1
|
Clotworthy MR, Dawson JJM, Johnstone MD, Fleming CL. Coumarin-Derived Caging Groups in the Spotlight: Tailoring Physiochemical and Photophysical Properties. Chempluschem 2024; 89:e202400377. [PMID: 38960871 DOI: 10.1002/cplu.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The development of light-responsive molecular tools enables spatiotemporal control of biochemical processes with superior precision. Amongst these molecular tools, photolabile caging groups are employed to prevent critical binding interactions between a bioactive molecule and its corresponding target. Only upon irradiation with light, the bioactive is released in its 'active' form and is now readily available to bind to its target. Coumarin-derived caging groups constitute one of the most popular classes of photolabile protecting groups, due to their facile synthetic accessibility, ease of tuning photophysical properties via structural modification and rapid photolysis reactions. Herein, we highlight the recent progress made on the development of coumarin-derived caging groups, in which the red-shifting of absorption spectra, improving aqueous solubility and tailoring sub-cellular localisation has been of particular interest.
Collapse
Affiliation(s)
- Megan R Clotworthy
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Joseph J M Dawson
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mark D Johnstone
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Cassandra L Fleming
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Egodawaththa NM, Rajhel O, Ma J, Guruge C, Pabarue AB, Harris E, Peverati R, Nesnas N. Highly efficient Ca 2+ chelation activated by visible light. Org Biomol Chem 2024; 22:7194-7202. [PMID: 39161284 DOI: 10.1039/d4ob00951g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Calcium ion (Ca2+) control is an essential tool in neuronal research. Herein, we report three thiocoumarin-based, visible light-activated Ca2+ chelators with quantum yields of 0.39, 0.52, and 0.83. The chelators demonstrated an over 105-fold increase in Ca2+ binding affinity upon irradiation. These chelators are efficiently triggered by biologically safer wavelengths, rendering them excellent candidates for use in neurological research and medicine.
Collapse
Affiliation(s)
- Nishal M Egodawaththa
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | - Olivia Rajhel
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | - Jingxuan Ma
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | - Charitha Guruge
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | - Alec B Pabarue
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | - Emily Harris
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | - Roberto Peverati
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | - Nasri Nesnas
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| |
Collapse
|
3
|
Tsuji M, Koiso N, Nishimura Y, Taira H, Ogawa C, Hirayama T, Nagasawa H. Design and synthesis of visible light-activatable photocaged peroxides for optical control of ROS-mediated cellular signaling. Bioorg Med Chem 2024; 111:117863. [PMID: 39096786 DOI: 10.1016/j.bmc.2024.117863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
We designed and synthesized two novel photocaged peroxide compounds, N5TBHP and N6TBHP, featuring nitrogen-containing fused ring coumarin skeletons. Notably, a tetrahydroquinoline fused coumarin derivative, N6TBHP demonstrated significantly higher photocleavage efficiency under visible light at 455 nm compared to N5TBHP, which contains an indoline fused coumarin. This process effectively releases the oxidative stress inducer tert-butylhydroperoxide (TBHP). Additionally, N6TBHP exhibits high resistance to glutathione (GSH), and its UV spectral analysis suggests enhanced intracellular stability due to reduced reactivity with GSH through self-assembly. Furthermore, N6TBHP can release an optimal amount of TBHP into cells under visible light irradiation with minimal cell damage. These properties position N6TBHP as a promising tool for advancing research in intracellular redox signaling.
Collapse
Affiliation(s)
- Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Nobuyuki Koiso
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yufu Nishimura
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Haruno Taira
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Chinami Ogawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| |
Collapse
|
4
|
Banala S, Jin XT, Dilan TL, Sheu SH, Clapham DE, Drenan RM, Lavis LD. Elucidating and Optimizing the Photochemical Mechanism of Coumarin-Caged Tertiary Amines. J Am Chem Soc 2024; 146:20627-20635. [PMID: 39023430 PMCID: PMC11295134 DOI: 10.1021/jacs.4c03092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Photoactivatable or "caged" pharmacological agents combine the high spatiotemporal specificity of light application with the molecular specificity of drugs. A key factor in all optopharmacology experiments is the mechanism of uncaging, which dictates the photochemical quantum yield and determines the byproducts produced by the light-driven chemical reaction. In previous work, we demonstrated that coumarin-based photolabile groups could be used to cage tertiary amine drugs as quaternary ammonium salts. Although stable, water-soluble, and useful for experiments in brain tissue, these first-generation compounds exhibit relatively low uncaging quantum yield (Φu < 1%) and release the toxic byproduct formaldehyde upon photolysis. Here, we elucidate the photochemical mechanisms of coumarin-caged tertiary amines and then optimize the major pathway using chemical modification. We discovered that the combination of 3,3-dicarboxyazetidine and bromine substituents shift the mechanism of release to heterolysis, eliminating the formaldehyde byproduct and giving photolabile tertiary amine drugs with Φu > 20%─a 35-fold increase in uncaging efficiency. This new "ABC" cage allows synthesis of improved photoactivatable derivatives of escitalopram and nicotine along with a novel caged agonist of the oxytocin receptor.
Collapse
Affiliation(s)
- Sambashiva Banala
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Xiao-Tao Jin
- Department
of Translational Neuroscience, Wake Forest
University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Tanya L. Dilan
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Shu-Hsien Sheu
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - David E. Clapham
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Ryan M. Drenan
- Department
of Translational Neuroscience, Wake Forest
University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Luke D. Lavis
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| |
Collapse
|
5
|
Schulte AM, Alachouzos G, Szymanski W, Feringa BL. The fate of the contact ion pair determines the photochemistry of coumarin-based photocleavable protecting groups. Chem Sci 2024; 15:2062-2073. [PMID: 38332822 PMCID: PMC10848663 DOI: 10.1039/d3sc05725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Photocleavable protecting groups (PPGs) enable the precise spatiotemporal control over the release of a payload of interest, in particular a bioactive substance, through light irradiation. A crucial parameter that determines the practical applicability of PPGs is the efficiency of payload release, largely governed by the quantum yield of photolysis (QY). Understanding which parameters determine the QY will prove crucial for engineering improved PPGs and their effective future applications, especially in the emerging field of photopharmacology. The Contact Ion Pair (CIP) has been recognized as an important intermediate in the uncaging process, but the key influence of its fate on the quantum yield has not been explored yet, limiting our ability to design improved PPGs. Here, we demonstrate that the CIP escape mechanism of PPGs is crucial for determining their payload- and solvent-dependent photolysis QY, and illustrate that an intramolecular type of CIP escape is superior over diffusion-dependent CIP escape. Furthermore, we report a strong correlation of the photolysis QY of a range of coumarin PPGs with the DFT-calculated height of all three energy barriers involved in the photolysis reaction, despite the vastly different mechanisms of CIP escape that these PPGs exhibit. Using the insights obtained through our analysis, we were able to predict the photolysis QY of a newly designed PPG with particularly high accuracy. The level of understanding of the factors determining the QY of PPGs presented here will move the ever-expanding field of PPG applications forward and provides a blueprint for the development of PPGs with QYs that are independent of payload-topology and solvent polarity.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
6
|
Fan Y, Wu Y, Hou J, Wang P, Peng X, Ge G. Coumarin-based near-infrared fluorogenic probes: Recent advances, challenges and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Klimek R, Asido M, Hermanns V, Junek S, Wachtveitl J, Heckel A. Inactivation of Competitive Decay Channels Leads to Enhanced Coumarin Photochemistry. Chemistry 2022; 28:e202200647. [PMID: 35420716 PMCID: PMC9320935 DOI: 10.1002/chem.202200647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/30/2022]
Abstract
In the development of photolabile protecting groups, it is of high interest to selectively modify photochemical properties with structural changes as simple as possible. In this work, knowledge of fluorophore optimization was adopted and used to design new coumarin‐ based photocages. Photolysis efficiency was selectively modulated by inactivating competitive decay channels, such as twisted intramolecular charge transfer (TICT) or hydrogen‐bonding, and the photolytic release of the neurotransmitter serotonin was demonstrated. Structural modifications inspired by the fluorophore ATTO 390 led to a significant increase in the uncaging cross section that can be further improved by the simple addition of a double bond. Ultrafast transient absorption spectroscopy gave insights into the underlying solvent‐dependent photophysical dynamics. The chromophores presented here are excellently suited as new photocages in the visible wavelength range due to their simple synthesis and their superior photochemical properties.
Collapse
Affiliation(s)
- Robin Klimek
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Volker Hermanns
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Stephan Junek
- Max Planck Institute for Brain Research Max-von-Laue Str. 4 60438 Frankfurt Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| |
Collapse
|
8
|
Synthesis, Optical Characterization in Solution and Solid-State, and DFT Calculations of 3-Acetyl and 3-(1'-(2'-Phenylhydrazono)ethyl)-coumarin-(7)-substituted Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123677. [PMID: 35744802 PMCID: PMC9227197 DOI: 10.3390/molecules27123677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Intramolecular charge transfer (ICT) effects are responsible for the photoluminescent properties of coumarins. Hence, optical properties with different applications can be obtained by ICT modulation. Herein, four 3-acetyl-2H-chromen-2-ones (1a–d) and their corresponding fluorescent hybrids 3- (phenylhydrazone)-chromen-2-ones (2a–d) were synthesized in 74–65% yields. The UV-Vis data were in the 295–428 nm range. The emission depends on the substituent in position C-7 bearing electron-donating groups. Compounds 1b–d showed good optical properties due to the D-π-A structural arrangement. In compounds 2a–d, there is a quenching effect of fluorescence in solution. However, in the solid, an increase is shown due to an aggregation-induced emission (AIE) effect given by the rotational restraints and stacking in the crystal. Computational calculations of the HOMO-LUMO orbitals indicate high absorbance and emission values of the molecules, and gap values represent the bathochromic effect and the electronic efficiency of the compounds. Compounds 1a–d and 2a–d are good candidates for optical applications, such as OLEDs, organic solar cells, or fluorescence markers.
Collapse
|
9
|
A novel TICT-based near-infrared fluorescent probe for light-up sensing and imaging of human serum albumin in real samples. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Hermanns V, Scheurer M, Kersten NF, Abdellaoui C, Wachtveitl J, Dreuw A, Heckel A. Rethinking Uncaging: A New Antiaromatic Photocage Driven by a Gain of Resonance Energy. Chemistry 2021; 27:14121-14127. [PMID: 34363415 PMCID: PMC8519059 DOI: 10.1002/chem.202102351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 12/31/2022]
Abstract
Photoactivatable compounds for example photoswitches or photolabile protecting groups (PPGs, photocages) for spatiotemporal light control, play a crucial role in different areas of research. For each application, parameters such as the absorption spectrum, solubility in the respective media and/or photochemical quantum yields for several competing processes need to be optimized. The design of new photochemical tools therefore remains an important task. In this study, we exploited the concept of excited-state-aromaticity, first described by N. Colin Baird in 1971, to investigate a new class of photocages, based on cyclic, ground-state-antiaromatic systems. Several thio- and nitrogen-functionalized compounds were synthesized, photochemically characterized and further optimized, supported by quantum chemical calculations. After choosing the optimal scaffold, which shows an excellent uncaging quantum yield of 28 %, we achieved a bathochromic shift of over 100 nm, resulting in a robust, well accessible, visible light absorbing, compact new photocage with a clean photoreaction and a high quantum product (ϵ⋅Φ) of 893 M-1 cm-1 at 405 nm.
Collapse
Affiliation(s)
- Volker Hermanns
- Institute of Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Lau-Str. 760438FrankfurtGermany
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityIm Neuenheimer Feld 20569120HeidelbergGermany
| | - Nils Frederik Kersten
- Institute of Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Lau-Str. 760438FrankfurtGermany
| | - Chahinez Abdellaoui
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityIm Neuenheimer Feld 20569120HeidelbergGermany
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Lau-Str. 760438FrankfurtGermany
| |
Collapse
|
11
|
Górski K, Deperasińska I, Baryshnikov GV, Ozaki S, Kamada K, Ågren H, Gryko DT. Quadrupolar Dyes Based on Highly Polarized Coumarins. Org Lett 2021; 23:6770-6774. [PMID: 34474569 PMCID: PMC8419859 DOI: 10.1021/acs.orglett.1c02349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/29/2022]
Abstract
The fluorescence and other photophysical parameters of highly polarized, quadrupolar bis-coumarins possessing an electron-rich pyrrolo[3,2-b]pyrrole bridging unit are highly dependent on the linking position between both chromophores. Delocalization of the LUMO on the entire π-system results in intense emission and strong two-photon absorption.
Collapse
Affiliation(s)
- Krzysztof Górski
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Irena Deperasińska
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Glib V. Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Shuhei Ozaki
- Nanomaterials
Research Institute (NMRI), National Institute of Advanced Industrial
Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Department
of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Kenji Kamada
- Nanomaterials
Research Institute (NMRI), National Institute of Advanced Industrial
Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Department
of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Daniel T. Gryko
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Kielesiński Ł, Morawski OW, Barboza CA, Gryko DT. Polarized Helical Coumarins: [1,5] Sigmatropic Rearrangement and Excited-State Intramolecular Proton Transfer. J Org Chem 2021; 86:6148-6159. [PMID: 33830755 PMCID: PMC8154611 DOI: 10.1021/acs.joc.0c02978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The tandem process
of phenol addition to a cyclic α,β-unsaturated
ester followed by intramolecular transesterification and [1,5] sigmatropic
rearrangement affords a series of helical coumarins based upon a previously
unknown 3-amino-7-hydroxybenzo[3,4]cyclohepta[1,2-c]chromen-6-one core. These novel polarized coumarins, possessing
a β-ketoester moiety, have been employed to synthesize more
rigid and helical coumarin–pyrazolones, which display green
fluorescence. The enhanced emission of coumarin–pyrazolones
in polar solvents depends on the nature of the S1 state. The coumarin–pyrazolones are predicted to have
two vertical states close in energy: a weakly absorbing S1 (1LE) followed by a bright S2 state (1CT). In polar solvents, the 1CT can be stabilized below the 1LE and may become
the fluorescent state. Solvatochromism of the fluorescence spectra
confirms this theoretical prediction. The presence of an N—H···O=C
intramolecular hydrogen bond in these coumarin–pyrazolone hybrids
facilitates excited-state intramolecular proton transfer (ESIPT).
This process leads to a barrierless conical intersection with the
ground electronic state and opens a radiationless deactivation channel
effectively competing with fluorescence. Solvent stabilization of
the CT state increases the barrier for ESIPT and decreases the efficiency
of the nonradiative channel. This results in the observed correlation
between solvatochromism and an increase of fluorescence intensity
in polar solvents.
Collapse
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Olaf W Morawski
- Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Cristina A Barboza
- Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
Becker Y, Roth S, Scheurer M, Jakob A, Gacek DA, Walla PJ, Dreuw A, Wachtveitl J, Heckel A. Selective Modification for Red-Shifted Excitability: A Small Change in Structure, a Huge Change in Photochemistry. Chemistry 2021; 27:2212-2218. [PMID: 32955154 PMCID: PMC7898321 DOI: 10.1002/chem.202003672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Indexed: 01/13/2023]
Abstract
We developed three bathochromic, green-light activatable, photolabile protecting groups based on a nitrodibenzofuran (NDBF) core with D-π-A push-pull structures. Variation of donor substituents (D) at the favored ring position enabled us to observe their impact on the photolysis quantum yields. Comparing our new azetidinyl-NDBF (Az-NDBF) photolabile protecting group with our earlier published DMA-NDBF, we obtained insight into its excitation-specific photochemistry. While the "two-photon-only" cage DMA-NDBF was inert against one-photon excitation (1PE) in the visible spectral range, we were able to efficiently release glutamic acid from azetidinyl-NDBF with irradiation at 420 and 530 nm. Thus, a minimal change (a cyclization adding only one carbon atom) resulted in a drastically changed photochemical behavior, which enables photolysis in the green part of the spectrum.
Collapse
Affiliation(s)
- Yvonne Becker
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Sina Roth
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing (IWR)Theoretical and Computational ChemistryIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - Andreas Jakob
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Daniel A. Gacek
- Institute for Physical and Theoretical ChemistryTechnical University BraunschweigGaußstr. 1738106BraunschweigGermany
| | - Peter J. Walla
- Institute for Physical and Theoretical ChemistryTechnical University BraunschweigGaußstr. 1738106BraunschweigGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR)Theoretical and Computational ChemistryIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| |
Collapse
|
14
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
15
|
López-Corrales M, Rovira A, Gandioso A, Bosch M, Nonell S, Marchán V. Transformation of COUPY Fluorophores into a Novel Class of Visible-Light-Cleavable Photolabile Protecting Groups. Chemistry 2020; 26:16222-16227. [PMID: 32530072 DOI: 10.1002/chem.202002314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 12/29/2022]
Abstract
Although photolabile protecting groups (PPGs) have found widespread applications in several fields of chemistry, biology and materials science, there is a growing interest in expanding the photochemical toolbox to overcome some of the limitations of classical caging groups. In this work, the synthesis of a new class of visible-light-sensitive PPGs based on low-molecular weight COUPY fluorophores with several attractive properties, including long-wavelength absorption, is reported. Besides being stable to spontaneous hydrolysis in the dark, COUPY-based PPGs can be efficiently photoactivated with yellow (560 nm) and red light (620 nm) under physiological-like conditions, thereby offering the possibility of unmasking functional groups from COUPY photocages under irradiation conditions in which other PPGs remain stable. Additionally, COUPY photocages exhibit excellent cellular uptake and accumulate selectively in mitochondria, opening the door to the delivery of caged analogues of biologically active compounds into these organelles.
Collapse
Affiliation(s)
- Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Anna Rovira
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, 08017, Barcelona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
16
|
Ma J, Ripp A, Wassy D, Dürr T, Qiu D, Häner M, Haas T, Popp C, Bezold D, Richert S, Esser B, Jessen HJ. Thiocoumarin Caged Nucleotides: Synthetic Access and Their Photophysical Properties. Molecules 2020; 25:E5325. [PMID: 33203096 PMCID: PMC7696096 DOI: 10.3390/molecules25225325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
Photocages have been successfully applied in cellular signaling studies for the controlled release of metabolites with high spatio-temporal resolution. Commonly, coumarin photocages are activated by UV light and the quantum yields of uncaging are relatively low, which can limit their applications in vivo. Here, syntheses, the determination of the photophysical properties, and quantum chemical calculations of 7-diethylamino-4-hydroxymethyl-thiocoumarin (thio-DEACM) and caged adenine nucleotides are reported and compared to the widely used 7-diethylamino-4-hydroxymethyl-coumarin (DEACM) caging group. In this comparison, thio-DEACM stands out as a phosphate cage with improved photophysical properties, such as red-shifted absorption and significantly faster photolysis kinetics.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Daniel Wassy
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Tobias Dürr
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Thomas Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Christoph Popp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Dominik Bezold
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany;
| | - Birgit Esser
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
17
|
Kovács E, Faigl F, Mucsi Z. Regio- and Diastereoselective Synthesis of 2-Arylazetidines: Quantum Chemical Explanation of Baldwin's Rules for the Ring-Formation Reactions of Oxiranes†. J Org Chem 2020; 85:11226-11239. [PMID: 32786621 PMCID: PMC7498157 DOI: 10.1021/acs.joc.0c01310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
A general,
scalable two-step regio- and diastereoselective method
has been described for the synthesis of versatile alkaloid-type azetidines
from simple building blocks with excellent overall yields. In the
kinetically controlled reaction, only the formation of the strained
four-membered ring can be achieved instead of the thermodynamically
favorable five-membered rings under appropriate conditions. Remarkable
functional group tolerance has also been demonstrated. In this paper,
we give a new scope of Baldwin’s rules by density functional
theory (DFT) calculations with an explicit solvent model, confirming
the proposed reaction mechanisms and the role of kinetic controls
in the stereochemical outcome of the reported transition-metal-free
carbon–carbon bond formation reactions.
Collapse
Affiliation(s)
- Ervin Kovács
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary.,MTA-BME Organic Chemical Technology Research Group, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary.,Femtonics Ltd., Budapest H-1094, Hungary
| | - Ferenc Faigl
- MTA-BME Organic Chemical Technology Research Group, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary
| | | |
Collapse
|
18
|
Galeta J, Dzijak R, Obořil J, Dračínský M, Vrabel M. A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chemistry 2020; 26:9945-9953. [PMID: 32339341 PMCID: PMC7497033 DOI: 10.1002/chem.202001290] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 12/20/2022]
Abstract
Fluorescent probes that light-up upon reaction with complementary bioorthogonal reagents are superior tools for no-wash fluorogenic bioimaging applications. In this work, a thorough study is presented on a set of seventeen structurally diverse coumarin-tetrazine probes that produce fluorescent dyes with exceptional turn-on ratios when reacted with trans-cyclooctene (TCO) and bicyclononyne (BCN) dienophiles. In general, formation of the fully aromatic pyridazine-containing dyes resulting from the reaction with BCN was found superior in terms of fluorogenicity. However, evaluation of the probes in cellular imaging experiments revealed that other factors, such as reaction kinetics and good cell permeability, prevail over the fluorescence turn-on properties. The best compound identified in this study showed excellent performance in live cell-labeling experiments and enabled no-wash fluorogenic imaging on a timescale of seconds.
Collapse
Affiliation(s)
- Juraj Galeta
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Jan Obořil
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| |
Collapse
|
19
|
Jun JV, Chenoweth DM, Petersson EJ. Rational design of small molecule fluorescent probes for biological applications. Org Biomol Chem 2020; 18:5747-5763. [PMID: 32691820 PMCID: PMC7453994 DOI: 10.1039/d0ob01131b] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to "modulate" fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure-property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.
Collapse
Affiliation(s)
- Joomyung V Jun
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Hoelzel CA, Zhang X. Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies. Chembiochem 2020; 21:1935-1946. [PMID: 32180315 PMCID: PMC7367766 DOI: 10.1002/cbic.202000037] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Visualizing and manipulating the behavior of proteins is crucial to understanding the physiology of the cell. Methods of biorthogonal protein labeling are important tools to attain this goal. In this review, we discuss advances in probe technology specific for self-labeling protein tags, focusing mainly on the application of HaloTag and SNAP-tag systems. We describe the latest developments in small-molecule probes that enable fluorogenic (no wash) imaging and super-resolution fluorescence microscopy. In addition, we cover several methodologies that enable the perturbation or manipulation of protein behavior and function towards the control of biological pathways. Thus, current technical advances in the HaloTag and SNAP-tag systems means that they are becoming powerful tools to enable the visualization and manipulation of biological processes, providing invaluable scientific insights that are difficult to obtain by traditional methodologies. As the multiplex of self-labeling protein tag systems continues to be developed and expanded, the utility of these protein tags will allow researchers to address previously inaccessible questions at the forefront of biology.
Collapse
Affiliation(s)
- Conner A Hoelzel
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| |
Collapse
|
21
|
Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Wang C, Qiao Q, Chi W, Chen J, Liu W, Tan D, McKechnie S, Lyu D, Jiang X, Zhou W, Xu N, Zhang Q, Xu Z, Liu X. Quantitative Design of Bright Fluorophores and AIEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chao Wang
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Weijie Chi
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Davin Tan
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Scott McKechnie
- Department of PhysicsKings College London London WC2R 2LS UK
| | - Da Lyu
- Department of ChemistryNational University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| | - Xiao‐Fang Jiang
- School of Physics and Telecommunication EngineeringSouth China Normal University Guangzhou 510006 China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiaogang Liu
- Fluorescence Research GroupSingapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
23
|
Hoelzel CA, Hu H, Wolstenholme CH, Karim BA, Munson KT, Jung KH, Zhang H, Liu Y, Yennawar HP, Asbury JB, Li X, Zhang X. A General Strategy to Enhance Donor‐Acceptor Molecules Using Solvent‐Excluding Substituents. Angew Chem Int Ed Engl 2020; 59:4785-4792. [DOI: 10.1002/anie.201915744] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Conner A. Hoelzel
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Hang Hu
- Department of ChemistryUniversity of Washington Seattle WA 98105 USA
- Molecular Engineering and Sciences InstituteUniversity of Washington Seattle WA 98105 USA
| | | | - Basel A. Karim
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
- Department of Biochemistry and Molecular BiologyPennsylvania State University University Park PA 16802 USA
| | - Kyle T. Munson
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Kwan Ho Jung
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Han Zhang
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Yu Liu
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
- Dalian Institute of Chemical Physics Dalian 116023 China
| | - Hemant P. Yennawar
- Department of Biochemistry and Molecular BiologyPennsylvania State University University Park PA 16802 USA
| | - John B. Asbury
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Xiaosong Li
- Department of ChemistryUniversity of Washington Seattle WA 98105 USA
| | - Xin Zhang
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
- Department of Biochemistry and Molecular BiologyPennsylvania State University University Park PA 16802 USA
| |
Collapse
|
24
|
Wang C, Qiao Q, Chi W, Chen J, Liu W, Tan D, McKechnie S, Lyu D, Jiang XF, Zhou W, Xu N, Zhang Q, Xu Z, Liu X. Quantitative Design of Bright Fluorophores and AIEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angew Chem Int Ed Engl 2020; 59:10160-10172. [PMID: 31943591 DOI: 10.1002/anie.201916357] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of TICT can significantly increase the brightness of fluorescent materials. Accurate prediction of TICT is thus critical for the quantitative design of high-performance fluorophores and AIEgens. TICT of 14 types of popular organic fluorophores were modeled with time-dependent density functional theory (TD-DFT). A reliable and generalizable computational approach for modeling TICT formations was established. To demonstrate the prediction power of our approach, we quantitatively designed a boron dipyrromethene (BODIPY)-based AIEgen which exhibits (almost) barrierless TICT rotations in monomers. Subsequent experiments validated our molecular design and showed that the aggregation of this compound turns on bright emissions with ca. 27-fold fluorescence enhancement, as TICT formation is inhibited in molecular aggregates.
Collapse
Affiliation(s)
- Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Scott McKechnie
- Department of Physics, Kings College London, London, WC2R 2LS, UK
| | - Da Lyu
- Department of Chemistry, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Xiao-Fang Jiang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
25
|
Hoelzel CA, Hu H, Wolstenholme CH, Karim BA, Munson KT, Jung KH, Zhang H, Liu Y, Yennawar HP, Asbury JB, Li X, Zhang X. A General Strategy to Enhance Donor‐Acceptor Molecules Using Solvent‐Excluding Substituents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Conner A. Hoelzel
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Hang Hu
- Department of ChemistryUniversity of Washington Seattle WA 98105 USA
- Molecular Engineering and Sciences InstituteUniversity of Washington Seattle WA 98105 USA
| | | | - Basel A. Karim
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
- Department of Biochemistry and Molecular BiologyPennsylvania State University University Park PA 16802 USA
| | - Kyle T. Munson
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Kwan Ho Jung
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Han Zhang
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Yu Liu
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
- Dalian Institute of Chemical Physics Dalian 116023 China
| | - Hemant P. Yennawar
- Department of Biochemistry and Molecular BiologyPennsylvania State University University Park PA 16802 USA
| | - John B. Asbury
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
| | - Xiaosong Li
- Department of ChemistryUniversity of Washington Seattle WA 98105 USA
| | - Xin Zhang
- Department of ChemistryPennsylvania State University University Park PA 16802 USA
- Department of Biochemistry and Molecular BiologyPennsylvania State University University Park PA 16802 USA
| |
Collapse
|
26
|
Liu H, Yan S, Huang R, Gao Z, Wang G, Ding L, Fang Y. Single-Benzene-Based Solvatochromic Chromophores: Color-Tunable and Bright Fluorescence in the Solid and Solution States. Chemistry 2019; 25:16732-16739. [PMID: 31674074 DOI: 10.1002/chem.201904478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/30/2019] [Indexed: 01/24/2023]
Abstract
The search for structurally simple chromophores with superior fluorescence brightness and a wide range of solvent compatibility is highly desirable. Herein, a new type of single-benzene-based solvatochromic chromophore with a symmetric bifunctional structure, in which azetidine and ethoxycarbonyl moieties serve as the electron-donating and -withdrawing groups, respectively, is reported. This chromophore exhibits an extraordinary wide range of solvent compatibility and preserves excellent fluorescence quantum yields from nonpolar n-hexane to polar methanol and even in water. Unusually, the symmetric structure of the chromophore shows a distinct color change from bright green to red with increasing solvent polarity and possesses large Stokes shifts (λ=132-207 nm) in the tested solvents. Moreover, this single-benzene-based chromophore displays good photochemical stability in both solution and solid states, and even exhibits reversible mechanochromic luminescence.
Collapse
Affiliation(s)
- Huijing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of, the Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.,School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| | - Sisi Yan
- Key Laboratory of Applied Surface and Colloid Chemistry of, the Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of, the Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Zhipeng Gao
- Key Laboratory of Applied Surface and Colloid Chemistry of, the Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of, the Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of, the Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of, the Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| |
Collapse
|
27
|
Kielesiński Ł, Gryko DT, Sobolewski AL, Morawski O. The Interplay between Solvation and Stacking of Aromatic Rings Governs Bright and Dark Sites of Benzo[g]coumarins. Chemistry 2019; 25:15305-15314. [PMID: 31523856 DOI: 10.1002/chem.201903018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Indexed: 11/06/2022]
Abstract
Coumarins are classic, strongly polarized fluorophores with multiple applications, and significant efforts have been put into modifying their emission characteristics and elucidating their photophysics. Expecting that π-expansion of these donor-acceptor chromophores could modify their ground- and excited-state characteristics, the authors performed combined, detailed photophysical and computational studies of linearly π-expanded coumarins, that is, 8-dialkylamino-3-carboxyalkyl-benzo[g]coumarins. The investigation led to the conclusion that emission is only possible thanks to the stabilizing effect of the solvent and that breaking of the lactone ring leads to the conical intersection with the ground state and induces the radiationless decay of the electronic excitation. Aiming at the fine-tuning the excited state properties through the construction of covalently linked dye assemblies, the authors designed and synthesized a new bis(benzo[g]coumarin), built from two similar moieties that exhibit different degrees of polarization due to the electron donor at position 8: one possesses a dialkylamino, and the other a weaker amide donor. Comprehensive studies have shown that the observed weak fluorescence of the system is the result of the interplay between the solvation-induced separation of the benzo[g]coumarin moieties, which stabilizes the emitting locally excited singlet state and the π-stacking interactions, favoring their sandwiched orientation and leading to the non-emissive charge-transfer state.
Collapse
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.,Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Andrzej L Sobolewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Olaf Morawski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| |
Collapse
|
28
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019; 58:16839-16843. [DOI: 10.1002/anie.201910059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
29
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
30
|
Dal Corso A, Pignataro L, Belvisi L, Gennari C. Innovative Linker Strategies for Tumor‐Targeted Drug Conjugates. Chemistry 2019; 25:14740-14757. [DOI: 10.1002/chem.201903127] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Alberto Dal Corso
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
31
|
Ye Z, Yang W, Wang C, Zheng Y, Chi W, Liu X, Huang Z, Li X, Xiao Y. Quaternary Piperazine-Substituted Rhodamines with Enhanced Brightness for Super-Resolution Imaging. J Am Chem Soc 2019; 141:14491-14495. [PMID: 31487156 DOI: 10.1021/jacs.9b04893] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insufficient brightness of fluorophores poses a major bottleneck for the advancement of super-resolution microscopes. Despite being widely used, many rhodamine dyes exhibit sub-optimal brightness due to the formation of twisted intramolecular charge transfer (TICT) upon photoexcitation. Herein, we have developed a new class of quaternary piperazine-substituted rhodamines with outstanding quantum yields (Φ = 0.93) and superior brightness (ε × Φ = 8.1 × 104 L·mol-1·cm-1), by utilizing the electronic inductive effect to prevent TICT. We have also successfully deployed these rhodamines in the super-resolution imaging of the microtubules of fixed cells and of the cell membrane and lysosomes of live cells. Finally, we demonstrated that this strategy was generalizable to other families of fluorophores, resulting in substantially increased quantum yields.
Collapse
Affiliation(s)
- Zhiwei Ye
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China.,Chemical Analysis and Research Center , Dalian University of Technology , Dalian 116024 , China
| | - Chao Wang
- Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372
| | - Ying Zheng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Weijie Chi
- Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372
| | - Xiaogang Liu
- Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xiaoyuan Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
32
|
Sosa DO, Almaraz K, Amézquita-Valencia M. Regioselective Synthesis of 4,5-Dihydro-6 H
-oxepino[3,2- c
]chromene-2,6(3 H
)-diones through Palladium-Catalyzed Intramolecular Alkoxycarbonylation of 3-Allyl-4-hydroxycoumarins. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- D. Oliver Sosa
- Instituto de Química, Ciudad Universitaria, Ciudad de México; Universidad Nacional Autónoma de México; 04510 México
| | - Karla Almaraz
- Instituto de Química, Ciudad Universitaria, Ciudad de México; Universidad Nacional Autónoma de México; 04510 México
| | - Manuel Amézquita-Valencia
- Instituto de Química, Ciudad Universitaria, Ciudad de México; Universidad Nacional Autónoma de México; 04510 México
| |
Collapse
|
33
|
Varejão JOS, Varejão EVV, Fernandes SA. Synthesis and Derivatization of Julolidine: A Powerful Heterocyclic Structure. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jodieh Oliveira Santana Varejão
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| | - Eduardo Vinícius Vieira Varejão
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| | - Sergio Antonio Fernandes
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| |
Collapse
|
34
|
Li Z, Su K, Jiang Z, Yu Y, You Q, Zhang X. Photoactivatable Prolyl Hydroxylase 2 Inhibitors for Stabilizing the Hypoxia-Inducible Factor with Light. J Med Chem 2019; 62:7583-7588. [DOI: 10.1021/acs.jmedchem.9b00688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kaijun Su
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhensheng Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yancheng Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
35
|
Węcławski MK, Deperasińska I, Banasiewicz M, Young DC, Leniak A, Gryko DT. Building Molecular Complexity from Quinizarin: Conjoined Coumarins and Coronene Analogs. Chem Asian J 2019; 14:1763-1770. [PMID: 30022613 DOI: 10.1002/asia.201800757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/08/2018] [Indexed: 12/20/2022]
Abstract
The double Knoevenagel condensation of 1,4-dibenzoyloxyanthraquinone with methyl esters of arylacetic acids affords a series of compounds based upon a previously unknown 1,8-dioxa-benzo[e]pyrene-2,7-dione heterocyclic core. The aryl groups incorporated in the 3- and 6-positions can be oxidatively coupled to the π-expanded backbone to produce a further new heterocyclic core: 1,10-dioxa-dibenzo[dj]coronene-2,9-dione. The intriguing optical properties of these π-expanded coumarin derivatives are discussed and rationalized through quantum chemical calculations. The broad absorption bands of 1,8-dioxa-benzo[e]pyrene-2,7-dione-based dyes are attributed to both HOMO-1→LUMO and HOMO→LUMO transitions, which have a similar energy. Weakly coupled electron-donating aryl substituents result in a moderate bathochromic shift of both the absorption and emission by 30-60 nm in toluene. The emissive properties of these compounds are in part determined by the oscillator strength of the main transition, lifetimes of the excited state, and by the energy match of the excited state with a triplet state of a similar energy. The 1,10-dioxa-dibenzo[dj]coronene-2,9-dione displays a much smaller Stokes shift, yet a markedly increased fluorescence quantum yield of 90 % owing to the increased rigidity compared with the 1,8-dioxa-benzo[e]pyrene-2,7-dione core.
Collapse
Affiliation(s)
- Marek K Węcławski
- Institute of Organc Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Irena Deperasińska
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - David C Young
- Institute of Organc Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Arkadiusz Leniak
- Institute of Organc Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organc Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| |
Collapse
|
36
|
Chate AV, Redlawar AA, Bondle GM, Sarkate AP, Tiwari SV, Lokwani DK. A new efficient domino approach for the synthesis of coumarin-pyrazolines as antimicrobial agents targeting bacteriald-alanine-d-alanine ligase. NEW J CHEM 2019. [DOI: 10.1039/c9nj00703b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inhibition ofd-alanine-d-alanine ligase (Ddl) prevents bacterial growth, which makes this enzyme an attractive and viable target in the urgent search for novel effective antimicrobial drugs.
Collapse
Affiliation(s)
- Asha V. Chate
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University
- Aurangabad-431 004
- India
| | - Ankita A. Redlawar
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University
- Aurangabad-431 004
- India
| | - Giribala M. Bondle
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University
- Aurangabad-431 004
- India
| | - Aniket P. Sarkate
- Department of Chemical Technology, Dr Babasaheb Ambedkar Marathwada University
- Aurangabad-431004
- India
| | - Shailee V. Tiwari
- Department of Pharmaceutical Chemistry, Durgamata Institute of Pharmacy
- Parbhani-431401
- India
| | - Deepak K. Lokwani
- R. C. Patel Institute of Pharmaceutical Education & Research
- Shirpur-425405
- India
| |
Collapse
|
37
|
Gandioso A, Palau M, Bresolí-Obach R, Galindo A, Rovira A, Bosch M, Nonell S, Marchán V. High Photostability in Nonconventional Coumarins with Far-Red/NIR Emission through Azetidinyl Substitution. J Org Chem 2018; 83:11519-11531. [PMID: 30168330 DOI: 10.1021/acs.joc.8b01422] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Replacement of electron-donating N,N-dialkyl groups with three- or four-membered cyclic amines (e.g., aziridine and azetidine, respectively) has been described as a promising approach to improve some of the drawbacks of conventional fluorophores, including low fluorescent quantum yields (ΦF) in polar solvents. In this work, we have explored the influence of azetidinyl substitution on nonconventional coumarin-based COUPY dyes. Two azetidine-containing scaffolds were first synthesized in four linear synthetic steps and easily transformed into far-red/NIR-emitting fluorophores through N-alkylation of the pyridine moiety. Azetidine introduction in COUPY dyes resulted in enlarged Stokes' shifts with respect to the N,N-dialkylamino-containing parent dyes, but the ΦF were not significantly modified in aqueous media, which is in contrast with previously reported observations in other fluorophores. However, azetidinyl substitution led to an unprecedented improvement in the photostability of COUPY dyes, and high cell permeability was retained since the fluorophores accumulated selectively in mitochondria and nucleoli of HeLa cells. Overall, our results provide valuable insights for the design and optimization of novel fluorophores operating in the far-red/NIR region, since we have demonstrated that three important parameters (Stokes' shifts, ΦF, and photostability) cannot be always simultaneously addressed by simply replacing a N,N-dialkylamino group with azetidine, at least in nonconventional coumarin-based fluorophores.
Collapse
Affiliation(s)
- Albert Gandioso
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB , Universitat de Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
| | - Marta Palau
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB , Universitat de Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
| | - Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull , E-08017 Barcelona , Spain
| | - Alex Galindo
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB , Universitat de Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
| | - Anna Rovira
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB , Universitat de Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics , Universitat de Barcelona , E-08028 Barcelona , Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull , E-08017 Barcelona , Spain
| | - Vicente Marchán
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, IBUB , Universitat de Barcelona , Martí i Franquès 1-11 , E-08028 Barcelona , Spain
| |
Collapse
|
38
|
Doan SH, Nguyen VHH, Nguyen TH, Pham PH, Nguyen NN, Phan ANQ, Tu TN, Phan NTS. Cross-dehydrogenative coupling of coumarins with Csp3–H bonds using an iron–organic framework as a productive heterogeneous catalyst. RSC Adv 2018; 8:10736-10745. [PMID: 35541557 PMCID: PMC9078982 DOI: 10.1039/c8ra00872h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/08/2018] [Indexed: 11/21/2022] Open
Abstract
The iron–organic framework VNU-20 was utilized as an active heterogeneous catalyst for the cross-dehydrogenative coupling of coumarins with Csp3–H bonds in alkylbenzenes, cyclohexanes, ethers, and formamides.
Collapse
Affiliation(s)
- Son H. Doan
- Faculty of Chemical Engineering
- HCMC University of Technology
- VNU-HCM
- Ho Chi Minh City
- Viet Nam
| | - Vu H. H. Nguyen
- Faculty of Chemical Engineering
- HCMC University of Technology
- VNU-HCM
- Ho Chi Minh City
- Viet Nam
| | - Thuong H. Nguyen
- Faculty of Chemical Engineering
- HCMC University of Technology
- VNU-HCM
- Ho Chi Minh City
- Viet Nam
| | - Phuc H. Pham
- Faculty of Chemical Engineering
- HCMC University of Technology
- VNU-HCM
- Ho Chi Minh City
- Viet Nam
| | - Ngoc N. Nguyen
- Center for Innovative Materials and Architectures
- VNU-HCM
- Ho Chi Minh City
- Viet Nam
| | - Anh N. Q. Phan
- Faculty of Chemical Engineering
- HCMC University of Technology
- VNU-HCM
- Ho Chi Minh City
- Viet Nam
| | - Thach N. Tu
- Center for Innovative Materials and Architectures
- VNU-HCM
- Ho Chi Minh City
- Viet Nam
| | - Nam T. S. Phan
- Faculty of Chemical Engineering
- HCMC University of Technology
- VNU-HCM
- Ho Chi Minh City
- Viet Nam
| |
Collapse
|