1
|
Zhang H, Guo L, Su Y, Wang R, Yang W, Mu W, Xuan L, Huang L, Wang J, Gao W. Hosts engineering and in vitro enzymatic synthesis for the discovery of novel natural products and their derivatives. Crit Rev Biotechnol 2024; 44:1121-1139. [PMID: 37574211 DOI: 10.1080/07388551.2023.2236787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 08/15/2023]
Abstract
Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and in vitro enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including Streptomyces, Aspergillus, and Penicillium, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of in vitro enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.
Collapse
Affiliation(s)
- Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenrong Mu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Liangshuang Xuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
2
|
Wang H, Fan X, Xie PP, Yang S, Pigeon P, Xiong Y, Gai S, Qi X, Wang J, Zhang Q, Li W, Qian H, McGlinchey MJ, Jaouen G, Zheng C, Wang Y. Deciphering the Diversified Metabolic Behavior of Hydroxyalkyl Ferrocidiphenols as Anticancer Complexes. J Med Chem 2024; 67:1209-1224. [PMID: 38156614 DOI: 10.1021/acs.jmedchem.3c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ferrocidiphenols possessing appropriate substituents in the aliphatic chain have very promising anticancer properties, but a systematic approach to deciphering their diversified metabolic behavior has so far been lacking. Herein, we show that a series of novel ferrocidiphenols bearing different hydroxyalkyl substituents exhibit strong anticancer activity as revealed in a range of in vitro and in vivo experiments. Moreover, they display diversified oxidative transformation profiles very distinct from those of previous complexes, shown by the use of chemical and enzymatic methods and in cellulo and in vivo metabolism studies. In view of this phenomenon, unprecedented chemo-evolutionary sequences that connect all the ferrocidiphenol-related intermediates and analogues have been established. In addition, a comprehensive density functional theory (DFT) study has been performed to decipher the metabolic diversification profiles of these complexes and demonstrate the delicate modulation of carbenium ions by the ferrocenyl moiety, via either α- or β-positional participation.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shuang Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Pascal Pigeon
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Sorbonne Université, UMR 8232 CNRS, IPCM, 4 place Jussieu, F-75005 Paris, France
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Susu Gai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Qianer Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Wei Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Huimei Qian
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Michael J McGlinchey
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 C1P1, Ireland
| | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Sorbonne Université, UMR 8232 CNRS, IPCM, 4 place Jussieu, F-75005 Paris, France
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| |
Collapse
|
3
|
Ornelas C, Astruc D. Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics 2023; 15:2044. [PMID: 37631259 PMCID: PMC10458437 DOI: 10.3390/pharmaceutics15082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.
Collapse
Affiliation(s)
- Catia Ornelas
- ChemistryX, R&D Department, R&D and Consulting Company, 9000-160 Funchal, Portugal
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS, No. 5255, 351 Cours de la Libération, CEDEX, 33405 Talence, France
| |
Collapse
|
4
|
I.M.H. Abdulrahman Y, Zaki M, Alhaddad MR, Hairat S, Akhtar K. Structural elucidation of new ferrocene appended scaffold and their metal complexes: Comparative in vitroDNA/BSA Binding and antibacterial assay. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Idlas P, Ladaycia A, Némati F, Lepeltier E, Pigeon P, Jaouen G, Decaudin D, Passirani C. Ferrocifen stealth LNCs and conventional chemotherapy: A promising combination against multidrug-resistant ovarian adenocarcinoma. Int J Pharm 2022; 626:122164. [PMID: 36089209 DOI: 10.1016/j.ijpharm.2022.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Ovarian cancer is one of the deadliest epithelial malignancies in women, owing to the multidrug resistance that restricts the success of conventional chemotherapy, carboplatin and paclitaxel. High grade serous ovarian carcinoma can be classified into two subtypes, the chemosensitive High OXPHOS and the Low OXPHOS tumour, less sensitive to chemotherapy. This difference of treatment efficacy could be explained by the redox status of these tumours, High OXPHOS exhibiting a chronic oxidative stress and an accumulation of reactive oxygen species. Ferrocifens, bio-organometallic compounds, are believed to be ROS producers with a good cytotoxicity on ovarian cancer cell lines. The aim of this study was to evaluate the in vivo efficacy of ferrocifen stealth lipid nanocapsules on High and Low OXPHOS ovarian Patient-Derived Xenograft models, alone or in combination to standard chemotherapy. Accordingly, two ferrocifens, P53 and P722, were encapsulated in stealth LNCs. The treatment by stealth P722-LNCs in combination with standard chemotherapy induced, with a concentration eight time lower than in stealth P53-LNCs, similar tumour reduction on a Low OXPHOS model, allowing us to conclude that P722 could be a leading ferrocifen to treat ovarian cancer. This combination of treatments may represent a promising synergistic approach to treat resistant ovarian adenocarcinoma.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Abdallah Ladaycia
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Fariba Némati
- Translational Research Department, Laboratory of preclinical Investigation, PSL University, Institut Curie, 26 rue d'Ulm, Paris 75248, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France
| | - Pascal Pigeon
- PSL Chimie Paris Tech, 11 rue P. et M. Curie and Sorbonne Université IPCM, CNRS, UMR 8232, IPCM, Paris 75005, France
| | - Gerard Jaouen
- PSL Chimie Paris Tech, 11 rue P. et M. Curie and Sorbonne Université IPCM, CNRS, UMR 8232, IPCM, Paris 75005, France
| | - Didier Decaudin
- Translational Research Department, Laboratory of preclinical Investigation, PSL University, Institut Curie, 26 rue d'Ulm, Paris 75248, France; Department of Medical Oncology, Institut Curie, 26 rue d'Ulm, Paris 75248, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France
| |
Collapse
|
6
|
Succinimido–Ferrocidiphenol Complexed with Cyclodextrins Inhibits Glioblastoma Tumor Growth In Vitro and In Vivo without Noticeable Adverse Toxicity. Molecules 2022; 27:molecules27144651. [PMID: 35889527 PMCID: PMC9316017 DOI: 10.3390/molecules27144651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
SuccFerr (N-[4-ferrocenyl,5-5-bis (4-hydroxyphenyl)-pent-4-enyl]-succinimide) has remarkable antiproliferative effects in vitro, attributed to the formation of a stabilized quinone methide. The present article reports in vivo results for a possible preclinical study. SuccFerr is lipophilic and insoluble in water, so the development of a formulation to obviate this inconvenience was necessary. This was achieved by complexation with randomly methylated cyclodextrins (RAMEßCDs). This supramolecular water-soluble system allowed the in vivo experiments below to proceed. Application of SuccFerr on the glioblastoma cancer cell line U87 indicates that it affects the cellular cycle by inducing a blockade at G0/G1 phase, linked to apoptosis, and another one at the S phase, associated with senescence. Using healthy Fischer rats, we show that both intravenous and subcutaneous SuccFerr: RAMEßCD administration at 5 mg/kg lacks toxic effects on several organs. To reach lethality, doses higher than 200 mg/kg need to be administered. These results prompted us to perform an ectopic in vivo study at 1 mg/kg i.v. ferrocidiphenol SuccFerr using F98 cells xenografted in rats. Halting of cancer progression was observed after six days of injection, associated with an immunological defense response linked to the active principle. These results demonstrate that the properties of the selected ferrocidiphenol SuccFerr transfer successfully to in vivo conditions, leading to interesting therapeutic perspectives based on this chemistry.
Collapse
|
7
|
|
8
|
Wang Y, Pigeon P, Li W, Yan J, Dansette PM, Othman M, McGlinchey MJ, Jaouen G. Diversity-oriented synthesis and bioactivity evaluation of N-substituted ferrocifen compounds as novel antiproliferative agents against TNBC cancer cells. Eur J Med Chem 2022; 234:114202. [DOI: 10.1016/j.ejmech.2022.114202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
|
9
|
Schoch S, Iacopini D, Dalla Pozza M, Di Pietro S, Degano I, Gasser G, Di Bussolo V, Marchetti F. Tethering Carbohydrates to the Vinyliminium Ligand of Antiproliferative Organometallic Diiron Complexes. Organometallics 2022; 41:514-526. [PMID: 35308582 PMCID: PMC8924928 DOI: 10.1021/acs.organomet.1c00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Silvia Schoch
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Dalila Iacopini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | | | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | | | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
10
|
Mazur M, Ziemkiewicz K, Rawiak K, Kisiel K, Wińska P, Deresz K, Jarzembska KN, Buchowicz W. N ‐Allyl‐N‐ferrocenylmethylamines and ansa‐ferrocenylmethylamines: Synthesis, Structure, and Biological Evaluation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Mazur
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Kamil Ziemkiewicz
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Karol Rawiak
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Kacper Kisiel
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Patrycja Wińska
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Krystyna Deresz
- University of Warsaw: Uniwersytet Warszawski Department of Chemistry Zwirki i Wigury 101 02-089 Warsaw POLAND
| | - Katarzyna N. Jarzembska
- University of Warsaw: Uniwersytet Warszawski Department of Chemistry Zwirki i Wigury 101 02-089 Warsaw POLAND
| | - Włodzimierz Buchowicz
- Warsaw University of Technology Faculty of Chemistry Noakowskiego 3 00-664 Warszawa POLAND
| |
Collapse
|
11
|
Schoch S, Braccini S, Biancalana L, Pratesi A, Funaioli T, Zacchini S, Pampaloni G, Chiellini F, Marchetti F. When ferrocene and diiron organometallics meet: triiron vinyliminium complexes exhibit strong cytotoxicity and cancer cell selectivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00534d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Robust and versatile cationic triiron complexes, obtained from the assembly of ferrocenyl with a di-organoiron structure, display an outstanding cytotoxicity profile, which may be related to redox processes provided by the two metallic components.
Collapse
Affiliation(s)
- Silvia Schoch
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Simona Braccini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Alessandro Pratesi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tiziana Funaioli
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Federica Chiellini
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
12
|
Zhong KL, Quan J, Pan XX, Song W, Li BF. Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A new cadmium(II)-based coordination polymer [Cd3(FcCOO)6(4,4′-bipy)(H2O)2]
n
(FcCOO = ferrocenecarboxylato and 4,4′-bipy = 4,4′-bipyridine) has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The results of a crystal structural analysis has revealed that the title compound consists of two crystallographically unique CdII centers, one in a general position with a five-coordinated and one on an inversion center with a six-coordinated environment. The CdII centers are connected by FcCOO− units to form a metal carboxylate oxygen chain extending parallel to the [100] direction while the 4,4′-bipy ligands further act as bridging linkers of the CdII centers resulting in a layered polymer. In addition, an X-ray powder diffraction and thermal gravimetric analysis and a cyclo-voltammetric characterization of the complex have also been carried out.
Collapse
Affiliation(s)
- Kai-Long Zhong
- School of Life and Health, Nanjing Polytechnic Institute , Nanjing , 210048 , China
| | - Jing Quan
- School of Life and Health, Nanjing Polytechnic Institute , Nanjing , 210048 , China
| | - Xian-Xiao Pan
- School of Environmental Engineering, Nanjing Polytechnic Institute , Nanjing , 210048 , China
| | - Wei Song
- School of Life and Health, Nanjing Polytechnic Institute , Nanjing , 210048 , China
| | - Bing-Feng Li
- School of Life and Health, Nanjing Polytechnic Institute , Nanjing , 210048 , China
| |
Collapse
|
13
|
Yousuf S, Arjmand F, Tabassum S. Design, synthesis, ligand’s scaffold variation and structure elucidation of Cu(II) complexes; In vitro DNA binding, morphological studies and their anticancer activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Vessières A, Quissac E, Lemaire N, Alentorn A, Domeracka P, Pigeon P, Sanson M, Idbaih A, Verreault M. Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes. Int J Mol Sci 2021; 22:ijms221910404. [PMID: 34638742 PMCID: PMC8508975 DOI: 10.3390/ijms221910404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadliest primary brain cancer in adults, justifying the search for new treatments. Some members of the iron-based ferrocifen family have demonstrated a high cytotoxic effect on various cancer cell lines via innovative mechanisms of action. Here, we evaluated the antiproliferative activity by wst-1 assay of six ferrocifens in 15 molecularly diverse GBM patient-derived cell lines (PDCLs). In five out of six compounds, the half maximal inhibitory concentration (IC50) values varied significantly (10 nM < IC50 < 29.8 µM) while the remaining one (the tamoxifen-like complex) was highly cytotoxic against all PDCLs (mean IC50 = 1.28 µM). The pattern of response was comparable for the four ferrocifens bearing at least one phenol group and differed widely from those of the tamoxifen-like complex and the complex with no phenol group. An RNA sequencing differential analysis showed that response to the diphenol ferrocifen relied on the activation of the Death Receptor signaling pathway and the modulation of FAS expression. Response to this complex was greater in PDCLs from the Mesenchymal or Proneural transcriptomic subtypes compared to the ones from the Classical subtype. These results provide new information on the mechanisms of action of ferrocifens and highlight a broader diversity of behavior than previously suspected among members of this family. They also support the case for a molecular-based personalized approach to future use of ferrocifens in the treatment of GBM.
Collapse
Affiliation(s)
- Anne Vessières
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Correspondence: (A.V.); (M.V.)
| | - Emie Quissac
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Nolwenn Lemaire
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Agusti Alentorn
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Patrycja Domeracka
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Pascal Pigeon
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Chimie ParisTech-PSL, 11 Rue P. et M. Curie, F-75005 Paris, France
| | - Marc Sanson
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Maïté Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
- Correspondence: (A.V.); (M.V.)
| |
Collapse
|
15
|
Schoch S, Hadiji M, Pereira SAP, Saraiva MLMFS, Braccini S, Chiellini F, Biver T, Zacchini S, Pampaloni G, Dyson PJ, Marchetti F. A Strategy to Conjugate Bioactive Fragments to Cytotoxic Diiron Bis(cyclopentadienyl) Complexes. Organometallics 2021; 40:2516-2528. [PMID: 34475610 PMCID: PMC8397425 DOI: 10.1021/acs.organomet.1c00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/19/2022]
Abstract
![]()
A series of bioactive
molecules were synthesized from the condensation
of aspirin or chlorambucil with terminal alkynes bearing alcohol or
amine substituents. Insertion of the resulting alkynes into the iron–carbyne
bond of readily accessible diiron bis(cyclopentadienyl) μ-aminocarbyne
complexes, [1a,b]CF3SO3, afforded novel diiron complexes with a bridging vinyliminium ligand,
[2–10]CF3SO3, functionalized with a bioactive moiety. All compounds were characterized
by elemental analysis and IR and multinuclear NMR spectroscopy and
in three cases by single-crystal X-ray diffraction. Moreover, the
D2O solubility, stability in D2O and cell culture
media, and octanol–water partition coefficients of diiron complexes
were determined spectroscopically. The cytotoxicity of the complexes
was assessed in the tumorigenic A2780 and A2780cisR and the nontumorigenic
HEK 293T cell lines. Some complexes exhibit high potency and the ability
to overcome resistance in A2780cisR cells (aspirin complexes) or high
selectivity relative to HEK 293T cells (chlorambucil complexes). Further
studies indicate that the complexes significantly trigger intracellular
ROS production, irrespective of the nature of the bioactive fragment.
DNA alkylation and protein binding studies were also undertaken.
Collapse
Affiliation(s)
- Silvia Schoch
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah A P Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, da Universidade do Porto, Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, da Universidade do Porto, Porto, Portugal
| | - Simona Braccini
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Federica Chiellini
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Tarita Biver
- University of Pisa, Dipartimento di Farmacia, 56126 Pisa, Italy.,University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Dipartimento di Chimica Industriale "Toso Montanari", 40136 Bologna, Italy
| | - Guido Pampaloni
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabio Marchetti
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, 56124 Pisa, Italy
| |
Collapse
|
16
|
Braccini S, Rizzi G, Biancalana L, Pratesi A, Zacchini S, Pampaloni G, Chiellini F, Marchetti F. Anticancer Diiron Vinyliminium Complexes: A Structure-Activity Relationship Study. Pharmaceutics 2021; 13:1158. [PMID: 34452119 PMCID: PMC8398472 DOI: 10.3390/pharmaceutics13081158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
A series of 16 novel diiron complexes of general formula [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(R')C(R″)CN(R)(Y)}]CF3SO3 (2-7), bearing different substituents on the bridging vinyliminium ligand, was synthesized in 69-95% yields from the reactions of diiron μ-aminocarbyne precursors with various alkynes. The products were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy; moreover the X-ray structures of 2c (R = Y = CH2Ph, R' = R″ = Me) and 3a (R = CH2CH=CH2, Y = R' = Me, R″ = H) were ascertained by single-crystal X-ray diffraction studies. NMR and UV-Vis methods were used to assess the D2O solubility, the stability in aqueous solution at 37 °C and the octanol-water partition coefficients of the complexes. A screening study evidenced a potent cytotoxicity of 2-7 against the A2780 cancer cell line, with a remarkable selectivity compared to the nontumoral Balb/3T3 cell line; complex 4c (R = Cy, Y = R' = R″ = Me) revealed as the most performant of the series. The antiproliferative activity of a selection of complexes was also assessed on the cisplatin-resistant A2780cisR cancer cell line, and these complexes were capable of inducing a significant ROS production. Moreover, ESI-MS experiments indicated the absence of interaction of selected complexes with cytochrome c and the potentiality to inhibit the thioredoxin reductase enzyme (TrxR).
Collapse
Affiliation(s)
- Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Giorgia Rizzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy;
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| |
Collapse
|
17
|
Cheng Q, Zhou T, Xia Q, Lu X, Xu H, Hu M, Jing S. Design of ferrocenylseleno-dopamine derivatives to optimize the Fenton-like reaction efficiency and antitumor efficacy. RSC Adv 2021; 11:25477-25483. [PMID: 35478891 PMCID: PMC9036967 DOI: 10.1039/d1ra03537a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
In the current study, six ferrocenylseleno-dopamine derivatives with different structural parameters were designed. Among these derivatives, F4b, containing two ferrocene units and a tertiary amine, showed in vitro anticancer activity with IC50 = 2.4 ± 0.4 μM for MGC-803 cells, and its in vivo studies suggested effective antitumor activity in mice bearing an MGC-803 tumor xenograft. Mechanistic study revealed that the cytotoxicity of these ferrocenylseleno-dopamine derivatives is mainly related to the Fenton-like reaction under physiological conditions, and the tertiary amine in F4b can facilitate the H2O2 decomposition to generate toxic ˙OH which induces apoptosis through CDK-2 inactivation.
Collapse
Affiliation(s)
- Qianya Cheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Tong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Qing Xia
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xiulian Lu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Heng Xu
- Jiangsu Province Institute of Materia Medica, Nanjing Tech University Nanjing 211816 China
| | - Ming Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
18
|
Biancalana L, De Franco M, Ciancaleoni G, Zacchini S, Pampaloni G, Gandin V, Marchetti F. Easily Available, Amphiphilic Diiron Cyclopentadienyl Complexes Exhibit in Vitro Anticancer Activity in 2D and 3D Human Cancer Cells through Redox Modulation Triggered by CO Release. Chemistry 2021; 27:10169-10185. [PMID: 34106495 PMCID: PMC8362065 DOI: 10.1002/chem.202101048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 01/22/2023]
Abstract
A straightforward two-step procedure via single CO removal allows the conversion of commercial [Fe2 Cp2 (CO)4 ] into a range of amphiphilic and robust ionic complexes based on a hybrid aminocarbyne/iminium ligand, [Fe2 Cp2 (CO)3 {CN(R)(R')}]X (R, R'=alkyl or aryl; X=CF3 SO3 or BF4 ), on up to multigram scales. Their physicochemical properties can be modulated by an appropriate choice of N-substituents and counteranion. Tested against a panel of human cancer cell lines, the complexes were shown to possess promising antiproliferative activity and to circumvent multidrug resistance. Interestingly, most derivatives also retained a significant cytotoxic activity against human cancer 3D cell cultures. Among them, the complex with R=4-C6 H4 OMe and R'=Me emerged as the best performer of the series, being on average about six times more active against cancer cells than a noncancerous cell line, and displayed IC50 values comparable to those of cisplatin in 3D cell cultures. Mechanistic studies revealed the ability of the complexes to release carbon monoxide and to act as oxidative stress inducers in cancer cells.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 13I-56124PisaItaly
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaVia F. Marzolo 5I-35131PadovaItaly
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 13I-56124PisaItaly
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”University of BolognaViale Risorgimento 4I-40136BolognaItaly
| | - Guido Pampaloni
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 13I-56124PisaItaly
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaVia F. Marzolo 5I-35131PadovaItaly
| | - Fabio Marchetti
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 13I-56124PisaItaly
| |
Collapse
|
19
|
Idlas P, Lepeltier E, Jaouen G, Passirani C. Ferrocifen Loaded Lipid Nanocapsules: A Promising Anticancer Medication against Multidrug Resistant Tumors. Cancers (Basel) 2021; 13:2291. [PMID: 34064748 PMCID: PMC8151583 DOI: 10.3390/cancers13102291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance of cancer cells to current chemotherapeutic drugs has obliged the scientific community to seek innovative compounds. Ferrocifens, lipophilic organometallic compounds composed of a tamoxifen scaffold covalently bound to a ferrocene moiety, have shown very interesting antiproliferative, cytotoxic and immunologic effects. The formation of ferrocenyl quinone methide plays a crucial role in the multifaceted activity of ferrocifens. Lipid nanocapsules (LNCs), meanwhile, are nanoparticles obtained by a free organic solvent process. LNCs consist of an oily core surrounded by amphiphilic surfactants and are perfectly adapted to encapsulate these hydrophobic compounds. The different in vitro and in vivo experiments performed with this ferrocifen-loaded nanocarrier have revealed promising results in several multidrug-resistant cancer cell lines such as glioblastoma, breast cancer and metastatic melanoma, alone or in combination with other therapies. This review provides an exhaustive summary of the use of ferrocifen-loaded LNCs as a promising nanomedicine, outlining the ferrocifen mechanisms of action on cancer cells, the nanocarrier formulation process and the in vivo results obtained over the last two decades.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Universités, Université IPCM, Paris 6, UMR 8232, IPCM, 4 place Jussieu, 75005 Paris, France;
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| |
Collapse
|
20
|
Wen M, Erb W, Mongin F, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V. Functionalization of N,N-Dialkylferrocenesulfonamides toward Substituted Derivatives. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Wen
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - William Erb
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Florence Mongin
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Yury S. Halauko
- UNESCO Chair of Belarusian State University, 14 Leningradskaya Str., Minsk 220030, Belarus
| | - Oleg A. Ivashkevich
- Research Institute for Physico-Chemical Problems of Belarusian State University, 14 Leningradskaya Str., Minsk 220030, Belarus
| | - Vadim E. Matulis
- Research Institute for Physico-Chemical Problems of Belarusian State University, 14 Leningradskaya Str., Minsk 220030, Belarus
| | - Thierry Roisnel
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Vincent Dorcet
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
21
|
Vessières A, Wang Y, McGlinchey MJ, Jaouen G. Multifaceted chemical behaviour of metallocene (M = Fe, Os) quinone methides. Their contribution to biology. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Liu L, Liu H, Zuo Z, Zhang AA, Li Z, Meng T, Wu W, Hua Y, Mao G. Synthesis of planar chiral isoquinolinone-fused ferrocenes through palladium-catalyzed C-H functionalization reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Tabrizi L, Nguyen TLA, Tran HDT, Pham MQ, Dao DQ. Antioxidant and Anticancer Properties of Functionalized Ferrocene with Hydroxycinnamate Derivatives-An Integrated Experimental and Theoretical Study. J Chem Inf Model 2020; 60:6185-6203. [PMID: 33233887 DOI: 10.1021/acs.jcim.0c00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two ferrocenyl derivatives, Fc-CA and Fc-FA, were synthesized by a condensation reaction between the amino ferrocene and hydroxycinnamic acids, that is, caffeic acid (CA) and ferulic acid (FA). The structures and purity of all compounds were characterized by 1H- and 13C NMR spectroscopies, Mass spectrometry (MS), and elemental analysis. The antioxidant properties of Fc-CA and Fc-FA and of its ligand were studied for free radical scavenging activity toward DPPH•, superoxide anion (O2•-), NO•, and ABTS•+ by UV-vis and electron spin resonance spectroscopies. The cytotoxicity of Fc-CA and Fc-FA against MCF-7 and MDA-MB-231 breast cancer cells and MRC-5 human lung fibroblasts cell was higher than that of cisplatin. The geometry and electronic structures of all compounds were then simulated using density functional theory at M05-2X/6-311+G(d,p) level of theory. Thermodynamics of the free radical quenching reactions by common mechanisms reveal the higher antioxidant properties of the Fc-CA and Fc-FA in comparison to their ligands. An in-depth study of the free radical scavenging activity against HOO• and HO• radicals was performed for two of the most favorable and competitive mechanisms, the hydrogen transfer (either hydrogen atom transfer or proton-coupled electron transfer mechanisms) and the radical adduct formation. The in silico studies indicated that ferrocenyl derivatives exhibited prominent binding affinity to protein models in comparison to CA and FA. Their dock scores were notable at ligand binding sites of ERα, Erβ, and JAK2 proteins. Dock pose analysis also shed light into the possible mechanism of action for the studied compounds.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway, University Road, Galway H91 TK33, Ireland
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | | | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
24
|
Ferrocenyl Migrations and Molecular Rearrangements: The Significance of Electronic Charge Delocalization. INORGANICS 2020. [DOI: 10.3390/inorganics8120068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enhanced stabilization of a carbocationic site adjacent to a ferrocenyl moiety was recognized within a few years of the discovery of sandwich compounds. While a detailed understanding of the phenomenon was the subject of some early debate, researchers soon took advantage of it to control the ease and direction of a wide range of molecular rearrangements. We, here, discuss the progress in this area from the pioneering studies of the 1960s, to more recent applications in chromatography and analytical detection techniques, and currently in the realm of bioactive organometallic complexes. Several classic reactions involving ferrocenyl migrations, such as the pinacol, Wolff, Beckmann, and Curtius, are discussed, as well as the influence of the ferrocenyl substituent on the mechanisms of the Nazarov, Meyer-Schuster, benzoin, and Stevens rearrangements. The preparation and isomerizations of ferrocenyl-stabilized vinyl cations and vinylcyclopropenes, together with the specific cyclization of acetylcyclopentadienyl-metal derivatives to form 1,3,5-substituted benzenes, demonstrate the versatility and generality of this approach.
Collapse
|
25
|
Begines P, Sevilla-Horrillo L, Puerta A, Puckett R, Bayort S, Lagunes I, Maya I, Padrón JM, López Ó, Fernández-Bolaños JG. Masked Phenolic-Selenium Conjugates: Potent and Selective Antiproliferative Agents Overcoming P-gp Resistance. Pharmaceuticals (Basel) 2020; 13:ph13110358. [PMID: 33142908 PMCID: PMC7692337 DOI: 10.3390/ph13110358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for one of the most complex diseases nowadays due to its multifactorial nature. Despite the vast number of cytotoxic agents developed so far, good therapeutic approaches are not always reached. In recent years, multitarget drugs are gaining great attention against multifactorial diseases in contraposition to polypharmacy. Herein we have accomplished the conjugation of phenolic derivatives with an ample number of organochalcogen motifs with the aim of developing novel antiproliferative agents. Their antioxidant, and antiproliferative properties (against six tumour and one non-tumour cell lines) were analysed. Moreover, in order to predict P-gp-mediated chemoresistance, the P-glycoprotein assay was also conducted in order to determine whether compounds prepared herein could behave as substrates of that glycoprotein. Selenium derivatives were found to be significantly stronger antiproliferative agents than their sulfur isosters. Moreover, the length and the nature of the tether, together with the nature of the organoselenium scaffold were also found to be crucial features in the observed bioactivities. The lead compound, bearing a methylenedioxyphenyl moiety, and a diselenide functionality, showed a good activity (GI50 = 0.88‒2.0 µM) and selectivity towards tumour cell lines (selectivity index: 14‒32); moreover, compounds considered herein were not substrates for the P-gp efflux pump, thus avoiding the development of chemoresistance coming from such mechanism, commonly found for widely-used chemotherapeutic agents.
Collapse
Affiliation(s)
- Paloma Begines
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
| | - Lucía Sevilla-Horrillo
- Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, E-41011 Seville, Spain; (L.S.-H.); (R.P.)
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.P.); (I.L.)
| | - Rebecca Puckett
- Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, E-41011 Seville, Spain; (L.S.-H.); (R.P.)
| | - Samuel Bayort
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
| | - Irene Lagunes
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.P.); (I.L.)
| | - Inés Maya
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain; (A.P.); (I.L.)
- Correspondence: (J.M.P.); (Ó.L.); (J.G.F.-B.); Tel.: +34-922-316-502 (J.M.P.) ext. 6126; +34-954-559-997 (Ó.L.); +34-954-550-996 (J.G.F.-B.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
- Correspondence: (J.M.P.); (Ó.L.); (J.G.F.-B.); Tel.: +34-922-316-502 (J.M.P.) ext. 6126; +34-954-559-997 (Ó.L.); +34-954-550-996 (J.G.F.-B.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (P.B.); (S.B.); (I.M.)
- Correspondence: (J.M.P.); (Ó.L.); (J.G.F.-B.); Tel.: +34-922-316-502 (J.M.P.) ext. 6126; +34-954-559-997 (Ó.L.); +34-954-550-996 (J.G.F.-B.)
| |
Collapse
|
26
|
Cunningham L, Wang Y, Nottingham C, Pagsulingan J, Jaouen G, McGlinchey MJ, Guiry PJ. Enantioselective Synthesis of Planar Chiral Ferrocifens that Show Chiral Discrimination in Antiproliferative Activity on Breast Cancer Cells. Chembiochem 2020; 21:2974-2981. [PMID: 32453493 DOI: 10.1002/cbic.202000311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/25/2020] [Indexed: 11/09/2022]
Abstract
The design and first enantioselective synthesis of a series of chiral ferrocifens and ferrociphenols was realised by enantioselective palladium-catalysed intramolecular direct C-H bond activation followed by McMurry coupling. Biological evaluation revealed moderate anticancer activities on breast cancer cells and evidence of chiral discrimination between enantiomers. Treatment of the novel ferrocifens with Ag2 O revealed that these systems are unable to form a neutral quinone methide, yet still demonstrate marked antiproliferative properties against both the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 cell lines. This bioactivity arises from two mechanisms: Fenton-type chemistry and the anti-estrogenic activity associated with the tamoxifen-like structure.
Collapse
Affiliation(s)
- Laura Cunningham
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland.,Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Yong Wang
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France.,Sorbonne Université, UPMC Univ. Paris 6, UMR 8232 CNRS IPCM, Place Jussieu, 75005, Paris, France
| | - Chris Nottingham
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland
| | - Jammah Pagsulingan
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland
| | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France.,Sorbonne Université, UPMC Univ. Paris 6, UMR 8232 CNRS IPCM, Place Jussieu, 75005, Paris, France
| | - Michael J McGlinchey
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland.,Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| |
Collapse
|
27
|
Wu K, Pudasaini B, Park JY, Top S, Jaouen G, Baik MH, Geiger WE. Oxidation of Cymantrene-Tagged Tamoxifen Analogues: Effect of Diphenyl Functionalization on the Redox Mechanism. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kan Wu
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji Young Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Siden Top
- Sorbonne Université, UPMC, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Gérard Jaouen
- Sorbonne Université, UPMC, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4 Place Jussieu, 75005 Paris, France
- PSL, Chimie ParisTech, 11 rue Pierre and Marie Curie, F-75005 Paris, France
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - William E. Geiger
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
28
|
Agonigi G, Biancalana L, Lupo MG, Montopoli M, Ferri N, Zacchini S, Binacchi F, Biver T, Campanella B, Pampaloni G, Zanotti V, Marchetti F. Exploring the Anticancer Potential of Diiron Bis-cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands: Behavior in Aqueous Media and In Vitro Cytotoxicity. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00681] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gabriele Agonigi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Monica Montopoli
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Francesca Binacchi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Beatrice Campanella
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
29
|
Schoch S, Batchelor LK, Funaioli T, Ciancaleoni G, Zacchini S, Braccini S, Chiellini F, Biver T, Pampaloni G, Dyson PJ, Marchetti F. Diiron Complexes with a Bridging Functionalized Allylidene Ligand: Synthesis, Structural Aspects, and Cytotoxicity. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvia Schoch
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Simona Braccini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Federica Chiellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tarita Biver
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
30
|
Sharma B, Gu L, Pillay RP, Cele N, Awolade P, Singh P, Kaur M, Kumar V. Design, synthesis, and anti-proliferative evaluation of 1 H-1,2,3-triazole grafted tetrahydro-β-carboline-chalcone/ferrocenylchalcone conjugates in estrogen responsive and triple negative breast cancer cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj00879f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of 1H-1,2,3 triazole grafted tetrahydro-β-carboline-chalcone/ferrocenylchalcone conjugates were synthesized and in vitro evaluated against estrogen responsive (MCF-7) and triple negative (MDA-MB-231) breast cancer cells.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Liang Gu
- School of Molecular and Cell Biology
- University of the Witwatersrand
- Johannesburg
- South Africa
| | - Ruvesh Pascal Pillay
- School of Molecular and Cell Biology
- University of the Witwatersrand
- Johannesburg
- South Africa
| | - Nosipho Cele
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - Paul Awolade
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - Parvesh Singh
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology
- University of the Witwatersrand
- Johannesburg
- South Africa
| | - Vipan Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
31
|
Mazur M, Mrozowicz M, Buchowicz W, Koszytkowska-Stawińska M, Kamiński R, Ochal Z, Wińska P, Bretner M. Formylation of a metathesis-derived ansa[4]-ferrocene: a simple route to anticancer organometallics. Dalton Trans 2020; 49:11504-11511. [DOI: 10.1039/d0dt01975e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ansa-Ferrocenealdehyde, obtained by formylation of a metathesis-derived ansa-ferrocene, was transformed into a conjugate with triazole and uracil with anticancer activity.
Collapse
Affiliation(s)
- Maria Mazur
- Faculty of Chemistry
- Chair of Organic Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Michał Mrozowicz
- Faculty of Chemistry
- Chair of Organic Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Włodzimierz Buchowicz
- Faculty of Chemistry
- Chair of Organic Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | | | | | - Zbigniew Ochal
- Faculty of Chemistry
- Chair of Drug and Cosmetics Biotechnology
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Patrycja Wińska
- Faculty of Chemistry
- Chair of Drug and Cosmetics Biotechnology
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Maria Bretner
- Faculty of Chemistry
- Chair of Drug and Cosmetics Biotechnology
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
32
|
Wilde M, Arzur D, Baratte B, Lefebvre D, Robert T, Roisnel T, Le Jossic-Corcos C, Bach S, Corcos L, Erb W. Regorafenib analogues and their ferrocenic counterparts: synthesis and biological evaluation. NEW J CHEM 2020. [DOI: 10.1039/d0nj05334a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
New ferrocene analogues of regorafenib have been prepared and their biological activity was evaluated in kinase and cellular assays.
Collapse
|
33
|
Tazi M, Erb W, Roisnel T, Dorcet V, Mongin F, Low PJ. From ferrocene to fluorine-containing penta-substituted derivatives and all points in-between; or, how to increase the available chemical space. Org Biomol Chem 2019; 17:9352-9359. [PMID: 31617544 DOI: 10.1039/c9ob01885a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In spite of the growing interest in fluorine-containing compounds, and the improvements in materials, optical and biological properties that can arise from substitution of a phenyl ring by ferrocene within a molecular scaffold, synthetic strategies that allow the efficient preparation of fluoroferrocene derivatives are scarce. Following conversion of ferrocene to fluoroferrocene, we have developed routes to fluorine-containing di-, tri-, tetra- and penta-substituted ferrocene derivatives to extend the available chemical space. Our approach is based on the identification of suitable reagents and conditions to achieve fluorine-directed deprotometalation, and exploitation of the halogen 'dance' rearrangement in the ferrocene series.
Collapse
Affiliation(s)
- Mehdi Tazi
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | | | | | | | | | | |
Collapse
|
34
|
Peter S, Aderibigbe BA. Ferrocene-Based Compounds with Antimalaria/Anticancer Activity. Molecules 2019; 24:molecules24193604. [PMID: 31591298 PMCID: PMC6804011 DOI: 10.3390/molecules24193604] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Malaria and cancer are chronic diseases. The challenge with drugs available for the treatment of these diseases is drug toxicity and resistance. Ferrocene is a potent organometallic which have been hybridized with other compounds resulting in compounds with enhanced biological activity such as antimalarial and anticancer. Drugs such as ferroquine were developed from ferrocene and chloroquine. It was tested in the 1990s as an antimalarial and is still an effective antimalarial. Many researchers have reported ferrocene compounds as potent compounds useful as anticancer and antimalarial agents when hybridized with other pharmaceutical scaffolds. This review will be focused on compounds with ferrocene moieties that exhibit either an anticancer or antimalarial activity.
Collapse
Affiliation(s)
- Sijongesonke Peter
- Department of Chemistry, University of Fort Hare, Alice campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
35
|
Tonolo F, Salmain M, Scalcon V, Top S, Pigeon P, Folda A, Caron B, McGlinchey MJ, Toillon R, Bindoli A, Jaouen G, Vessières A, Rigobello MP. Small Structural Differences between Two Ferrocenyl Diphenols Determine Large Discrepancies of Reactivity and Biological Effects. ChemMedChem 2019; 14:1717-1726. [DOI: 10.1002/cmdc.201900430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Tonolo
- Dipartimento di Scienze BiomedicheUniversità di Padova Via Ugo Bassi 58/b 35131 Padova Italy
| | - Michèle Salmain
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
| | - Valeria Scalcon
- Dipartimento di Scienze BiomedicheUniversità di Padova Via Ugo Bassi 58/b 35131 Padova Italy
| | - Siden Top
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
| | - Pascal Pigeon
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
- Chimie ParisTechPSL University 11 rue Pierre et Marie Curie 75005 Paris France
| | - Alessandra Folda
- Dipartimento di Scienze BiomedicheUniversità di Padova Via Ugo Bassi 58/b 35131 Padova Italy
| | - Benoit Caron
- Sorbonne UniversitéISTeP, ALIPP6 4 Place Jussieu 75005 Paris France
| | | | | | - Alberto Bindoli
- Istituto di Neuroscienze (CNR) Sezione di Padovac/o Dipartimento di Scienze Biomediche Via Ugo Bassi 58/b 35131 Padova Italy
| | - Gérard Jaouen
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
- Chimie ParisTechPSL University 11 rue Pierre et Marie Curie 75005 Paris France
| | - Anne Vessières
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
| | - Maria Pia Rigobello
- Dipartimento di Scienze BiomedicheUniversità di Padova Via Ugo Bassi 58/b 35131 Padova Italy
| |
Collapse
|
36
|
Rocco D, Batchelor LK, Agonigi G, Braccini S, Chiellini F, Schoch S, Biver T, Funaioli T, Zacchini S, Biancalana L, Ruggeri M, Pampaloni G, Dyson PJ, Marchetti F. Anticancer Potential of Diiron Vinyliminium Complexes. Chemistry 2019; 25:14801-14816. [PMID: 31441186 DOI: 10.1002/chem.201902885] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/20/2019] [Indexed: 11/08/2022]
Abstract
Although ferrocene derivatives have attracted considerable attention as possible anticancer agents, the medicinal potential of diiron complexes has remained largely unexplored. Herein, we describe the straightforward multigram-scale synthesis and the antiproliferative activity of a series of diiron cyclopentadienyl complexes containing bridging vinyliminium ligands. IC50 values in the low-to-mid micromolar range were determined against cisplatin sensitive and resistant human ovarian carcinoma (A2780 and A2780cisR) cell lines. Notable selectivity towards the cancerous cells lines compared to the non-tumoral human embryonic kidney (HEK-293) cell line was observed for selected compounds. The activity seems to be multimodal, involving reactive oxygen species (ROS) generation and, in some cases, a fragmentation process to afford monoiron derivatives. The large structural variability, amphiphilic character and good stability in aqueous media of the diiron vinyliminium complexes provide favorable properties compared to other widely studied classes of iron-based anticancer candidates.
Collapse
Affiliation(s)
- Dalila Rocco
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Lucinda K Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Gabriele Agonigi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Simona Braccini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Federica Chiellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Silvia Schoch
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Tarita Biver
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Marina Ruggeri
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
37
|
Wang Y, Pigeon P, Top S, Sanz García J, Troufflard C, Ciofini I, McGlinchey MJ, Jaouen G. Atypical Lone Pair–π Interaction with Quinone Methides in a Series of Imido‐Ferrociphenol Anticancer Drug Candidates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Wang
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| | - Pascal Pigeon
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| | - Siden Top
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| | - Juan Sanz García
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
| | - Claire Troufflard
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| | - Ilaria Ciofini
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
| | | | - Gérard Jaouen
- PSL, Chimie ParisTech 11 rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM place Jussieu F-75005 Paris France
| |
Collapse
|
38
|
Wang Y, Pigeon P, Top S, Sanz García J, Troufflard C, Ciofini I, McGlinchey MJ, Jaouen G. Atypical Lone Pair-π Interaction with Quinone Methides in a Series of Imido-Ferrociphenol Anticancer Drug Candidates. Angew Chem Int Ed Engl 2019; 58:8421-8425. [PMID: 30977944 DOI: 10.1002/anie.201902456] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/29/2019] [Indexed: 11/10/2022]
Abstract
Ferrociphenols, especially those possessing a heterocycle at the terminus of an aliphatic chain, display strong anticancer activity through a novel redox mechanism that generates active metabolites such as quinone methides (QMs). X-ray crystallography and UV/Vis spectroscopy reveal that the specific lone pair (lp)-π interaction between a carbonyl group of the imide and the quinone motif of the QM plays an important role in the exceptional cytotoxic behaviour of their imido-ferrociphenol precursors. This intramolecular lp-π interaction markedly enhanced the stability of the QMs and lowered the pKa values of the corresponding phenol/phenolate couples. As the first example of such a non-covalent interaction that stabilizes QMs remotely, it not only expands the scope of the lp-π interaction in supramolecular chemistry, but also represents a new mode of stabilization of a QM. This unprecedented application of lp-π interactions in imido-ferrociphenol anticancer drug candidates may also have great potential in drug discovery and organocatalyst design.
Collapse
Affiliation(s)
- Yong Wang
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France.,Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| | - Pascal Pigeon
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France.,Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| | - Siden Top
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| | - Juan Sanz García
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Claire Troufflard
- Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| | - Ilaria Ciofini
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | | | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005, Paris, France.,Sorbonne Université, UPMC Univ Paris 6, UMR 8232 CNRS, IPCM, place Jussieu, F-75005, Paris, France
| |
Collapse
|
39
|
Abstract
Many ferrocene complexes have been prepared for their oncological potential. Some derive from molecules with known biological effects (taxanes, podophyllotoxine, artemisine, SAHA, etc.) while others are synthetic molecules selected for their cytotoxic effects (N-alkylaminoferrocenes and ferrocenyl alkylpyridinium). Although these complexes have received a great deal of attention, the field of iron metallodrugs is not limited to them. A number of inorganic complexes of iron(ii) and iron(iii) with possible anticancer effects have also been published, although research into their biological effects is often only at an early stage. This chapter also includes iron chelators, molecules that are administered in non-metallic form but whose cytotoxic species are their coordination complexes of iron generated in vivo. The most emblematic molecule of this family is bleomycin, used as an anticancer agent in many chemotherapies. To these can be added the iron chelates originally synthesized to treat iron overload, some of which have been shown to possess interesting anticancer properties. They have been, and continue to be, the subject of many clinical trials, whether alone or in combination. Thus, the area of iron metallodrugs includes molecules with very different structures and reactivity, studied from a number of different perspectives, but focused on increasing the number of molecules at our disposal for combatting cancer.
Collapse
Affiliation(s)
- Anne Vessieres
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232 4, Place Jussieu F-75005 Paris France
| |
Collapse
|
40
|
Zubair S, Asghar F, Badshah A, Lal B, Hussain RA, Tabassum S, Tahir MN. New bioactive ferrocene-substituted heteroleptic copper(I) complex: Synthesis, structural elucidation, DNA interaction, and DFT study. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Wang Y, Heinemann F, Top S, Dazzi A, Policar C, Henry L, Lambert F, Jaouen G, Salmain M, Vessieres A. Ferrocifens labelled with an infrared rhenium tricarbonyl tag: synthesis, antiproliferative activity, quantification and nano IR mapping in cancer cells. Dalton Trans 2018; 47:9824-9833. [PMID: 29993046 DOI: 10.1039/c8dt01582a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antiproliferative activities of several members of the ferrocifen family, both in vitro and in vivo, are well documented although their precise location in cancer cells has not yet been elucidated. However, two different infrared imaging techniques have been used to map the non-cytotoxic cyrhetrenyl analogue of ferrociphenol in a single cell. This observation prompted us to tag two ferrocifens with a cyrhetrenyl unit [CpRe(CO)3; Cp = η5-cyclopentadienyl] by grafting it, via an ester bond, either to one of the phenols (4, 5) or to the hydroxypropyl chain (6). Complexes 4-6 retained a high cytotoxicity on breast cancer cells (MDA-MB-231) with IC50 values in the range 0.32-2.5 μM. Transmission IR spectroscopy was used to quantify the amount of cyrhetrenyl tag present in cells incubated with 5 or 6. The results show that after a 1-hour incubation of cells at 37 °C, complexes 5 and 6 are mainly present within cells while only a limited percentage, quantified by ICP-OES, remained in the incubation medium. AFM-IR spectroscopy, a technique coupling infrared irradiation with near-field AFM detection, was used to map the cyrhetrenyl unit in a single MDA-MB-231 cell, incubated at 37 °C for 1 hour with 10 μM of 6. The results show that signal distribution of the characteristic band of the Re(CO)3 entity at 1950 cm-1 matched those of amide and phosphate, thus indicating a location of the complex mainly in the cell nucleus.
Collapse
Affiliation(s)
- Yong Wang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang Y, Wang C, Huang W, Haruehanroengra P, Peng C, Sheng J, Han B, He G. Application of organocatalysis in bioorganometallic chemistry: asymmetric synthesis of multifunctionalized spirocyclic pyrazolone–ferrocene hybrids as novel RalA inhibitors. Org Chem Front 2018. [DOI: 10.1039/c8qo00422f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Asymmetric construction of chiral spirocyclic pyrazolone–ferrocene hybrids has been developed. The lead compound displayed potent RalA inhibition.
Collapse
Affiliation(s)
- Yuehua Zhang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Chunting Wang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Wei Huang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Cheng Peng
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Bo Han
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
- Department of Chemistry and The RNA Institute
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|