1
|
Klementyeva SV, Gamer MT, Schulze M, Suryadevara N, Bogomyakov AS, Abramov PA, Konchenko SN, Ruben M, Wernsdorfer W, Moreno-Pineda E. Dinuclear Rare-Earth β-Diketiminates with Bridging 3,5-Di tert-butyl-catecholates: Synthesis, Structure, and Single-Molecule Magnet Properties. Inorg Chem 2025; 64:701-715. [PMID: 39707994 DOI: 10.1021/acs.inorgchem.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The dinuclear β-diketiminato complex [L1ClDy(μ-Cl)3DyL1(THF)] (1) (L1 = {2,6-iPr2C6H3-NC(Me)CHC(Me)N-2,6-iPr2C6H3}-) was obtained by reaction of DyCl3 with KL1 in a molar ratio of 1:1 and used for the preparation of the mixed-ligand complex [L1Dy(μ-3,5-Cat)]2 (2) by salt metathesis reaction with 3,5-CatK2 (3,5-Cat -3,5-di-tert-butyl-catecholate). Reactions of 3,5-CatNa2 with [L2LnCl2(THF)2] (Ln3+ = Dy, Y) ligated with the less bulky ligand L2 = {2,4,6-Me3C6H2-NC(Me)CHC(Me)N-2,4,6-Me3C6H2}- afforded the mixed-ligand THF-containing complexes [L2Ln(μ-3,5-Cat)(THF)]2 (Ln3+ = Dy (3a), Y (3b)). All new complexes were fully characterized, and the solid-state structures were determined by single-crystal X-ray diffraction. Magnetic measurements revealed single-molecule magnet behavior for the dysprosium complexes. Sub-Kelvin μSQUID studies confirm the SMM character of the systems, while CASSCF calculation along with simulation of the experimental data yields an antiferromagnetic interaction operating between the Dy3+ ions.
Collapse
Affiliation(s)
- Svetlana V Klementyeva
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Campus North, P.O. Box 3640, Karlsruhe 76021, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Campus South, Engesserstr. 15, Karlsruhe 76131, Germany
| | - Michael Schulze
- Physical Institute, Karlsruhe Institut of Technology (KIT) Campus South, Wolfgang-Gaede-Str. 1, Karlsruhe 76131, Germany
| | - Nithin Suryadevara
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Campus North, P.O. Box 3640, Karlsruhe 76021, Germany
| | - Artem S Bogomyakov
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, Novosibirsk 630090, Russia
| | - Sergey N Konchenko
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Campus South, Engesserstr. 15, Karlsruhe 76131, Germany
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Campus North, P.O. Box 3640, Karlsruhe 76021, Germany
| | - Wolfgang Wernsdorfer
- Physical Institute, Karlsruhe Institut of Technology (KIT) Campus South, Wolfgang-Gaede-Str. 1, Karlsruhe 76131, Germany
| | - Eufemio Moreno-Pineda
- Physical Institute, Karlsruhe Institut of Technology (KIT) Campus South, Wolfgang-Gaede-Str. 1, Karlsruhe 76131, Germany
- Departamento de Química-Física, Escuela de Química, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama 0824, Panama
- Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Universidad de Panamá, Panama 0824, Panama
| |
Collapse
|
2
|
Sorace L, Dmitriev AA, Perfetti M, Vostrikova KE. Slow magnetic relaxation and strong magnetic coupling in the nitroxyl radical complexes of lanthanide(iii) with diamagnetic ground state (Ln = Lu, Eu). Chem Sci 2024; 16:218-232. [PMID: 39629487 PMCID: PMC11609977 DOI: 10.1039/d4sc05035e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
Radical lanthanide complexes are appealing platforms to investigate the possibility to engineer relevant magnetic couplings between the two magnetic centers by exploiting the strongly donating magnetic orbitals of the radical. In this paper, we report a spectroscopic and magnetic study on [LnRad(NO3)3], where Ln = Eu3+ or Lu3+ and Rad is the tridentate tripodal nitroxyl radical 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl. A thorough magnetic investigation by Electron Paramagnetic Resonance (EPR) spectroscopy and magnetometry, fully supported by ab initio calculations, allowed us to unravel an unprecedentedly large antiferromagnetic coupling between the Eu3+ and the radical (J 12 = +19.5 cm-1, +J 12 S 1 S 2 convention). Remarkably, both europium and lutetium complexes showed slow magnetization dynamics below 20 K. The field and temperature dependent relaxation dynamics, dominated by Raman and direct processes were modelled simultaneously, allowing us to assess that the Raman process is field dependent.
Collapse
Affiliation(s)
- Lorenzo Sorace
- Department of Chemistry "U. Schiff", University of Florence and INSTM Research Unit Via della Lastruccia 3-13, Sesto Fiorentino 50019 Firenze Italy
| | - Alexey A Dmitriev
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences 630090 Novosibirsk Russia
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", University of Florence and INSTM Research Unit Via della Lastruccia 3-13, Sesto Fiorentino 50019 Firenze Italy
| | - Kira E Vostrikova
- Nikolayev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences 630090 Novosibirsk Russia
| |
Collapse
|
3
|
Kumar Sahu P, Konar S. Enhancement of Effective Energy Barrier and Magnetic Blocking Temperature in Tetraoxolene Radical Coupled Dinuclear Dysprosium Complex. Chemistry 2024; 30:e202402439. [PMID: 39278828 DOI: 10.1002/chem.202402439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
A well-judged combination of a high axial ligand field and a bridging radical ligand in a dinuclear lanthanide complex provides a single-molecule magnet with a higher effective energy barrier for magnetic relaxation and blocking temperature compared to its non-radical analog due to significant magnetic exchange coupling between radical and Ln(III) ions. In this work, we report two chloranilate (CA) bridged dinuclear dysprosium complexes, [{(bbpen)Dy(μ2-CA)Dy(bbpen)}] (1Dy) and [{(bbpen)Dy(μ2-CA⋅)Dy(bbpen)}-{CoCp2}+] (2Dy), where 2Dy is the radical bridged Dy-complex obtained via the chemical reduction of bridging CA moiety (H2bbpen=N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine). The presence of high electronegative phenoxide moiety enhances the axial anisotropy of pseudo-square antiprismatic Dy(III) ions. The diffused spin of radical is efficiently coupled with anisotropic Dy(III) centres and decreases the quantum tunnelling of magnetization (QTM) in the magnetic relaxation process. The magnetic relaxation of 1Dy follows Orbach, Raman, and QTM processes whereas for 2Dy it follows Orbach and Raman Processes. Due to less involvement of the QTM relaxation process, 2Dy shows a higher thermal energy barrier (Ueff=700 K) and a high blocking temperature (6.7 K), compared to its non-radical analog. Remarkably, the radical coupled 2Dy complex shows the highest energy barrier among the radical bridged Dy(III)-based SMMs to date.
Collapse
Affiliation(s)
- Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Address IISER Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Address IISER Bhopal, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
4
|
Benner F, Demir S. Isolation of Elusive Fluoflavine Radicals in Two Differing Oxidation States. J Am Chem Soc 2024; 146:26008-26023. [PMID: 39265051 PMCID: PMC11440492 DOI: 10.1021/jacs.4c05267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Facile access and switchability between multiple oxidation states are key properties of many catalytic applications and spintronic devices yet poorly understood due to inherent complications arising from isolating a redox system in multiple oxidation states without drastic structural changes. Here, we present the first isolable, free fluoflavine (flv) radical flv(1-•) as a bottleable potassium compound, [K(crypt-222)](flv•), 1, and a new series of organometallic rare earth complexes [(Cp*2Y)2(μ-flvz)]X, (where Cp* = pentamethylcyclopentadienyl, X = [Al(OC{CF3}3)4]- (z = -1), 2; X = 0 (z = -2), 3; [K(crypt-222)]+ (z = -3), 4) comprising the flv ligand in three different oxidation states, two of which are paramagnetic flv1-• and flv3-•. Excitingly, 1, 2, and 4 constitute the first isolable flv1-• and flv3-• radical complexes and, to date, the only isolated flv radicals of any oxidation state. All compounds are accessible in good crystalline yields and were unambiguously characterized via single-crystal X-ray diffraction analysis, cyclic voltammetry, IR-, UV-vis, and variable-temperature EPR spectroscopy. Remarkably, the EPR spectra for 1, 2, and 4 are distinct and a testament to stronger spin delocalization onto the metal centers as a function of higher charge on the flv radical. In-depth analysis of the electron- and spin density via density functional theory (DFT) calculations utilizing NLMO, QTAIM, and spin density topology analysis confirmed the fundamental interplay of metal coordination, ligand oxidation state, aromaticity, covalency, and spin density transfer, which may serve as blueprints for the development of future spintronic devices, single-molecule magnets, and quantum information science at large.
Collapse
Affiliation(s)
- Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Monni N, Dey S, García-López V, Oggianu M, Baldoví JJ, Mercuri ML, Clemente-León M, Coronado E. Tunable SIM properties in a family of 3D anilato-based lanthanide-MOFs. Inorg Chem Front 2024; 11:5913-5923. [PMID: 39263226 PMCID: PMC11385371 DOI: 10.1039/d4qi01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 09/13/2024]
Abstract
By reacting a 3,6-ditriazolyl-2,5-dihydroxybenzoquinone (H2trz2An) anilato linker with LnIII ions (LnIII = Dy, Tb, Ho), two different series of polymorphs, formulated as [Ln2(trz2An)3(H2O)4] n ·10H2O (DyIII, 1a; TbIII, 2a, HoIII, 3a) and [Ln2(trz2An)3(H2O)4] n ·7H2O (DyIII, 1b, TbIII, 2b, HoIII, 3b) have been obtained. In these series the two DyIII-coordination networks (1a and 1b) and the TbIII-coordination polymer (2b) show a Single Ion Magnet (SIM) behavior. 1-3a MOFs show reversible structural flexibility upon removal of a coordinated water molecule from a distorted hexagonal 2D framework to a distorted 3,6-brickwall rectangular 3D structure in [Ln2(trz2An)3(H2O)2] n ·2H2O (DyIII, 1a_des; TbIII, 2a_des, HoIII, 3a_des) involving shrinkage/expansion of the hexagonal-rectangular networks. Noteworthy, 2b represents the first example of a TbIII-anilate-based coordination polymer showing SIM behaviour to date and the best SIM properties within the polymorphs. Theoretical investigation via ab initio CASSCF calculations supports this behavior, since 2b shows less mixing between the m J states of the ground state among all the studied complexes.
Collapse
Affiliation(s)
- Noemi Monni
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
| | - Sourav Dey
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Víctor García-López
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
| | - José J Baldoví
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
6
|
Li X, Sun X, Wei C, Huang FP, Liu HT, Tian H. Single-Molecule Magnet Rods: Remarkably Elongated Lanthanide Phosphonate Cores with Quasilinear Hydrazones. Inorg Chem 2024; 63:16393-16403. [PMID: 39163558 DOI: 10.1021/acs.inorgchem.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Large metal-phosphonate clusters typically exhibit regular polyhedral, wheel-shaped, spherical, or capsule-shaped morphologies more effectively than high-aspect ratio topologies. A system of elongated lanthanide core topologies has now been synthesized by the reaction of lanthanide 1-naphthylmethylphosphonates and four differently terminated pyrazinyl hydrazones. Four new rod-shaped dysprosium phosphonate clusters, [Dy6(O3PC11H9)4(L1)4(μ4-O)(DMF)4]·2DMF·3MeCN·3H2O (1), [Dy8(O3PC11H9)4(L2)4(μ3-O)4(CO2)4(H2O)4]·6DMF·4MeCN·3H2O (2), [Dy12Na(O3PC11H9)6(L3)6(μ3-O)2(pyr)6]·DMF·2MeCN·H2O (3), and [Dy14(O3PC11H9)12(L4)8(μ3-O)2(DMF)4(MeOH)2(H2O)4]·5DMF·2MeCN·H2O (4), were obtained. Four single-pyrazinyl hydrazones function as pentadentate bis-chelate terminal co-ligands, coordinating the periphery of dysprosium phosphonate rods. A sodium ion serves as a cation template for constructing heterobimetallic 3 by occupying the void, demonstrating the ability to reliably control cluster length by modifying the hydrazone co-ligand structure and cation template. Additionally, it was observed that the elongation of the rods has a significant directional impact on the magnetic relaxation behavior, transitioning from a one-step process in 1 to a three-step process in 2, a two-step process in 3, and finally a two-step process in 4.
Collapse
Affiliation(s)
- XiaoJuan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Chaolun Wei
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hou-Ting Liu
- Food and Biochemistry Engineering Department, Yantai Vocational College, Yantai 264006, China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
7
|
Delano F, Benner F, Jang S, Greer SM, Demir S. Construction of intermolecular σ-hole interactions in rare earth metallocene complexes using a 2,3,4,5-tetraiodopyrrolyl anion. Chem Sci 2024; 15:13389-13404. [PMID: 39183902 PMCID: PMC11339973 DOI: 10.1039/d4sc03786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 08/27/2024] Open
Abstract
The generation of noncovalent intermolecular interactions represents a powerful method to control molecular vibrations and rotations. Combining these with the axial ligand field enforced by the metallocene ligand scaffold provides a dual-pronged approach in controlling the magnetic-relaxation pathways for dysprosium-based single-molecule magnets (SMMs). Here, we present the first implementation of 2,3,4,5-tetraiodopyrrole (TIPH) in its anionic form [TIP]- as a ligand in three isostructural rare-earth metal complexes Cp*2RE(TIP) (1-RE, RE = Y, Gd, and Dy; Cp* = pentamethylcylopentadienyl), where the TIP ligand binds through the nitrogen and one iodine atom κ2(N,I) to the metal centre. The shallow potential energy surface of the intermolecular σ-hole interaction yields distortions of the interatomic distances at elevated temperatures which were investigated by variable-temperature SCXRD. 1-RE constitute the first crystallographically characterized molecules containing TIP as a ligand for any metal ion, and 1-Dy is the first SMM that employs the TIP ligand. The structural dependence on temperature allowed the mechanism of magnetic relaxation to be explored through ab initio calculations at different temperatures. The electronic influence of the coordinated iodine substituent was probed via magnetometry and cw-EPR spectroscopy on 1-Gd. To further scrutinize the impact of the iodine substituents on the physical properties, a second set of new complexes Cp*2RE(DMP) (2-RE, RE = Y, and Dy) where DMP = 2,5-dimethylpyrrolyl were synthesized. Here, the DMP ligand binds similarly to the TIP ligand and represents an all-hydrocarbon analogue to 1-RE. 2-Dy constitutes the first SMM bearing a DMP ligand.
Collapse
Affiliation(s)
- Francis Delano
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Florian Benner
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Seoyun Jang
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Samuel M Greer
- Los Alamos National Laboratory (LANL) Los Alamos New Mexico 87545 USA
| | - Selvan Demir
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| |
Collapse
|
8
|
Wang YH, Gao ZN, Liang S, Jie Li, Wei WJ, Han SD, Zhang YQ, Hu JX, Wang GM. Synergism of Light-Induced [4 + 4] Cycloaddition and Electron Transfer Toward Switchable Photoluminescence and Single-Molecule Magnet Behavior in a Dy 4 Cubane. RESEARCH (WASHINGTON, D.C.) 2024; 7:0411. [PMID: 38974011 PMCID: PMC11223772 DOI: 10.34133/research.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024]
Abstract
Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.
Collapse
Affiliation(s)
- Yu-Han Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Zhen-Ni Gao
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Shuai Liang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Jie Li
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Wu-Ji Wei
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Song-De Han
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology,
Nanjing Normal University, Nanjing 210023, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Pointillart F, Le Guennic B, Cador O. Pressure-Induced Structural, Optical and Magnetic Modifications in Lanthanide Single-Molecule Magnets. Chemistry 2024; 30:e202400610. [PMID: 38511968 DOI: 10.1002/chem.202400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
Lanthanide Single-Molecule Magnets are fascinating objects that break magnetic performance records with observable magnetic bistability at the boiling temperature of liquid nitrogen, paving the way for potential applications in high-density data storage. The switching of lanthanide SMM has been successfully achieved using several external stimuli such as redox reaction, pH titration, light irradiation or solvation/desolvation thanks to the high sensitivity of the magnetic anisotropy to any structural change in the lanthanide surrounding. Nevertheless, the use of applied high pressure as an external stimulus is largely underused, especially considering that it can be combined with high pressure X-ray diffraction to establish a complementary structure-property relationship. This Concept article summarizes the few relevant examples of investigations of lanthanide SMMs under applied high pressure, provides conclusions on the effect of such stimulus on molecular structures and magnetic anisotropy, and finally draws perspective on the future development of magnetic measurements under applied pressure.
Collapse
Affiliation(s)
- Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| |
Collapse
|
10
|
Benmansour S, Pintado-Zaldo C, Casal-García SH, Martínez-Ponce J, Gómez-García CJ. Anilato-Based Coordination Polymers with Slow Relaxation of the Magnetization: Role of the Synthetic Method and Anilato Ligand. Chemistry 2024; 30:e202400410. [PMID: 38483106 DOI: 10.1002/chem.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/05/2024]
Abstract
We have prepared and characterized three coordination polymers formulated as [Dy2(C6O4Cl2)3(fma)6] ⋅ 4.5fma (1) and [Dy2(C6O4X2)3(fma)6] ⋅ 4fma ⋅ 2H2O with X=Br (2) and Cl (3), where fma=formamide and C6O4X2 2-=3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion with X=Cl (chloranilato) and Br (bromanilato). Compounds 1 and 3 are solvates obtained with slow and fast precipitation methods, respectively. Compounds 2 and 3 are isostructural and only differ in the X group of the anilato ligand. The three compounds present (6,3)-gon two-dimensional hexagonal honey-comb structures. Magnetic measurements indicate that the three compounds show slow relaxation of the magnetization at low temperatures when a continuous magnetic field is applied, although with different relaxation times and energy barriers depending on X and the crystallisation molecules. Compounds 1-3 represent the first examples of anilato-based lattices with formamide and field-induced slow relaxation of the magnetization.
Collapse
Affiliation(s)
- Samia Benmansour
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| | - Cristina Pintado-Zaldo
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| | - Sofía H Casal-García
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| | - Javier Martínez-Ponce
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| | - Carlos J Gómez-García
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| |
Collapse
|
11
|
Manna F, Oggianu M, Galán-Mascarós JR, Pop F, Le Guennic B, Mercuri ML, Avarvari N. Tuning the slow magnetic relaxation with the substituents in anilate bridged bis(dysprosium) complexes. Dalton Trans 2024; 53:8369-8381. [PMID: 38669068 DOI: 10.1039/d4dt00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Dinuclear lanthanide complexes [((HB(pz)3)2Dy)2(μ-Th2An)] (1Dy) and [((HB(pz)3)2Dy)2(μ-ClCNAn)] (2Dy), based on the hydrotris(pyrazol-1-yl)borate (HBpz3-) scorpionate capping ligand and anilate (An2-) bridging linkers, namely homosubstituted dithiophene- and heterosubstituted chlorocyanoanilate, bearing electron-donating and withdrawing substituents at the 3,6-positions of the benzoquinone core, are reported. 1Dy shows an octacoordinated {N6O2} DyIII ion within a D4h distorted square antiprismatic coordination, an ideal geometry for Single-Molecule Magnet (SMM) behavior, given its oblate nature, whereas in 2Dy the octacoordinated DyIII ion adopts a D2d triangular dodecahedron geometry, while maintaining the same {N6O2} coordination sphere. Both complexes show field-induced single molecule magnet (SMM) behaviour, with tuning of the slow magnetic relaxation as a function of the nature of the substituents at the 3,6-positions of the anilate moiety. A comparison of the Arrhenius fitting parameters for 1Dy and 2Dy supports the hypothesis that square antiprismatic DyIII complexes, as 1Dy, exhibit higher energy barriers. This interpretation is supported by ab initio calculations that also shed light on the crucial role of intermolecular dipolar interactions.
Collapse
Affiliation(s)
- Fabio Manna
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, I-09042 Monserrato, Italy.
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
- INSTM, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
| | - Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, I-09042 Monserrato, Italy.
- INSTM, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
- ICREA, Passeig Lluis Companys, 23, Barcelona 08010, Spain
| | - Flavia Pop
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, I-09042 Monserrato, Italy.
- INSTM, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| |
Collapse
|
12
|
Suhr S, Hunger D, Walter RRM, Köhn A, van Slageren J, Sarkar B. Air-Stable Dinuclear Complexes of Four-Coordinate Zn II and Ni II Ions with a Radical Bridge: A Detailed Look at Redox Activity and Antiferromagnetic Coupling. Inorg Chem 2024; 63:6042-6050. [PMID: 38502792 DOI: 10.1021/acs.inorgchem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Air-stable dinuclear complexes [(bmsab)NiII(tmsab)NiII(bmsab)]3- and [(bmsab)ZnII(tmsab)ZnII(bmsab)]3- (bmsab = bis(methanesulfoneamido)benzene, tmsab = tetra(methanesulfonamido)benzene) were prepared via a synthetic route based on heteroleptic precursor complexes. The new complexes combine a distorted tetrahedral coordination environment with an open-shell bridging ligand. The ZnII species was subjected to a detailed investigation of the (spectro-)electrochemical processes. The NiII species is a rare example of a complex that combines strong exchange coupling (J > 440 cm-1) with pronounced positive zero-field splitting (D = +72 cm-1). Combining SQUID magnetometry and (HF)EPR spectroscopy with ab initio calculations allowed for accurate quantification of the exchange interaction.
Collapse
Affiliation(s)
- Simon Suhr
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Robert R M Walter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| |
Collapse
|
13
|
Li HD, Wu SG, Tong ML. Lanthanide-radical single-molecule magnets: current status and future challenges. Chem Commun (Camb) 2023; 59:6159-6170. [PMID: 37129902 DOI: 10.1039/d2cc07042a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the field of molecular magnetism, the lanthanide-radical (Ln-Rad) method has become one of the most appealing tactics for introducing strong magnetic interactions and has spurred on the booming development of heterospin single-molecule magnets (SMMs). The article is a timely retrospect on the research progress of Ln-Rad heterospin systems and special attention is invested on low dimensional Ln-Rad compounds with SMM behavior, primarily concerning with nitrogen-based radicals, semiquinone and nitroxide radicals. Rational design, molecular structures, magnetic behaviors and magneto-structural correlations are highlighted. Meanwhile, particular attention is focused on the influence of exchange couplings on the dynamic magnetic properties, with the purpose of helping to guide the design of prospective radical-based Ln-SMMs.
Collapse
Affiliation(s)
- Hong-Dao Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
14
|
Li Y, Zeng Z, Guo Y, Liu X, Zhang YQ, Ouyang Z, Wang Z, Liu X, Zheng YZ. Synergy of Magnetic Anisotropy and Ferromagnetic Interaction Triggering a Dimeric Cr(II) Zero-Field Single-Molecule Magnet. Inorg Chem 2023; 62:6297-6305. [PMID: 37040590 DOI: 10.1021/acs.inorgchem.2c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
A novel CrII-dimeric complex, [CrIIN(SiiPr3)2(μ-Cl)(THF)]2 (1), has been successfully constructed using a bulky silyl-amide ligand. Single-crystal structure analysis reveals that complex 1 exhibits a binuclear motif, with a Cr2Cl2 rhombus core, where two equivalent tetra-coordinate CrII centers in the centrosymmetric unit display quasi-square planar geometry. The crystal structure has been well simulated and explored by density functional theory calculations. The axial zero-field splitting parameter (D < 0) with a small rhombic (E) value is unambiguously determined by systematic investigations of magnetic measurements, high-frequency electron paramagnetic resonance spectroscopy, and ab initio calculations. Remarkably, ac magnetic susceptibility data unveil that 1 features slow dynamic magnetic relaxation typical of single-molecule magnet behavior with Ueff = 22 K in the absence of a dc field. This increases up to 35 K under a corresponding static field. Moreover, magnetic studies and theoretical calculations point out that a non-negligible ferromagnetic coupling (FMC) exists in the dimeric Cr-Cr units of 1. The coexistence of magnetic anisotropy and FMC contributes to the first case of CrII-based single-molecule magnets (SMMs) under zero dc field.
Collapse
Affiliation(s)
- Yuzhu Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhaopeng Zeng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xingman Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
15
|
Cyclic [Cu-biRadical]2 Secondary Building Unit in 2p-3d and 2p-3d-4f Complexes: Crystal Structure and Magnetic Properties. Molecules 2023; 28:molecules28062514. [PMID: 36985497 PMCID: PMC10058193 DOI: 10.3390/molecules28062514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Employing the new nitronyl nitroxide biradical ligand biNIT-3Py-5-Ph (2-(5-phenyl-3-pyridyl)-bis(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)), a 16-spin Cu-radical complex, [Cu8(biNIT-3Py-5-Ph)4(hfac)16] 1, and three 2p-3d-4f chain complexes, {[Ln(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (LnⅢ= Gd 2, Tb 3, Dy 4; hfac = hexafluoroacetylacetonate), have been prepared and characterized. X-ray crystallographic analysis revealed in all derivatives a common cyclic [Cu-biNIT]2 secondary building unit in which two bi-NIT-3Py-5-Ph biradical ligands and two CuII ions are associated via the pyridine N atoms and NO units. For complex 1, two such units assemble with four additional CuII ions to form a discrete complex involving 16 S = 1/2 spin centers. For complexes 2–4, the [Cu-biNIT]2 units are linked by LnIII ions via NO groups in a 1D coordination polymer. Magnetic studies show that the coordination of the aminoxyl groups with Cu or Ln ions results in behaviors combining ferromagnetic and antiferromagnetic interactions. No slow magnetic relaxation behavior was observed for Tb and Dy derivatives.
Collapse
|
16
|
Zou Q, Wang GL, Chen YQ, Huang XD, Wen GH, Qin MF, Bao SS, Zhang YQ, Zheng LM. X-Ray Triggered Coordination-Bond Breakage in Dysprosium-Organic Framework and its Impact on Magnetic Properties. Chemistry 2023; 29:e202203454. [PMID: 36445817 DOI: 10.1002/chem.202203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Photosensitive lanthanide-based single-molecule magnets (Ln-SMM) are very attractive for their potential applications in information storage, switching, and sensors. However, the light-driven structural transformation in Ln-SMMs hardly changes the coordination number of the lanthanide ion. Herein, for the first time it is reported that X-ray (λ=0.71073 Å) irradiation can break the coordination bond of Dy-OH2 in the three-dimensional (3D) metal-organic framework Dy2 (amp2 H2 )3 (H2 O)6 ⋅ 4H2 O (MDAF-5), in which the {Dy2 (OPO)2 } dimers are cross-linked by dianthracene-phosphonate ligands. The structural transformation proceeds in a single-crystal-to-single-crystal (SC-SC) fashion, forming the new phase Dy2 (amp2 H2 )3 (H2 O)4 ⋅ 4H2 O (MDAF-5-X). The phase transition is accompanied by a significant change in magnetic properties due to the alteration in coordination geometry of the DyIII ion from a distorted pentagonal bipyramid in MDAF-5 to a distorted octahedron in MDAF-5-X.
Collapse
Affiliation(s)
- Qian Zou
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Guo-Lu Wang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Yi-Qing Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Ge Hua Wen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
17
|
Roy S, Paul S, Misra A. A Theoretical Account of the Coupling between Metal- and Ligand-centred Spins. Chemphyschem 2023; 24:e202200889. [PMID: 36622254 DOI: 10.1002/cphc.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
This study addresses the magnetic interaction between paramagnetic metal ions and the radical ligands taking the [CuII (hfac)2 (imVDZ)] and [MII (hfac)2 (pyDTDA)] (imVDZ=1,5-dimethyl-3-(1-methyl-2-imidazolyl)-6-oxoverdazyl; hfac=(1,1,1,5,5,5)hexafluroacetylacetonate; pyDTDA=4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl), (M=Cu, Ni, Co, Fe, Mn) compounds as reference systems. The coupling between the metal and ligand spins is quantified in terms of the exchange coupling constant (J) in the platform of density functional theory (DFT) and the wave function-based complete active space self-consistent field (CASSCF) method. Application of DFT and broken symmetry (BS) formalism results ferromagnetic coupling for all the transition metal complexes except the Mn(II) complex. This DFT-BS prediction of magnetic nature matches with the experimental finding for all the complexes other than the Fe(II)-pyDTDA complex, for which an antiferromagnetic coupling between high spin iron and the thiazyl ligand has been reported. However, evaluation of spin state energetics through the multiconfigurational wave function-based method produces the S=3/2 ground spin state for the iron-thiazyl in parity with experiment. Electronic structure analyses find the overlap between the metal- and ligand-based singly occupied molecular orbitals (SOMOs) to be one of the major reasons attributing to different extent of exchange coupling in the systems under investigation.
Collapse
Affiliation(s)
- Sriparna Roy
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 R.C Sarani, Kolkata, 700009, India
| | - Anirban Misra
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| |
Collapse
|
18
|
Yao B, Zhang YQ, Deng YF, Li T, Zhang YZ. Series of Benzoquinone-Bridged Dicobalt(II) Single-Molecule Magnets. Inorg Chem 2022; 61:15392-15397. [PMID: 36134570 DOI: 10.1021/acs.inorgchem.2c01851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mononuclear complexes within a particular coordination geometry have been well recognized for high-performance single-molecule magnets (SMMs), while the incorporation of such well-defined geometric ions into multinuclear complexes remains less explored. Using the rigid 2-(di(1H-pyrazol-1-yl)methyl)-6-(1H-pyrazol-1-yl)pyridine (PyPz3) ligand, here, we prepared a series of benzoquinone-bridged dicobalt(II) SMMs [{(PyPz3)Co}2(L)][PF6]2, (1, L = 2,5-dioxo-1,4-benzoquinone (dhbq2-); 2, L = chloranilate (CA2-); and 3, L = bromanilate (BA2-)), in which each Co(II) center adopts a distorted trigonal prismatic (TPR) geometry and the distortion increases with the sizes of 3,6-substituent groups (H (1) < Cl (2) < Br (3)). Accordingly, the magnetic study revealed that the axial anisotropy parameter (D) of the Co ions decreased from -78.5 to -56.5 cm-1 in 1-3, while the rhombic one (E) increased significantly. As a result, 1 exhibited slow relaxation of magnetization under a zero dc field, while both 2 and 3 showed only the field-induced SMM behaviors, likely due to the increased rhombic anisotropy that leads to the serious quantum tunneling of the magnetization. Our study demonstrated that the relaxation dynamics and performances of a multinuclear complex are strongly dependent on the coordination geometry of the local metal ions, which may be engineered by modifying the substituent groups.
Collapse
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Tianran Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
19
|
Dunstan MA, Brown DS, Sorace L, Mole RA, Boskovic C. Modulation of Slow Magnetic Relaxation in Gd(III)-Tetrahalosemiquinonate Complexes. Chem Asian J 2022; 17:e202200325. [PMID: 35644855 PMCID: PMC9400849 DOI: 10.1002/asia.202200325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Indexed: 11/20/2022]
Abstract
Incorporating lanthanoid(III)-radical magnetic exchange coupling is a possible route to improving the performance of lanthanoid (Ln) single-molecule magnets (SMMs), molecular materials that exhibit slow relaxation and low temperature quantum tunnelling of the magnetization. Complexes of Gd(III) can conveniently be used as model systems to study the Ln-radical exchange coupling, thanks to the absence of the orbital angular momentum that is present for many Ln(III) ions. Two new Gd(III)-radical compounds of formula [Gd(18-c-6)X4 SQ(NO3 )].I3 (18-c-6=18-crown-6, X4 SQ⋅- =tetrahalo-1,2-semiquinonate, 1: X=Cl, 2: X=Br) have been synthesized, and the presence of the dioxolene ligand in its semiquinonate form confirmed by X-ray crystallography, UV-Visible-NIR spectroscopy and voltammetry. Static magnetometry and EPR spectroscopy indicate differences in the low temperature magnetic properties of the two compounds, with antiferromagnetic exchange coupling of JGd-SQ ∼-2.0 cm-1 (Hex =-2JGd-SQ (SGd SSQ )) determined by data fitting. Interestingly, compound 1 exhibits slow magnetic relaxation in applied magnetic fields while 2 relaxes much faster, pointing to the major role of packing effects in modulating slow relaxation of the magnetization.
Collapse
Affiliation(s)
- Maja A. Dunstan
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| | - Dominic S. Brown
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| | - Lorenzo Sorace
- Department of Chemistry, “Ugo Schiff”Universita Degli Studi FirenzeVia della Lastruccia, 1350019Sesto FiorentinoItaly
| | - Richard A. Mole
- Australian Centre for Neutron ScatteringAustralian Nuclear Science and Technology OrganisationLocked Bag 2001Kirrawee DC2232Australia
| | - Colette Boskovic
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
20
|
Monni N, Baldoví JJ, García-López V, Oggianu M, Cadoni E, Quochi F, Clemente-León M, Mercuri ML, Coronado E. Reversible tuning of luminescence and magnetism in a structurally flexible erbium-anilato MOF. Chem Sci 2022; 13:7419-7428. [PMID: 35872828 PMCID: PMC9242018 DOI: 10.1039/d2sc00769j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022] Open
Abstract
By combining 3,6-N-ditriazolyl-2,5-dihydroxy-1,4-benzoquinone (H2trz2An) with NIR-emitting ErIII ions, two different 3D neutral polymorphic frameworks (1a and 1b), differing in the number of uncoordinated water molecules, formulated as [Er2(trz2An)3(H2O)4] n ·xH2O (x = 10, a; x = 7, b), have been obtained. The structure of 1a shows layers with (6,3) topology forming six-membered rings with distorted hexagonal cavities along the bc plane. These 2D layers are interconnected through the N4 atoms of the two pendant arms of the trz2An linkers, leading to a 3D framework, where neighboring layers are eclipsed along the a axis, with hexagonal channels filled with water molecules. In 1b, layers with (6,3) topology in the [101] plane are present, each ErIII ion being connected to three other ErIII ions through bis-bidentate trz2An linkers, forming rectangular six-membered cavities. 1a and 1b are multifunctional materials showing coexistence of NIR emission and field-induced slow relaxation of the magnetization. Remarkably, 1a is a flexible MOF, showing a reversible structural phase transition involving shrinkage/expansion from a distorted hexagonal 2D framework to a distorted 3,6-brickwall rectangular 3D structure in [Er2(trz2An)3(H2O)2] n ·2H2O (1a_des). This transition is triggered by a dehydration/hydration process under mild conditions (vacuum/heating to 360 K). The partially dehydrated compound shows a sizeable change in the emission properties and an improvement of the magnetic blocking temperature with respect to the hydrated compound, mainly related to the loss of one water coordination molecule. Theoretical calculations support the experimental findings, indicating that the slight improvement observed in the magnetic properties has its origin in the change of the ligand field around the ErIII ion due to the loss of a water molecule.
Collapse
Affiliation(s)
- Noemi Monni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM Via Giusti 9 50121 Firenze Italy
| | - José J Baldoví
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Víctor García-López
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM Via Giusti 9 50121 Firenze Italy
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM Via Giusti 9 50121 Firenze Italy
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato 09042 Monserrato Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM Via Giusti 9 50121 Firenze Italy
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
21
|
Nguyen GT, Ungur L. The Role of Radical Bridges in Polynuclear Single‐Molecule Magnets. Chemistry 2022; 28:e202200227. [DOI: 10.1002/chem.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Giang Truong Nguyen
- Department of Chemistry Faculty of Science National University of Singapore Block S8 Level 3, 3 Science Drive 3 Singapore Singapore 117543
| | - Liviu Ungur
- Department of Chemistry Faculty of Science National University of Singapore Block S8 Level 3, 3 Science Drive 3 Singapore Singapore 117543
| |
Collapse
|
22
|
Jiang Y, Dey S, Ke H, Yang Y, Sun L, Xie G, Chen S, Rajaraman G. Steric hindrance effect of Schiff-base ligands on magnetic relaxation dynamics and emissive behavior of two dinuclear dysprosium complexes. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Yao B, Singh MK, Deng YF, Zhang YZ. A Dicobalt(II) Single-Molecule Magnet via a Well-Designed Dual-Capping Tetrazine Radical Ligand. Inorg Chem 2021; 60:18698-18705. [PMID: 34823356 DOI: 10.1021/acs.inorgchem.1c02094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recent years have witnessed the glory development for the construction of high-performance mononuclear single molecule magnets (SMMs) within a specific coordination geometry, which, however, is not well applied in cluster-based SMMs due to the synthetic challenges. Given that the monocobalt(II) complexes within a trigonal-prismatic (TPR) coordination geometry have been classified as excellent SMMs with huge axial anisotropy (D ≈ -100 cm-1), here we designed and synthesized a new dual-capping tetrazine ligand, 3,6-bis(6-(di(1H-pyrazol-1-yl)methyl)pyridin-2-yl)-1,2,4,5-tetrazine (bpptz), and prepared a novel dicobalt(II) complex, [Cp2CoIII][{(hfac)CoII}2(bpptz•-)][hfac]2·2Et2O (1, hfac = hexafluoroacetylacetonate). In the structure of 1, the bpptz•- radical ligand enwraps two Co(II) centers within quasi-TPR geometries, which are further bridged by the tetrazine radical in the trans mode. The magnetic study revealed that the interaction between the Co centers and the tetrazine radical is strongly antiferromagnetic with a coupling constant (J) of -65.8 cm-1 (in the -2J formalism). Remarkably, 1 exhibited the typical SMM behavior with an effective energy barrier of 69 cm-1 under a 1.5 kOe dc field, among the largest for polynuclear transition metal SMMs. In addition, DFT and ab initio calculations suggested that the presence of a strong Co(II)-radical magnetic interaction effectively quenches the QTM effect and enhances the barrier height for the magnetization reversal.
Collapse
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Mukesh Kumar Singh
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
24
|
Mavragani N, Errulat D, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. Radical‐Bridged Ln
4
Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Diogo A. Gálico
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Alexandros A. Kitos
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
25
|
Mavragani N, Errulat D, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. Radical-Bridged Ln 4 Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew Chem Int Ed Engl 2021; 60:24206-24213. [PMID: 34427984 DOI: 10.1002/anie.202110813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 11/05/2022]
Abstract
Inducing magnetic coupling between 4f elements is an ongoing challenge. To overcome this formidable difficulty, we incorporate highly delocalized tetrazinyl radicals, which strongly couple with f-block metallocenes to form discrete tetranuclear complexes. Synthesis, structure, and magnetic properties of two tetranuclear [(Cp*2 Ln)4 (tz. )4 ]⋅3(C6 H6 ) (Cp*=pentamethylcyclopentadienyl; tz=1,2,4,5-tetrazine; Ln=Dy, Gd) complexes are reported. An in-depth examination of their magnetic properties through magnetic susceptibility measurements as well as computational studies support a highly sought-after radical-induced "giant-spin" model. Strong exchange interactions between the LnIII ions and tz. radicals lead to a strong magnet-like behaviour in this molecular magnet with a large coercive field of 30 kOe.
Collapse
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
26
|
Jung J, Benner F, Herbst‐Irmer R, Demir S, Stalke D. Slow Magnetic Relaxation in Mono- and Bimetallic Lanthanide Tetraimido-Sulfate S(NtBu) 4 2- Complexes. Chemistry 2021; 27:12310-12319. [PMID: 33978251 PMCID: PMC8453918 DOI: 10.1002/chem.202101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/16/2022]
Abstract
Lanthanide ions are particularly well-suited for the design of single-molecule magnets owing to their large unquenched orbital angular momentum and strong spin-orbit coupling that gives rise to high magnetic anisotropy. Such nanoscopic bar magnets can potentially revolutionize high-density information storage and processing technologies, if blocking temperatures can be increased substantially. Exploring non-classical ligand scaffolds with the aim to boost the barriers to spin-relaxation are prerequisite. Here, the synthesis, crystallographic and magnetic characterization of a series of each isomorphous mono- and dinuclear lanthanide (Ln=Gd, Tb, Dy, Ho, Er) complexes comprising tetraimido sulfate ligands are presented. The dinuclear Dy complex [{(thf)2 Li(NtBu)2 S(tBuN)2 DyCl2 }2 ⋅ ClLi(thf)2 ] (1c) shows true signatures of single-molecule magnet behavior in the absence of a dc field. In addition, the mononuclear Dy and Tb complexes [{(thf)2 Li(NtBu)2 S(tBuN)2 LnCl2 (thf)2 ] (2b,c) show slow magnetic relaxation under applied dc fields.
Collapse
Affiliation(s)
- Jochen Jung
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Florian Benner
- Department of ChemistryMichigan State University578 S Shaw LaneEast LansingMI 48824USA
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Selvan Demir
- Department of ChemistryMichigan State University578 S Shaw LaneEast LansingMI 48824USA
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
27
|
Chiral or Luminescent Lanthanide Single-Molecule Magnets Involving Bridging Redox Active Triad Ligand. INORGANICS 2021. [DOI: 10.3390/inorganics9070050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The reactions between the bis(1,10-phenantro[5,6-b])tetrathiafulvalene triad (L) and the metallo-precursors Yb(hfac)3(H2O)2 (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonato anion) and Dy(facam)3 (facam− = 3-trifluoro-acetyl-(+)-camphorato anion) lead to the formation of two dinuclear complexes of formula [Yb2(hfac)6(L)]·2(C7H16) ((1)·2(C7H16)) and [Dy2((+)facam)6(L)]·2(C6H14) ((2)·2(C6H14)). The X-ray structures reveal that the L triad bridges two terminal Yb(hfac)3 or Dy(facam)3 units. (1)·2(C7H16) behaved as a near infrared YbIII centered emitter and a field-induced Single-Molecule Magnet (SMM) while (2)·2(C6H14) displayed SMM behavior in both zero- and in-dc field. The magnetization mainly relaxes through a Raman process for both complexes under an optimal applied magnetic field.
Collapse
|
28
|
Liu Y, Lyu BH, Du SN, Huang GZ, Ruan ZY, Wu SG, Liu JL, Tong ML. Tuning luminescence of didysprosium single-molecule magnets with a π-conjugated/non-conjugated bridging ligand. Dalton Trans 2021; 50:6778-6783. [PMID: 33972985 DOI: 10.1039/d1dt00908g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported two didysprosium single-molecule magnets constructed with {Dy(bbpen)(MeOH)} subunits and a π-conjugated tpb or non-conjugated tpcb bridging ligand. The former exhibits extremely weak luminescence that makes it difficult to simulate its emission spectra. However, the later shows obviously enhanced and well-resolved luminescence, which helps us to gain knowledge about the magneto-optical correlation and the relevant magnetic energy levels.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China.
| | - Bang-Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China.
| | - Shan-Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China.
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China.
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China.
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China.
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
29
|
|
30
|
Nguyen GT, Ungur L. Understanding the magnetization blocking mechanism in N 23--radical-bridged dilanthanide single-molecule magnets. Phys Chem Chem Phys 2021; 23:10303-10310. [PMID: 33908512 DOI: 10.1039/d1cp00452b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a theoretical investigation of the electronic structure and magnetic properties in [(Cp2Me4HLn(THF))2(μ-N2˙)]- and [(Cp2Me4HLn)2(μ-N2˙)]- (THF = tetrahydrofuran, CpMe4H = tetramethylcyclopentadienyl, Ln = Tb, Dy) complexes [as reported in Demir et al., Nat. Commun., 8, 1-9, 2144 (2017)]. By ab initio methods, their magnetic blocking behaviors are successfully characterized allowing elucidation of the origin of the two blocking barriers observed experimentally. In addition, a detailed analysis of exchange wave functions explains why the blocking barrier of the Tb complexes is roughly twice as large as that of the Dy analogues, a fact which appears to be a general trend exhibited in this family of compounds.
Collapse
Affiliation(s)
- Giang T Nguyen
- Department of Chemistry, Faculty of Science, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| | - Liviu Ungur
- Department of Chemistry, Faculty of Science, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
31
|
Benmansour S, Hernández-Paredes A, Bayona-Andrés M, Gómez-García CJ. Slow Relaxation of the Magnetization in Anilato-Based Dy(III) 2D Lattices. Molecules 2021; 26:molecules26041190. [PMID: 33672166 PMCID: PMC7926458 DOI: 10.3390/molecules26041190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 11/29/2022] Open
Abstract
The search for two- and three-dimensional materials with slow relaxation of the magnetization (single-ion magnets, SIM and single-molecule magnets, SMM) has become a very active area in recent years. Here we show how it is possible to prepare two-dimensional SIMs by combining Dy(III) with two different anilato-type ligands (dianions of the 3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone: C6O4X22−, with X = H and Cl) in dimethyl sulfoxide (dmso). The two compounds prepared, formulated as: [Dy2(C6O4H2)3(dmso)2(H2O)2]·2dmso·18H2O (1) and [Dy2(C6O4Cl2)3(dmso)4]·2dmso·2H2O (2) show distorted hexagonal honeycomb layers with the solvent molecules (dmso and H2O) located in the interlayer space and in the hexagonal channels that run perpendicular to the layers. The magnetic measurements of compounds 1, 2 and [Dy2(C6O4(CN)Cl)3(dmso)6] (3), a recently reported related compound, show that the three compounds present slow relaxation of the magnetization. In compound 1 the SIM behaviour does not need the application of a DC field whereas 2 and 3 are field-induced SIM (FI-SIM) since they show slow relaxation of the magnetization when a DC field is applied. We discuss the differences observed in the crystal structures and magnetic properties based on the X group of the anilato ligands (H, Cl and Cl/CN) in 1–3 and in the recently reported derivative [Dy2(C6O4Br2)3(dmso)4]·2dmso·2H2O (4) with X = Br, that is also a FI-SIM.
Collapse
|
32
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
33
|
Field-Induced Single-Molecule Magnets of Dysprosium Involving Quinone Derivatives. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coordination reaction of the [Dy(hfac)3(H2O)2] units (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate) with the two quinone-based derivatives 4,7-di-tert-butyl-2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)benzo[d][1,3]dithiole-5,6-dione (L1) and 7,8-dithiabicyclo[4.2.0]octa-1,5-diene-3,4-dione,2,5bis(1,1-dimethylethyl) (L2) led respectively to the complexes [Dy(hfac)3(H2O)(L1)] (1) and [Dy(hfac)3(H2O) (L2)]⋅(C6H14)(CH2Cl2) (2)⋅(C6H14)(CH2Cl2). X-ray structures on single crystal of 1 and 2⋅(C6H14)(CH2Cl2) revealed the coordination of the DyIII on the bischelating oxygenated quinone site and the formation of dimeric species through hydrogen bonds. Ac magnetic measurements highlighted field-induced single-molecule magnet behavior with magnetic relaxation through a Raman process.
Collapse
|
34
|
Abstract
In this review, we describe all the structurally characterized complexes containing lanthanoids (Ln, including La and group 3 metals: Y and Lu) and any anilato-type ligand (3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion = C6O4X22−). We present all the anilato-Ln compounds including those where, besides the anilato-type ligand, there is one or more coligands or solvent molecules coordinated to the lanthanoid ions. We show the different structural types observed in these compounds: from discrete monomers, dimers and tetramers to extended 1D, 2D and 3D lattices with different topologies. We also revise the magnetic properties of these Ln-anilato compounds, including single-molecule magnet (SMM) and single-ion magnet (SIM) behaviours. Finally, we show the luminescent and electrochemical properties of some of them, their gas/solvent adsorption/absorption and exchange capacity and the attempts to prepare them as thin films.
Collapse
|
35
|
Gould CA, Mu E, Vieru V, Darago LE, Chakarawet K, Gonzalez MI, Demir S, Long JR. Substituent Effects on Exchange Coupling and Magnetic Relaxation in 2,2′-Bipyrimidine Radical-Bridged Dilanthanide Complexes. J Am Chem Soc 2020; 142:21197-21209. [DOI: 10.1021/jacs.0c10612] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Veacheslav Vieru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | | | | - Selvan Demir
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jeffrey R. Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Perfetti M, Caneschi A, Sukhikh TS, Vostrikova KE. Lanthanide Complexes with a Tripodal Nitroxyl Radical Showing Strong Magnetic Coupling. Inorg Chem 2020; 59:16591-16598. [PMID: 33119277 DOI: 10.1021/acs.inorgchem.0c02477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of isomorphous mononuclear complexes of Ln(III) ions comprising one stable tripodal oxazolidine nitroxyl radical were obtained in acetonitrile media starting from nitrates. The compounds, [LnRad(NO3)3] (Ln = Gd, Tb, Dy, Tm, Y; Rad = 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl), have a molecular structure. Their coordination polyhedron, LnO7N2, can be described as a tricapped trigonal prism with symmetry not far from D3h. The extracted value of 23 cm-1 for the antiferromagnetic coupling of Gd-Rad established from the DC magnetic and EPR data is a record strength for the complexes of 4f elements with nitroxyl radicals. The terbium derivative displays frequency-dependent out-of-phase signals in zero field, indicating single-molecule magnetic behavior. With an applied field of 0.1 T, an effective barrier of 57 cm-1 is found.
Collapse
Affiliation(s)
- Mauro Perfetti
- Department of Chemistry U. Schiff, University of Florence and INSTM Reseach Unit, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Andrea Caneschi
- Dipartimento di Ingegneria Industriale - DIEF, Università degli Studi di Firenze, INSTM Research Unit of Firenze, Via di Santa Marta n. 3, 50139 Firenze, Italy
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kira E Vostrikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
37
|
Haiduc I. Inverse coordination chemistry: oxocarbons, other polyoxo carbocyclic molecules and oxygen heterocycles as coordination centers. Topology and systematization. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1825697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Acharya J, Ahmed N, Flores Gonzalez J, Kumar P, Cador O, Singh SK, Pointillart F, Chandrasekhar V. Slow magnetic relaxation in a homo dinuclear Dy(iii) complex in a pentagonal bipyramidal geometry. Dalton Trans 2020; 49:13110-13122. [PMID: 32930277 DOI: 10.1039/d0dt02881a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We hereby report a dinuclear Dy(iii) complex, [Dy(LH3)Cl2]2·2Et2O (1) (LH4 = 2,3-dihydroxybenzylidene)-2-(hydroxyimino)propanehydrazide where both the metal centres are in a pentagonal bipyramidal (PBP) geometry with the axial positions being occupied by negatively charged Cl- ions. The complex as well as it's 10% diluted analogue (110) do not show zero-field SMM behaviour. However, in the presence of small optimum dc fields the slow relaxation of magnetization was displayed. The effective energy barrier for 110 at 800 Oe of applied field was extracted as 83(17) K with τ0 = 2(4) × 10-12 s. Through a combined experimental and ab initio electronic structure calculations studies we have thoroughly analysed the role of the ligand field around the Dy(iii), present in pentagonal bipyramidal geometry, in contributing to the slow relaxation of magnetization.
Collapse
Affiliation(s)
- Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nitronyl Nitroxide Biradical-Based Binuclear Lanthanide Complexes: Structure and Magnetic Properties. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Employing a new nitronyl nitroxide biradical NITPhPzbis(NITPhPzbis = 5-(1-pyrazolyl)-1,3-bis(1’-oxyl-3’-oxido-4’,4’,5’,5’-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene), a series of 2p-4f complexes [Ln2(hfac)6(H2O)(NITPhPzbis)] (LnIII = Gd1, Tb2, Dy3; hfac = hexafluoroacetylacetonate) were successfully synthesized. In complexes 1–3, the designed biradical NITPhPzbis coordinates with two LnIII ions in chelating and bridging modes to form a four-spin binuclear structure. Direct-current magnetic study of Gd analogue indicates that ferromagnetic exchange exists between the Gd ion and the radical while antiferromagnetic coupling dominates between two mono-radicals. Dynamic magnetic data show that the χ” signals of complex 3 exhibit frequency dependence under zero field, demonstrating slow magnetic relaxation behavior in complex 3. And the estimated values of Ueff and τ0 are about 8.4 K and 9.1 × 10−8 s, respectively.
Collapse
|
40
|
Yao B, Lu F, Gan DX, Liu S, Zhang YQ, Deng YF, Zhang YZ. Incorporating Trigonal-Prismatic Cobalt(II) Blocks into an Exchange-Coupled [Co 2Cu] System. Inorg Chem 2020; 59:10389-10394. [PMID: 32700532 DOI: 10.1021/acs.inorgchem.0c01151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taking advantage of a rigid tetradentate ligand of bis(pyrazoly)(3-pyrazolypyridinyl)methane (PyPz3) and the [CuII(opba)]2- unit [opba4- = o-phenylenebis(oxamato)], the trinuclear complex [{CoII(PyPz3)}2CuII(opba)][ClO4]2·5MeCN·MeOH (1) was constructed, in which the CoII centers adopt a trigonal-prismatic geometry, while considerable intramolecular magnetic coupling was successfully introduced through the oxamido bridges, representing another very first example of single-molecule magnets marrying both selected coordination geometry and magnetic exchanges.
Collapse
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Fang Lu
- Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - De-Xuan Gan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
41
|
Mondal A, Roy S, Konar S. Remarkable Energy Barrier for Magnetization Reversal in 3D and 2D Dysprosium-Chloranilate-Based Coordination Polymers. Chemistry 2020; 26:8774-8783. [PMID: 32315101 DOI: 10.1002/chem.202000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/16/2020] [Indexed: 12/26/2022]
Abstract
Herein, two coordination polymers (CPs) [{Dy(Cl2 An)1.5 (CH3 OH)}⋅4.5 H2 O]n (1) and [Dy(Cl2 An)1.5 (DMF)2 ]n (2), in which Cl2 An is chloranilate (2,5-dihydroxy-1,4-benzoquinone dianion), exhibiting field-induced single-molecule magnet behavior with moderate barrier of magnetization reversal are reported. Detailed structural and topological analysis disclosed that 1 has a 3D network, whereas 2 has a 2D layered-type structure. In both CPs, magnetic measurements showed weak antiferromagnetic exchange interaction between the dysprosium centers and field-induced slow magnetic relaxation with barriers of 175(9)K and 145(7)K for 1 and 2, respectively. Notably, the energy barriers of magnetization reversal of 1 and 2 are remarkable for metal-chloranilate-based 3D (1) and 2D (2) CPs. The temperature and field dependence of relaxation time indicate the presence of multiple relaxation pathways, such as direct, quantum tunneling of magnetization, Raman, and Orbach processes, in both CPs. Ab initio theoretical calculations reinforced the experimentally observed higher energy barrier in 1 as compared with 2 due to the presence of large transverse anisotropy in the ground state in the latter. The average transition magnetic moment between the computed low-lying spin-orbit states also rationalized the relaxation as Orbach and Raman processes through the first excited state. BS-DFT calculations were carried out for both CPs to provide more insight into the exchange interaction.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Subhadip Roy
- Department of Chemistry, The ICFAI University Tripura, Kamalghat, Mohanpur, Agartala, Tripura, 799210, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
42
|
Liu X, Feng X, Meihaus KR, Meng X, Zhang Y, Li L, Liu J, Pedersen KS, Keller L, Shi W, Zhang Y, Cheng P, Long JR. Coercive Fields Above 6 T in Two Cobalt(II)–Radical Chain Compounds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoqing Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaowen Feng
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Katie R. Meihaus
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Xixi Meng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Yuan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Liang Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jun‐Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Kasper S. Pedersen
- Department of Chemistry Technical University of Denmark DK-2800 Kgs. Lyngby Denmark
| | - Lukas Keller
- Laboratory for Neutron Scattering and Imaging Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Yi‐Quan Zhang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology Nanjing Normal University Nanjing 210023 China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jeffrey R. Long
- Department of Chemistry University of California Berkeley CA 94720 USA
- Department of Chemical and Biomolecular Engineering University of California Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
43
|
Liu X, Feng X, Meihaus KR, Meng X, Zhang Y, Li L, Liu JL, Pedersen KS, Keller L, Shi W, Zhang YQ, Cheng P, Long JR. Coercive Fields Above 6 T in Two Cobalt(II)-Radical Chain Compounds. Angew Chem Int Ed Engl 2020; 59:10610-10618. [PMID: 32285987 DOI: 10.1002/anie.202002673] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 11/09/2022]
Abstract
Lanthanide permanent magnets are widely used in applications ranging from nanotechnology to industrial engineering. However, limited access to the rare earths and rising costs associated with their extraction are spurring interest in the development of lanthanide-free hard magnets. Zero- and one-dimensional magnetic materials are intriguing alternatives due to their low densities, structural and chemical versatility, and the typically mild, bottom-up nature of their synthesis. Here, we present two one-dimensional cobalt(II) systems Co(hfac)2 (R-NapNIT) (R-NapNIT=2-(2'-(R-)naphthyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, R=MeO or EtO) supported by air-stable nitronyl nitroxide radicals. These compounds are single-chain magnets and exhibit wide, square magnetic hysteresis below 14 K, with giant coercive fields up to 65 or 102 kOe measured using static or pulsed high magnetic fields, respectively. Magnetic, spectroscopic, and computational studies suggest that the record coercivities derive not from three-dimensional ordering but from the interaction of adjacent chains that compose alternating magnetic sublattices generated by crystallographic symmetry.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaowen Feng
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Katie R Meihaus
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Xixi Meng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liang Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Lukas Keller
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
44
|
Zhang W, Muhtadi A, Iwahara N, Ungur L, Chibotaru LF. Magnetic Anisotropy in Divalent Lanthanide Compounds. Angew Chem Int Ed Engl 2020; 59:12720-12724. [DOI: 10.1002/anie.202003399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Weibing Zhang
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Almas Muhtadi
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Naoya Iwahara
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Liviu Ungur
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Liviu F. Chibotaru
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
45
|
Zhang W, Muhtadi A, Iwahara N, Ungur L, Chibotaru LF. Magnetic Anisotropy in Divalent Lanthanide Compounds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weibing Zhang
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Almas Muhtadi
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Naoya Iwahara
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Liviu Ungur
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Liviu F. Chibotaru
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
46
|
Han T, Petersen JB, Li ZH, Zhai YQ, Kostopoulos A, Ortu F, McInnes EJL, Winpenny REP, Zheng YZ. Dimerized p-Semiquinone Radical Anions Stabilized by a Pair of Rare-Earth Metal Ions. Inorg Chem 2020; 59:7371-7375. [PMID: 32392411 DOI: 10.1021/acs.inorgchem.0c00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report stable p-quinone-radical-bridged rare-earth complexes involving the ligand tetramethylquinone (QMe4•-). The complexes, {Y[(QMe4)•-Cl2(THF)3]}2 (1) and {Gd[(QMe4)•-Cl2(THF)3]}2 (2), where THF = tetrahydrofuran, are sufficiently stable that we can measure the single-crystal structures and perform magnetic and electron paramagnetic resonance measurements. These studies show the presence of a semiquinone form and that the magnetic interaction between the radicals in the dimer is strong and antiferromagnetic.
Collapse
Affiliation(s)
- Tian Han
- School of Science, Frontier Institute of Science and Technology, Research Institute of Xi'an Jiaotong University (Zhejiang), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jonatan B Petersen
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Zi-Han Li
- School of Science, Frontier Institute of Science and Technology, Research Institute of Xi'an Jiaotong University (Zhejiang), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan-Qi Zhai
- School of Science, Frontier Institute of Science and Technology, Research Institute of Xi'an Jiaotong University (Zhejiang), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Andreas Kostopoulos
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Fabrizio Ortu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Eric J L McInnes
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Richard E P Winpenny
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Yan-Zhen Zheng
- School of Science, Frontier Institute of Science and Technology, Research Institute of Xi'an Jiaotong University (Zhejiang), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
47
|
Redox-Modulations of Photophysical and Single-molecule Magnet Properties in Ytterbium Complexes Involving Extended-TTF Triads. Molecules 2020; 25:molecules25030492. [PMID: 31979347 PMCID: PMC7038133 DOI: 10.3390/molecules25030492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/25/2022] Open
Abstract
The reaction between the 2,2’-benzene-1,4-diylbis(6-hydroxy-4,7-di-tert-butyl-1,3-benzodithiol-2-ylium-5-olate triad (H2SQ) and the metallo-precursor [Yb(hfac)3]⋅2H2O led to the formation of a dinuclear coordination complex of formula [Yb2(hfac)6(H2SQ)]⋅0.5CH2Cl2 (H2SQ-Yb). After chemical oxidation of H2SQ in 2,2’-cyclohexa-2,5-diene-1,4-diylidenebis(4,7-di-tert-butyl-1,3-benzodithiole-5,6-dione (Q), the latter triad reacted with the [Yb(hfac)3]⋅2H2O precursor to give the dinuclear complex of formula [Yb2(hfac)6(Q)] (Q-Yb). Both dinuclear compounds have been characterized by X-ray diffraction, DFT optimized structure and electronic absorption spectra. They behaved as field-induced Single-Molecule Magnets (SMMs) nevertheless the chemical oxidation of the semiquinone to quinone moieties accelerated by a factor of five the relaxation time of the magnetization of Q-Yb compared to the one for H2SQ-Yb. The H2SQ triad efficiently sensitized the YbIII luminescence while the chemical oxidation of H2SQ into Q induced strong modification of the absorption properties and thus a quenching of the YbIII luminescence for Q-Yb. In other words, both magnetic modulation and luminescence quenching are reached by the oxidation of the protonated semiquinone into quinone.
Collapse
|
48
|
Pointillart F, Flores Gonzalez J, Montigaud V, Tesi L, Cherkasov V, Le Guennic B, Cador O, Ouahab L, Sessoli R, Kuropatov V. Redox- and solvato-magnetic switching in a tetrathiafulvalene-based triad single-molecule magnet. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00319k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Simultaneous redox and solvato-magnetic switching was achieved for a dinuclear dysprosium single-molecule magnet involving an extended tetrathiafulvalene fused semiquinone based triad.
Collapse
Affiliation(s)
- Fabrice Pointillart
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Jessica Flores Gonzalez
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Vincent Montigaud
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Lorenzo Tesi
- Dipartimento di Chimica “Ugo Schiff” & INSTM RU
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino (Firenze)
- Italy
- Institute of Physical Chemistry
| | - Vladimir Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| | - Boris Le Guennic
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Olivier Cador
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Lahcène Ouahab
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Roberta Sessoli
- Dipartimento di Chimica “Ugo Schiff” & INSTM RU
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino (Firenze)
- Italy
| | - Viacheslav Kuropatov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| |
Collapse
|
49
|
Zhu Z, Li XL, Liu S, Tang J. External stimuli modulate the magnetic relaxation of lanthanide single-molecule magnets. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00785d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic relaxation of lanthanide single-molecule magnets (Ln-SMMs) can be modulated reversibly by external stimuli including light irradiation, thermal treatment, protonation/deprotonation and oxidation/reduction etc.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Shuting Liu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
50
|
Ke H, Yang Y, Wei W, Jiang Y, Zhang YQ, Xie G, Chen S. Synergistic effect of mixed ligands on the anisotropy axis of two dinuclear dysprosium complexes. Dalton Trans 2020; 49:10594-10602. [DOI: 10.1039/d0dt02139c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the synergistic effect of mixed ligands on the anisotropy axis of two dinuclear dysprosium complexes.
Collapse
Affiliation(s)
- Hongshan Ke
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yongsheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Wen Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Youdong Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|