret
- ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg. 1-5, CH-8093 Zürich, Switzerland
| | - Odile Eisenstein
- ICGM, Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
30
|
Krivdin LB. Computational protocols for calculating 13C NMR chemical shifts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:103-156. [PMID: 31481156 DOI: 10.1016/j.pnmrs.2019.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The most recent results dealing with the computation of 13C NMR chemical shifts in chemistry (small molecules, saturated, unsaturated and aromatic compounds, heterocycles, functional derivatives, coordination complexes, carbocations, and natural products) are reviewed, paying special attention to theoretical background and accuracy, the latter involving solvent effects, vibrational corrections, and relativistic effects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
31
|
The 125Te Chemical Shift of Diphenyl Ditelluride: Chasing Conformers over a Flat Energy Surface. Molecules 2019; 24:molecules24071250. [PMID: 30935011 PMCID: PMC6480379 DOI: 10.3390/molecules24071250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
The interest in diphenyl ditelluride (Ph2Te2) is related to its strict analogy to diphenyl diselenide (Ph2Se2), whose capacity to reduce organic peroxides is largely exploited in catalysis and green chemistry. Since the latter is also a promising candidate as an antioxidant drug and mimic of the ubiquitous enzyme glutathione peroxidase (GPx), the use of organotellurides in medicinal chemistry is gaining importance, despite the fact that tellurium has no recognized biological role and its toxicity must be cautiously pondered. Both Ph2Se2 and Ph2Te2 exhibit significant conformational freedom due to the softness of the inter-chalcogen and carbon–chalcogen bonds, preventing the existence of a unique structure in solution. Therefore, the accurate calculation of the NMR chemical shifts of these flexible molecules is not trivial. In this study, a detailed structural analysis of Ph2Te2 is carried out using a computational approach combining classical molecular dynamics and relativistic density functional theory methods. The goal is to establish how structural changes affect the electronic structure of diphenyl ditelluride, particularly the 125Te chemical shift.
Collapse
|
32
|
Yourdkhani S, Chojecki M, Korona T. Substituent effects in the so-called cationπ interaction of benzene and its boron-nitrogen doped analogues: overlooked role of σ-skeleton. Phys Chem Chem Phys 2019; 21:6453-6466. [PMID: 30839951 DOI: 10.1039/c8cp04962a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite massive efforts to pinpoint the substituent effects in the so-called cationπ systems, no consensus has been yet reached on how substituents exercise their effects in the interaction of the aromatic molecule with the metal ion. The π-polarization (the Hunter model) and the direct local effect (the Wheeler-Houk model) are two lines of thought applied to this problem, but the justification of both approaches is based on insufficiently proven assumptions and approximations. In order to shed more light on this issue we propose a new approach which enables us to gauge directly the energetic trends resulting from the interaction of the ring with the cation. In our method we add one more partitioning level to the interacting quantum atoms (IQA) scheme and decompose the IQA interaction energies into contributions resulting from σ and π electron densities of the aromatic ring. The new approach, which is named partitioned-IQA, abbreviated as p-IQA, has been applied to complexes of derivatives of benzene or azaborine interacting with a sodium cation. The p-IQA approach reveals that in these systems both σ and π electronic moieties are polarized. Interestingly, for the majority of cases the σ-polarization outweighs the π one, contrary to the Hunter model. However, the Wheeler-Houk model is not precise, either, since the σ-polarization shows some degree of non-locality. In addition, the substituents are found to have a negligible influence on the ring orbital-overlapping capability, i.e. the covalency. Therefore, the substituent effect in the cationπ interaction is a nonlocal classical effect, indicating that neither Hunter model nor Wheeler-Houk model is able to fully describe all the aspects of the substituent effects. The p-IQA conclusions for the considered systems have been compared with the results from the functional-group SAPT (F-SAPT) method. We believe that the presented partitioning in the IQA framework will provide a deeper insight into the substituent effects in the cationπ interactions, which is beyond the σ-π atomic charge population separation.
Collapse
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic.
| | | | | |
Collapse
|
33
|
Ariai J, Saielli G. "Through-Space" Relativistic Effects on NMR Chemical Shifts of Pyridinium Halide Ionic Liquids. Chemphyschem 2019; 20:108-115. [PMID: 30312005 DOI: 10.1002/cphc.201800955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 12/27/2022]
Abstract
We have investigated, using two-component relativistic density functional theory (DFT) at ZORA-SO-BP86 and ZORA-SO-PBE0 level, the occurrence of relativistic effects on the 1 H, 13 C, and 15 N NMR chemical shifts of 1-methylpyridinium halides [MP][X] and 1-butyl-3-methylpyridinium trihalides [BMP][X3 ] ionic liquids (ILs) (X=Cl, Br, I) as a result of a non-covalent interaction with the heavy anions. Our results indicate a sizeable deshielding effect in ion pairs when the anion is I- and I3 - . A smaller, though nonzero, effect is observed also with bromine while chlorine based anions do not produce an appreciable relativistic shift. The chemical shift of the carbon atoms of the aromatic ring shows an inverse halogen dependence that has been rationalized based on the little C-2s orbital contribution to the σ-type interaction between the cation and anion. This is the first detailed account and systematic theoretical investigation of a relativistic heavy atom effect on the NMR chemical shifts of light atoms in the absence of covalent bonds. Our work paves the way and suggests the direction for an experimental investigation of such elusive signatures of ion pairing in ILs.
Collapse
Affiliation(s)
- Jama Ariai
- Department of Chemical Sciences University of Padova, Via Marzolo 1, 35131, Padua, Italy.,Present address: Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Giacomo Saielli
- CNR Institute on Membrane Technology, Padova Unit, Via Marzolo 1, 35131, Padua, Italy
| |
Collapse
|
34
|
Charistos ND, Muñoz-Castro A. Double aromaticity of the B40 fullerene: induced magnetic field analysis of π and σ delocalization in the boron cavernous structure. Phys Chem Chem Phys 2019; 21:20232-20238. [DOI: 10.1039/c9cp04223g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
B40 enables the formation of a strong long range shielding response under different orientations, characterizing the spherical aromatic nature of the cavernous D2d structure, which was dissected to contributions from π, σ and core electrons.
Collapse
Affiliation(s)
- Nickolas D. Charistos
- Aristotle University of Thessaloniki
- Department of Chemistry
- Laboratory of Quantum and Computational Chemistry
- Thessaloniki
- Greece
| | - Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares
- Facultad de Ingeniería
- Universidad Autonoma de Chile
- Santiago
- Chile
| |
Collapse
|
35
|
Charistos ND, Muñoz-Castro A, Sigalas MP. The pseudo-π model of the induced magnetic field: fast and accurate visualization of shielding and deshielding cones in planar conjugated hydrocarbons and spherical fullerenes. Phys Chem Chem Phys 2019; 21:6150-6159. [DOI: 10.1039/c9cp00836e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen skeletal models accurately reproduce the π-induced magnetic field of planar PAHs and spherical fullerenes.
Collapse
Affiliation(s)
- Nickolas D. Charistos
- Laboratory of Quantum and Computational Chemistry
- Department of Chemistry
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | - Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares
- Facultad de Ingeniería
- Universidad Autonoma de Chile
- Santiago
- Chile
| | - Michael P. Sigalas
- Laboratory of Quantum and Computational Chemistry
- Department of Chemistry
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| |
Collapse
|
36
|
Yourdkhani S, Chojecki M, Korona T. Interaction of Non-polarizable Cations with Azaborine Isomers and Their Mono-Substituted Derivatives: Position, Induction, and Non-Classical Effects Matter. Chemphyschem 2018; 19:3092-3106. [DOI: 10.1002/cphc.201800691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemical Physics and Optics; Faculty of Mathematics and Physics; Charles University; Ke Karlovu 3, CZ- 12116 Prague 2 Czech Republic
- Faculty of Chemistry; University of Warsaw; ul. Pasteura 1 02-093 Warsaw Poland
| | - Michał Chojecki
- Faculty of Chemistry; University of Warsaw; ul. Pasteura 1 02-093 Warsaw Poland
| | - Tatiana Korona
- Faculty of Chemistry; University of Warsaw; ul. Pasteura 1 02-093 Warsaw Poland
| |
Collapse
|
37
|
Rungthanaphatsophon P, Duignan TJ, Myers AJ, Vilanova SP, Barnes CL, Autschbach J, Batista ER, Yang P, Walensky JR. Influence of Substituents on the Electronic Structure of Mono- and Bis(phosphido) Thorium(IV) Complexes. Inorg Chem 2018; 57:7270-7278. [DOI: 10.1021/acs.inorgchem.8b00922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Thomas J. Duignan
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Alexander J. Myers
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P. Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Charles L. Barnes
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
38
|
Baranac-Stojanović M. Can Variations of 1
H NMR Chemical Shifts in Benzene Substituted with an Electron-Accepting (NO 2
)/Donating (NH 2
) Group be Explained in Terms of Resonance Effects of Substituents? Chem Asian J 2018; 13:877-881. [DOI: 10.1002/asia.201800137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/19/2018] [Indexed: 11/08/2022]
|
39
|
V. Viesser R, Ducati LC, Tormena CF, Autschbach J. The halogen effect on the 13C NMR chemical shift in substituted benzenes. Phys Chem Chem Phys 2018; 20:11247-11259. [DOI: 10.1039/c8cp01249k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X (F, Cl, Br, I) and R (NH2, NO2) group effects on 13C NMR chemical shifts are explained by π and σ orbitals, respectively.
Collapse
Affiliation(s)
- Renan V. Viesser
- Institute of Chemistry
- University of Campinas – UNICAMP
- Campinas
- Brazil
| | - Lucas C. Ducati
- Department of Fundamental Chemistry Institute of Chemistry
- University of São Paulo
- São Paulo
- Brazil
| | | | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|