1
|
Quezada C, Samhitha S, Salas A, Ges A, Barraza LF, Palacio DA, Esquivel S, Blanco-López MC, Sánchez-Sanhueza G, Meléndrez MF. Surface-enhanced Raman sensor with molecularly imprinted nanoparticles as highly sensitive recognition material for cancer marker amino acids. Talanta 2024; 278:126465. [PMID: 38924990 DOI: 10.1016/j.talanta.2024.126465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique primarily due to its high sensitivity and signal-enhancing properties, which enable the identification of unique vibrational fingerprints. These fingerprints can be used for the diagnosis and monitoring of diseases such as cancer. It is crucial to selectively identify cancer biomarkers for early diagnosis. A correlation has been established between the reduction in the concentration of specific amino acids and the stage of the disease, particularly tryptophan (TPP) and tyrosine (TRS) in individuals diagnosed with prostate cancer. In this work, we present a strategy to analyze TPP and TRS amino acids using molecularly imprinted polymer nanoparticles (nanoMIPs), which selectively detect target molecules in a SERS sensor. NanoMIPs are synthesized using the solid-phase molecular imprinting method with TPP and TRS as templates. These are then immobilized on a SERS substrate with gold nanoparticles to measure samples prepared from tryptophan and tyrosine in phosphate-buffered saline. The detection and quantification limits of the designed sensor are 7.13 μM and 23.75 μM for TPP, and 22.11 μM and 73.72 μM for TRS, respectively. Our study lays the groundwork for future investigations utilizing nanoMIPs in SERS assessments of TPP and TRS as potential biomarkers for prostate cancer detection.
Collapse
Affiliation(s)
- Camila Quezada
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML) Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, Edmundo Larenas 315, Concepcion, 4070409, Chile.
| | - Shiva Samhitha
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML) Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, Edmundo Larenas 315, Concepcion, 4070409, Chile.
| | - Alexis Salas
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Concepción, 4070409, Chile.
| | - Adrián Ges
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML) Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, Edmundo Larenas 315, Concepcion, 4070409, Chile.
| | - Luis F Barraza
- Department of Biological and Chemical Sciences, Faculty of Medicine and Science, Universidad San Sebastián, General Lagos 1163, Valdivia, 5090000, Chile.
| | - Daniel A Palacio
- Department of Polymers, Faculty of Chemical Sciences, University of Concepción, Edmundo Larenas 129, Concepción, 4070371, Chile.
| | - Samir Esquivel
- Department of Polymers, Faculty of Chemical Sciences, University of Concepción, Edmundo Larenas 129, Concepción, 4070371, Chile.
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry, Asturias Biotechnology Institute, University of Oviedo, Oviedo, 33006, Spain.
| | - G Sánchez-Sanhueza
- Department of Restorative Dentistry, Faculty of Dentistry, University of Concepción, Concepción, Chile.
| | - M F Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4060000, Chile.
| |
Collapse
|
2
|
Lee JH, Hyun JE, Kim J, Yang J, Zhang H, Ahn H, Lee S, Kim JH, Lim T. A highly conductive, robust, self-healable, and thermally responsive liquid metal-based hydrogel for reversible electrical switches. J Mater Chem B 2024; 12:5238-5247. [PMID: 38699788 DOI: 10.1039/d4tb00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This study introduces a thermally responsive smart hydrogel with enhanced electrical properties achieved through volume switching. This advancement was realized by incorporating multiscale liquid metal particles (LMPs) into the PNIPAM hydrogel during polymerization, using their inherent elasticity and conductivity when deswelled. Unlike traditional conductive additives, LMPs endow the PNIPAM hydrogel with a remarkably consistent volume switching ratio, significantly enhancing electrical switching. This is attributed to the minimal nucleation effect of LMPs during polymerization and their liquid-like behavior, like vacancies in the polymeric hydrogel under compression. The PNIPAM/LMP hydrogel exhibits the highest electrical switching, with an unprecedented switch of 6.1 orders of magnitude. Even after repeated swelling/deswelling cycles that merge some LMPs and increase the conductivity when swelled, the hydrogel consistently maintains an electrical switch exceeding 4.5 orders of magnitude, which is still the highest record to date. Comprehensive measurements reveal that the hydrogel possesses robust mechanical properties, a tissue-like compression modulus, biocompatibility, and self-healing capabilities. These features make the PNIPAM/LMP hydrogel an ideal candidate for long-term implantable bioelectronics, offering a solution to the mechanical mismatch with dynamic human tissues.
Collapse
Affiliation(s)
- Joo Hyung Lee
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, South Korea
| | - Ji Eun Hyun
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jongbeom Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jungin Yang
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| | - Huanan Zhang
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hyunchul Ahn
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, South Korea.
| | - Sohee Lee
- Department of Clothing and Textiles, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, South Korea.
| | - Jung Han Kim
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, South Korea.
| | - Taehwan Lim
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| |
Collapse
|
3
|
Chatterjee N, Misra SK. Nanocarbon-Enforced Anisotropic MusCAMLR for Rapid Rescue of Mechanically Damaged Skeletal Muscles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257065 DOI: 10.1021/acsami.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mechanical damages to skeletal muscles could be detrimental to the active work hours and lifestyle of athletes, mountaineers, and security personnel. In this regard, the slowness of conventional treatment strategies and drug-associated side effects greatly demand the design and development of novel biomaterials, which can rescue such mechanically damaged skeletal muscles. To accomplish this demand, we have developed a musculoresponsive polymer-carbon composite for assisting myotubular regeneration (MusCAMLR). The MusCAMLR is enforced to attain anisotropic muscle-like characteristics while incorporating a smartly passivated nanoscale carbon material in the PNIPAM gel under physiological conditions as a stimulus, which is not achieved by the pristine nanocarbon system. The MusCAMLR establishes a specific mechanical interaction with muscle cells, supports myotube regeneration, maintains excellent mechanical similarity with the myotube, and restores the structural integrity and biochemical parameters of mechanically damaged muscles in a delayed onset muscle soreness (DOMS) rat model within a short period of 72 h. Concisely, this study discloses the potential of smartly passivated nanocarbon in generating an advanced biomaterial system, MusCAMLR, from a regularly used polymeric hydrogel system. This engineered polymer-carbon composite reveals its possible potential to be used as a nondrug therapeutic alternative for rescuing mechanically damaged muscles and probably can be extended for therapy of various other diseases including muscular dystrophy.
Collapse
Affiliation(s)
- Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Santosh Kumar Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
4
|
Shao H, Wang Z, Jiang S, Zhang Y, Xi X, Wu Z. Mining Polyethylene Glycol-Based Thermosensitive Hydrogel Materials: Preparation and Flame Retardant Properties. ACS OMEGA 2023; 8:5947-5957. [PMID: 36816633 PMCID: PMC9933237 DOI: 10.1021/acsomega.2c07827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
A new type of efficient and anti-extinguishing materials to inhibit coal spontaneous combustion is required because of the current situation of the short activity cycle of existing anti-extinguishing technology. Now, polyethylene glycol (PEG) was used as a water-absorbing monomer to polymerize various substances to prepare an AB-type mining thermosensitive hydrogel that was obviously thermoresponsive. The thermosensitive hydrogel, which is low-cost and stable, can be stored for a long time, and it is prepared by compounding A and B components. The orthogonal experiments determined the optimal ratio of component A, while the controlling variable experiments determined the optimal ratio of component B. The thermal stability and flame-retardant properties of the AB-type thermosensitive hydrogel were analyzed during the process of natural oxidation of coal, and the temperature responsiveness of thermosensitive hydrogels was investigated at different temperatures. The results showed that the optimal ratio of polyethylene glycol:methyl cellulose:sodium carboxymethyl cellulose:guar gum of component A was 6:6:1.2:1.5; and the ratio of bentonite:kaolin:Mg(OH)2 of component B was 2:1:1. When the ratio of component A to component B was 1:2, the AB-type thermosensitive hydrogel shows the best flame retardant properties. When this ratio of gel was applied to coal samples, the weight loss was just 6%, and the reduction of CO was as high as 72.6%. The gel, which was convenient for transportation in mining pipelines, had strong fluidity at low temperatures and rapid temperature response. As the temperature rose, a phase transition occurred gradually, and after the phase transition, a high-viscosity solid substance was formed, whose viscosity was approximately 11 times that of the room temperature. It plugged the pores effectively, and in the high-temperature region, the occurred phase transition gathered to extinguish the fire. It is a new type of high-efficiency anti-extinguishing material with excellent properties.
Collapse
Affiliation(s)
- Hao Shao
- Key
Laboratory of Gas and Fire Control for Coal Mines, China University of Mining & Technology, Ministry of Education, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Zihang Wang
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Shuguang Jiang
- Key
Laboratory of Gas and Fire Control for Coal Mines, China University of Mining & Technology, Ministry of Education, Xuzhou, Jiangsu221116, People’s Republic
of China
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Yue Zhang
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Xian Xi
- Key
Laboratory of Gas and Fire Control for Coal Mines, China University of Mining & Technology, Ministry of Education, Xuzhou, Jiangsu221116, People’s Republic
of China
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Zhengyan Wu
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| |
Collapse
|
5
|
Mijangos C, Martin J. Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers (Basel) 2023; 15:polym15030525. [PMID: 36771824 PMCID: PMC9919978 DOI: 10.3390/polym15030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
In the last few years, the polymerization of monomers within the nanocavities of porous materials has been thoroughly studied and developed, allowing for the synthesis of polymers with tailored morphologies, chemical architectures and functionalities. This is thus a subject of paramount scientific and technological relevance, which, however, has not previously been analyzed from a general perspective. The present overview reports the state of the art on polymerization reactions in spatial confinement within porous materials, focusing on the use of anodized aluminum oxide (AAO) templates. It includes the description of the AAO templates used as nanoreactors. The polymerization reactions are categorized based on the polymerization mechanism. Amongst others, this includes electrochemical polymerization, free radical polymerization, step polymerization and atom transfer radical polymerization (ATRP). For each polymerization mechanism, a further subdivision is made based on the nature of the monomer used. Other aspects of "in situ" polymerization reactions in restricted AAO geometries include: conversion monitoring, kinetic studies, modeling and polymer characterization. In addition to the description of the polymerization process itself, the use of polymer materials derived from polymerization in AAO templates in nanotechnology applications, is also highlighted. Finally, the review is concluded with a general discussion outlining the challenges that remain in the field.
Collapse
Affiliation(s)
- Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Donostia International Physics Center, DIPC, Paseo de Manuel Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Correspondence:
| | - Jaime Martin
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Grupo de Polímeros, Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, 15471 Ferrol, Spain
| |
Collapse
|
6
|
Papadopoulou-Fermeli N, Lagopati N, Pippa N, Sakellis E, Boukos N, Gorgoulis VG, Gazouli M, Pavlatou EA. Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties. Pharmaceutics 2022; 15:pharmaceutics15010135. [PMID: 36678763 PMCID: PMC9864881 DOI: 10.3390/pharmaceutics15010135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The synthesis of titania-based composite materials with anticancer potential under visible-light irradiation is the aim of this study. In specific, titanium dioxide (TiO2) nanoparticles (NPs) chemically modified with silver were embedded in a stimuli-responsive microgel (a crosslinked interpenetrating network (IP) network that was synthesized by poly (N-Isopropylacrylamide) and linear chains of polyacrylic acid sodium salt, forming composite particles. The ultimate goal of this research, and for our future plans, is to develop a drug-delivery system that uses optical fibers that could efficiently photoactivate NPs, targeting cancer cells. The produced Ag-TiO2 NPs, the microgel and the composite materials were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), micro-Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our results indicated that Ag-TiO2 NPs were successfully embedded within the thermoresponsive microgel. Either Ag-TiO2 NPs or the composite materials exhibited high photocatalytic degradation efficiency on the pollutant rhodamine B and significant anticancer potential under visible-light irradiation.
Collapse
Affiliation(s)
- Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
| | - Nefeli Lagopati
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi, Greece
| | - Vassilis G. Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
- Correspondence: ; Tel.: +30-210-772-3110
| |
Collapse
|
7
|
Dunn CR, Lee BP, Rajachar RM. Thermomagnetic-Responsive Self-Folding Microgrippers for Improving Minimally Invasive Surgical Techniques and Biopsies. Molecules 2022; 27:5196. [PMID: 36014435 PMCID: PMC9412701 DOI: 10.3390/molecules27165196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional open surgery complications are typically due to trauma caused by accessing the procedural site rather than the procedure itself. Minimally invasive surgery allows for fewer complications as microdevices operate through small incisions or natural orifices. However, current minimally invasive tools typically have restricted maneuverability, accessibility, and positional control of microdevices. Thermomagnetic-responsive microgrippers are microscopic multi-fingered devices that respond to temperature changes due to the presence of thermal-responsive polymers. Polymeric devices, made of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) and polypropylene fumarate (PPF), self-fold due to swelling and contracting of the hydrogel layer. In comparison, soft metallic devices feature a pre-stressed metal bilayer and polymer hinges that soften with increased temperature. Both types of microdevices can self-actuate when exposed to the elevated temperature of a cancerous tumor region, allowing for direct targeting for biopsies. Microgrippers can also be doped to become magnetically responsive, allowing for direction without tethers and the retrieval of microdevices containing excised tissue. The smaller size of stimuli-responsive microgrippers allows for their movement through hard-to-reach areas within the body and the successful extraction of intact cells, RNA and DNA. This review discusses the mechanisms of thermal- and magnetic-responsive microdevices and recent advances in microgripper technology to improve minimally invasive surgical techniques.
Collapse
Affiliation(s)
- Caleigh R. Dunn
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak M. Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- Marine Ecology and Telemetry Research (MarEcoTel), Seabeck, WA 98380, USA
| |
Collapse
|
8
|
Yasmeen N, Karpinska A, Kalecki J, Kutner W, Kwapiszewska K, Sharma PS. Electrochemically Synthesized Polyacrylamide Gel and Core-Shell Nanoparticles for 3D Cell Culture Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32836-32844. [PMID: 35848208 PMCID: PMC9335524 DOI: 10.1021/acsami.2c04904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible polyacrylamide gel and core-shell nanoparticles (NPs) were synthesized using a one-step electrochemically initiated gelation. Constant-potential electrochemical decomposing of ammonium persulfate initiated the copolymerization of N-isopropyl acrylamide, methacrylic acid, and N,N'-methylenebisacrylamide monomers. This decomposing potential and monomers' concentrations were optimized to prepare gel NPs and thin gel film-grafted core-shell NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging confirmed the gel NP formation. The lyophilized gel NPs and core-shell NPs were applied to support the three-dimensional (3D) cell culture. In all, core-shell NPs provided superior support for complex 3D tissue structures.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta Karpinska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Kalecki
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
9
|
Synthesis and Characterization of Catechol-Containing Polyacrylamides with Adhesive Properties. Molecules 2022; 27:molecules27134027. [PMID: 35807272 PMCID: PMC9268726 DOI: 10.3390/molecules27134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, a row of four analogous dopamine acryl- and methacrylamide derivatives, namely N-(3,4-dihydroxyphenyethyl) acrylamide, N-(3,4-dihydroxyphenyethyl) meth acrylamide, N-phenethyl methacrylamide, N-(4-hydroxyphenethyl) methacrylamide were synthesized and characterized by 1H-NMR and 13C-NMR, followed by further solvent-based radical polymerization with N-hydroxyethyl acrylamide. All copolymers were characterized by 1H-NMR, dynamic differential calorimetry, and gel permeation chromatography. The dependency of the used comonomer ratios to the molecular mass of the corresponding copolymers has been described. The synthesis of the various polymers serves as a feasibility study and provides important data for a future biometric application in the medical field. We synthesized N-(3,4-dihydroxyphenyethyl) acrylamide copolymer up to 80 mol% by free radical polymerization without using any protecting groups. All polymers show identical perfect adhesive properties by a simple scratch test. Further, the monomers were used as a photo reactive glue formulation to test its adherence to a medical titanium surface sample by tensile shear test.
Collapse
|
10
|
Concentration Effect over Thermoresponse Derived from Organometallic Compounds of Functionalized Poly( N-isopropylacrylamide- co-dopamine Methacrylamide). Polymers (Basel) 2021; 13:polym13223921. [PMID: 34833220 PMCID: PMC8620241 DOI: 10.3390/polym13223921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The functionalization of smart polymers is opening a new perspective in catalysis, drug carriers and biosensors, due to the fact that they can modulate the response regarding conventional devices. This smart response could be affected by the presence of organometallic complexes in terms of interactions which could affect the physical chemical properties. In this sense, the thermoresponsive behavior of copolymers based on N-isopropylacrylamide (NIPAM) could be affected due to the presence of hydrophobic groups and concentration effect. In this work, the functionalization of a copolymer based on NIPAM and dopamine methacrylamide with different amounts of bis(cyclopentadienyl)titanium (IV) dichloride was carried out. The resulting materials were characterized, showing a clear idea about the mechanism of functionalization through FTIR spectroscopy. The thermoresponsive behavior was also studied for various polymeric solutions in water by UV-vis spectroscopy and calorimetry. The hydrophobic interactions promoted by the organometallic complex could affect the transition associated with the lower critical solution temperature (LCST), specifically, the segments composed by pure NIPAM. That fact would explain the reduction of the width of the LCST-transition, contrary to what could be expected. In addition, the hydrophobicity was tested by the contact angle and also DNA interactions.
Collapse
|
11
|
Rana MM, De la Hoz Siegler H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers (Basel) 2021; 13:3154. [PMID: 34578055 PMCID: PMC8467289 DOI: 10.3390/polym13183154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
12
|
León-Boigues L, Navarro R, Mijangos C. Free radical nanocopolymerization in AAO porous materials: Kinetic, copolymer composition and monomer reactivity ratios. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Park Y, Hwang M, Kim M, Park E, Noda I, Jung YM. Characterization of the phase transition mechanism of P(NiPAAm-co-AAc) copolymer hydrogel using 2D correlation IR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119525. [PMID: 33582435 DOI: 10.1016/j.saa.2021.119525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
A thermo-responsive polymer, poly(N-isopropylacrylamide) (PNiPAAm), was copolymerized with acrylic acid (AAc) in this study. Its phase transitions during the heating and cooling processes were investigated using IR spectroscopy, principal component analysis (PCA), and two-dimensional correlation spectroscopy (2D-COS). During the heating process, the hydrogen bonding between side chain in P(NiPAAm-co-AAc) copolymer hydrogel and H2O was broken first, and then the formation of the intramolecular interaction in P(NiPAAm-co-AAc) copolymer hydrogel occurred. However, unlike the heating process, intensities of bands in the CH stretching region were changed before those in the CO stretching including the NH bending region during the cooling process. The results indicate that the phase transition of P(NiPAAm-co-AAc) copolymer hydrogel is an irreversible process at the molecular levels.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myeongwon Hwang
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minkyoung Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
14
|
León-Boigues L, Pérez LA, Mijangos C. In Situ Synthesis of Poly(butyl methacrylate) in Anodic Aluminum Oxide Nanoreactors by Radical Polymerization: A Comparative Kinetics Analysis by Differential Scanning Calorimetry and 1H-NMR. Polymers (Basel) 2021; 13:polym13040602. [PMID: 33671387 PMCID: PMC7923008 DOI: 10.3390/polym13040602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 01/21/2023] Open
Abstract
In this work, we explore the ability to generate well-defined poly(butyl methacrylate) (PBMA) nanostructures by “in situ” polymerization of butyl methacrylate monomer (BMA). PBMA nanostructures of high and low aspect ratios have been successfully obtained through the free radical polymerization (FRP) of a BMA monomer in anodic aluminum oxide (AAO) nanoreactors of suitable size. A polymerization kinetics process has been followed by differential scanning calorimetry (DSC) and proton Nuclear Magnetic Resonance spectroscopy (1H-NMR).The determination of the kinetics of polymerization through DSC is based on a quick and direct analysis of the exothermic polymerization process, whereas the analysis through 1H-NMR also allows the unambiguous chemical analysis of the resulting polymer. When compared to bulk polymerization, both techniques demonstrate confinement effects. Moreover, DSC and 1H-NMR analysis give the same kinetics results and show a gel-effect in all the cases. The number average molecular weight (Mn) of the PBMA obtained in AAO of 60–300 nm are between 30·103–175·103 g/mol. Even if the Mn value is lower with respect to that obtained in bulk polymerization, it is high enough to maintain the polymer properties. As determined by SEM morphological characterization, once extracted from the AAO nanoreactor, the polymer nanostructures show controlled homogeneous aspect/size all throughout the length of nanopillar over a surface area of few cm2. The Young’s modulus of low aspect ratio PBMA nanopillars determined by AFM gives a value of 3.1 ± 1.1 MPa. In this work, a 100% of PBMA polymer nanostructures are obtained from a BMA monomer in AAO templates through a quick double process: 30 min of monomer immersion at room temperature and 90 min of polymerization reaction at 60 °C. While the same nanostructures are obtained by polymer infiltration of PBMA at 200 °C in about 6 h, polymerization conditions are much softer than those corresponding to the polymer infiltration process. Furthermore, the 1H-NMR technique has been consolidated as a tool for studying the kinetics of the copolymerization reactions in confinement and the determination of monomer reactivity ratios.
Collapse
|
15
|
Gong S, He T, Huang Q, Shu X, Zhou X. Anchoring PNIPAM on ATP Surface via hydrogen bonding and coordination for a temperature-responsive adsorption of hydrophobic drug. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2643-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Giussi JM, Martínez Moro M, Iborra A, Cortez ML, Di Silvio D, Llarena Conde I, Longo GS, Azzaroni O, Moya S. A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(N-isopropylacrylamide-co-methacrylic acid) microgels. SOFT MATTER 2020; 16:881-890. [PMID: 31942906 DOI: 10.1039/c9sm02070e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Negatively charged poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAm-co-MAA)) microgels undergo size changes in response to changes in temperature and pH. Complexation of these microgels with positively charged polyelectrolytes can greatly affect their physical properties and their capacity for encapsulating active molecules. Here we study the interaction between (P(NIPAm-co-MAA)) microgels and a model positively charged polyelectrolyte, poly allylamine hydrochloride (PAH), with different molecular weights. Experiments were conducted at temperatures below and above the lower critical solution temperature (LCST) of the microgel (30-32 °C), at 20 and 40 °C, respectively, and for PAH at molecular weights of 15, 50, and 140 kDa. Below the LCST, dynamic light scattering and zeta potential measurements with molecular simulation show that for the 15 kDa PAH there is preferential accumulation of PAH inside the microgel, whereas for the higher molecular weight PAH, the polyelectrolyte deposits mainly on the microgel surface. Above the LCST, PAH is preferentially located on the surface of the microgels for all molecular weights studied as a result of charge segregation in the hydrogels. Confocal scanning laser microscopy and flow cytometry were used to quantify rhodamine labelled PAH associated with the microgel. Isothermal titration calorimetry studies give insight into the thermodynamics of the interaction of PAH with the hydrogels, and how this interaction is affected by the molecular weight of PAH. Finally, microgels with encapsulated doxorubicin were exposed to PAH, revealing that the drug is displaced from the microgel by the PAH chains.
Collapse
Affiliation(s)
- Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teoricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, 1900 La Plata, Argentina.
| | - Marta Martínez Moro
- Soft Matter Nanotechnology Group, CIC BiomaGUNE, Paseo Miramon 182, 20014, San Sebastian, Spain.
| | - Agustín Iborra
- Instituto de Investigaciones Fisicoquímicas Teoricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teoricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, 1900 La Plata, Argentina.
| | - Desiré Di Silvio
- Soft Matter Nanotechnology Group, CIC BiomaGUNE, Paseo Miramon 182, 20014, San Sebastian, Spain.
| | - Irantzu Llarena Conde
- Soft Matter Nanotechnology Group, CIC BiomaGUNE, Paseo Miramon 182, 20014, San Sebastian, Spain.
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teoricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, 1900 La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teoricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, 1900 La Plata, Argentina.
| | - Sergio Moya
- Soft Matter Nanotechnology Group, CIC BiomaGUNE, Paseo Miramon 182, 20014, San Sebastian, Spain.
| |
Collapse
|
17
|
Egghe T, Cools P, Van Guyse JFR, Asadian M, Khalenkow D, Nikiforov A, Declercq H, Skirtach AG, Morent R, Hoogenboom R, De Geyter N. Water-Stable Plasma-Polymerized N, N-Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2116-2128. [PMID: 31834769 DOI: 10.1021/acsami.9b19526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The plasma polymerization of amide-based precursors is a nearly unexplored research area, which is in contrast with the abundance of reports focusing on amide-based surface modification using wet chemistry. Therefore, this study aims to profoundly investigate the near-atmospheric pressure plasma polymerization of N,N-dimethylacrylamide (DMAM) to obtain stable coatings. In contrast to the unstable coatings obtained at lower discharge powers, the stable coatings that were obtained at higher powers showed a lower hydrophilicity as assessed by water contact angle (WCA). This decrease in hydrophilicity with increasing plasma power was found to be related to a reduced preservation of the monomer structure, as observed by Fourier transform infrared (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and XPS C60 depth profiling, a rarely used but effective combination of techniques. Furthermore, the chemical composition of the coating was found to be in good agreement with the plasma active species observed by optical emission spectroscopy. Additionally, XPS C60 depth profiling indicated a difference between the top layer and bulk of the plasma polymer due to spontaneous oxidation and/or postplasma coating deposition. Finally, the stable coatings were also found to have cell-interactive behavior toward MC3T3 as studied by in vitro live/dead fluorescence imaging and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assays. With the latter technique, a cell viability of up to 89% as compared with tissue culture plates after 1 day of cell culture was observed, indicating the potential of these coatings for tissue engineering purposes.
Collapse
Affiliation(s)
- Tim Egghe
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , Sint-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry, Faculty of Sciences , Ghent University , Krijgslaan 281 S4 , 9000 Ghent , Belgium
| | - Pieter Cools
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , Sint-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry, Faculty of Sciences , Ghent University , Krijgslaan 281 S4 , 9000 Ghent , Belgium
| | - Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , Sint-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
| | - Dmitry Khalenkow
- Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 B , 9000 Ghent , Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , Sint-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
| | - Heidi Declercq
- Tissue Engineering Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences , Ghent University , Corneel Heymanslaan 10 B3 , 9000 Ghent , Belgium
| | - Andre G Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 B , 9000 Ghent , Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , Sint-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry, Faculty of Sciences , Ghent University , Krijgslaan 281 S4 , 9000 Ghent , Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture , Ghent University , Sint-Pietersnieuwstraat 41 B4 , 9000 Ghent , Belgium
| |
Collapse
|
18
|
Allegretto JA, Giussi JM, Moya SE, Azzaroni O, Rafti M. Synthesis and characterization of thermoresponsive ZIF-8@PNIPAm-co-MAA microgel composites with enhanced performance as an adsorption/release platform. RSC Adv 2020; 10:2453-2461. [PMID: 35496105 PMCID: PMC9048415 DOI: 10.1039/c9ra09729e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/09/2020] [Indexed: 01/08/2023] Open
Abstract
Composite materials featuring a synergic combination of interesting properties such as stimuli responsiveness and tailored porosity are highly appealing due to their multiple possible applications. We hereby present an example which brings together such features by using poly(N-isopropyl-acrylamide)-derived thermo-responsive microgels and Zn-based Metal Organic Framework (MOF) ZIF-8, capable of selective adsorption. Such a composite was obtained by including methacrylic acid as a co-monomer in the microgel, in order to position carboxylic acid moieties within the polymeric matrix, which via preconcentration of MOF precursors would trigger confined heterogeneous nucleation. The highly integrated composite obtained features thermoresponsivity and permanent porosity. Methylene blue adsorption/desorption experiments were performed, revealing a dramatic enhancement of its cargo capacity together with an increased release efficiency. We hereby present a composite material which combines porosity (ZIF-8 MOF) and stimuli-responsiveness (PNIPAm-co-MAA microgel) in a synergistic way thus opening the path for its use in adsorption and sensing applications.![]()
Collapse
Affiliation(s)
- Juan A. Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- CONICET
| | - Juan M. Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- CONICET
| | | | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- CONICET
| | - Matias Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- CONICET
| |
Collapse
|
19
|
Tang Y, Dubbeldam D, Tanase S. Water-Ethanol and Methanol-Ethanol Separations Using in Situ Confined Polymer Chains in a Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41383-41393. [PMID: 31600050 PMCID: PMC6838788 DOI: 10.1021/acsami.9b14367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
This study presents a straightforward approach for the in situ polymerization of poly(N-isopropylacrylamide) (PNIPAM) chains within the one-dimensional (1D) pores of the five-coordinated zinc-based metal-organic framework DMOF in order to obtain new MOF-based composites. The loading amount of PNIPAM within DMOF ⊃ PNIPAM composites can be tuned by changing the initial weight ratio between NIPAM, which is the monomer of PNIPAM, and DMOF. The guest PNIPAM chains in the composites block partially the 1D pores of DMOF, thus leading to a narrowed nanospace. The water adsorption studies reveal that the water uptake increased by increasing the loading of PNIPAM in the final DMOF ⊃ PNIPAM composites, indicating that the exposed amide groups of PNIPAM gradually alter the hydrophobicity of pristine DMOF and lead to hydrophilic DMOF ⊃ PNIPAM composites. The composite with the highest loading of PNIPAM displays a selective adsorption for water and methanol over ethanol when using equimolar mixtures of methanol-ethanol and water-ethanol. This is confirmed by the single-component adsorption measurements as well as ideal adsorbed solution theory molecular simulations. Additionally, the water stability of pristine DMOF has been greatly improved after the incorporation of PNIPAM in its pores. PNIPAM can undergo a phase transition between hydrophobic and hydrophilic phases in response to a low temperature change. This property is used in order to control the desorption of water and methanol molecules, thus enabling an efficient and cost-effective regeneration process.
Collapse
|
20
|
Zhu K, Hou D, Fei Y, Peng B, Wang Z, Xu W, Zhu B, Li LL, Wang H. Thermosensitive Hydrogel Interface Switching from Hydrophilic Lubrication to Infection Defense. ACS APPLIED BIO MATERIALS 2019; 2:3582-3590. [DOI: 10.1021/acsabm.9b00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Zhu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China
| | - Dayong Hou
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Yiyuan Street no. 37, Nangang District, Harbin, 150001, China
| | - Yue Fei
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beiyitiao no. 11, Haidian
District, Beijing 100190, China
| | - Bo Peng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beiyitiao no. 11, Haidian
District, Beijing 100190, China
| | - Ziqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Yiyuan Street no. 37, Nangang District, Harbin, 150001, China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Yiyuan Street no. 37, Nangang District, Harbin, 150001, China
| | - Baoning Zhu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beiyitiao no. 11, Haidian
District, Beijing 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beiyitiao no. 11, Haidian
District, Beijing 100190, China
| |
Collapse
|
21
|
Shah TV, Vasava DV. A glimpse of biodegradable polymers and their biomedical applications. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0041] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractOver the past two decades, biodegradable polymers (BPs) have been widely used in biomedical applications such as drug carrier, gene delivery, tissue engineering, diagnosis, medical devices, and antibacterial/antifouling biomaterials. This can be attributed to numerous factors such as chemical, mechanical and physiochemical properties of BPs, their improved processibility, functionality and sensitivity towards stimuli. The present review intended to highlight main results of research on advances and improvements in terms of synthesis, physical properties, stimuli response, and/or applicability of biodegradable plastics (BPs) during last two decades, and its biomedical applications. Recent literature relevant to this study has been cited and their developing trends and challenges of BPs have also been discussed.
Collapse
Affiliation(s)
- Tejas V. Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat- 380009, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat- 380009, India
| |
Collapse
|
22
|
Lanzalaco S, Turon P, Weis C, Alemán C, Armelin E. The mechanism of adhesion and graft polymerization of a PNIPAAm thermoresponsive hydrogel to polypropylene meshes. SOFT MATTER 2019; 15:3432-3442. [PMID: 30938743 DOI: 10.1039/c9sm00412b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a commercial and fully flexible monofilament mesh has been used for the deposition of a thermosensitive hydrogel, generated by graft copolymerization of N-isopropylacrylamide (NIPAAm) and N,N'-methylene bis(acrylamide) (MBA) monomers. The mechanism of adhesion and graft copolymerization have been elucidated combining micro- and standard spectroscopy techniques such as Raman spectroscopy, FTIR spectroscopy and XPS, before and after the activation of the polypropylene (PP) fibre surface by using oxygen-plasma. The good covalent interactions among NIPAAm monomers and PP fibres, and the hydrogel chain growth in such flexible bidimensional structures, were demonstrated. Additionally, the thermoresponsive properties of PNIPAAm were obtained (VPTT behaviour). The bilayer system is stable below and above a low critical solution temperature (LCST) of 33.2 °C.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
23
|
Kim YK, Kim EJ, Lim JH, Cho HK, Hong WJ, Jeon HH, Chung BG. Dual Stimuli-Triggered Nanogels in Response to Temperature and pH Changes for Controlled Drug Release. NANOSCALE RESEARCH LETTERS 2019; 14:77. [PMID: 30830486 PMCID: PMC6399374 DOI: 10.1186/s11671-019-2909-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/21/2019] [Indexed: 05/19/2023]
Abstract
Poly-N-isopropyl acrylamide (PNIPAM) nanogels have been modified with different acrylic acid (AAc) contents for the efficient control of lower critical solution temperature (LCST). In this study, PNIPAM-co-AAc nanogels nanogels showed two volume phase transitions in comparison with PNIPAM. The transition temperature of PNIPAM nanogels was increased with AAc contents. The controlled drug release performance of PNIPAM-co-AAc nanogels loaded with β-lapachone was attributed to the AAc content ratio and was efficiently triggered in response to temperature and pH. Moreover, a colorimetric cell proliferation assay and direct fluorescence-based live/dead staining were used to confirm the concurrence on drug release profiles. Finally, PNIPAM-co-AAc20 showed a relatively low level of drug release in the range of acidic to neutral pH at body temperature, while maximizing drug release at basic pH. Therefore, we demonstrated that the PNIPAM-based nanogel with the temperature- and pH-responsive features could be a promising nanocarrier for potential intestine-specific drug delivery.
Collapse
Affiliation(s)
- Yun Kyoung Kim
- Department of Biomedical Engineering, Sogang University, Seoul, 04107 South Korea
| | - Eun-Joong Kim
- Research Center, Sogang University, Seoul, 04107 South Korea
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Seoul, 04107 South Korea
| | - Heui Kyoung Cho
- Cosmetic Research Center, Coway Co. Ltd., Seoul, 08502 South Korea
| | - Woo Jin Hong
- Cosmetic Research Center, Coway Co. Ltd., Seoul, 08502 South Korea
| | - Hyang Hwa Jeon
- Cosmetic Research Center, Coway Co. Ltd., Seoul, 08502 South Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 South Korea
| |
Collapse
|
24
|
León-Boigues L, von Bilderling C, Pietrasanta LI, Azzaroni O, Giussi JM, Mijangos C. A Patterned Butyl Methacrylate- co-2-Hydroxyethyl Acrylate Copolymer with Softening Surface and Swelling Capacity. Polymers (Basel) 2019; 11:E290. [PMID: 30960274 PMCID: PMC6419064 DOI: 10.3390/polym11020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/02/2019] [Indexed: 11/19/2022] Open
Abstract
The tunable swelling and mechanical properties of nanostructures polymers are crucial parameters for the creation of adaptive devices to be used in diverse fields, such as drug delivery, nanomedicine, and tissue engineering. We present the use of anodic aluminum oxide templates as a nanoreactor to copolymerize butyl methacrylate and 2-hydroxyethyl acrylate under radical conditions. The copolymer obtained under confinement showed significant differences with respect to the same copolymer obtained in bulk conditions. Molecular weights, molecular weight dispersities, Young's modulus, and wetting behaviors were significantly modified. The combination of selected monomers allowed us to obtain nanopillar structures with an interesting softening surface and extraordinary swelling capacity that could be of special interest to surface science and specifically, cell culture.
Collapse
Affiliation(s)
- Laia León-Boigues
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Catalina von Bilderling
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)⁻Departamento de Química⁻Facultad de Ciencias Exactas-Universidad Nacional de La Plata⁻CONICET, 1900 La Plata, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina.
| | - Lía I Pietrasanta
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina.
- Instituto de Física de Buenos Aires (IFIBA-CONICET), C1428EHA Buenos Aires, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)⁻Departamento de Química⁻Facultad de Ciencias Exactas-Universidad Nacional de La Plata⁻CONICET, 1900 La Plata, Argentina.
| | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)⁻Departamento de Química⁻Facultad de Ciencias Exactas-Universidad Nacional de La Plata⁻CONICET, 1900 La Plata, Argentina.
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4 and Centro de Fisica de Materiales, CFM-CSIC/UPV-EHU Paseo de Manuel Lardizabal 5, 20018 Donostia-San Sebastian, Spain.
| |
Collapse
|
25
|
Begum R, Farooqi ZH, Ahmed E, Sharif A, Wu W, Irfan A. Fundamentals and applications of acrylamide based microgels and their hybrids: a review. RSC Adv 2019; 9:13838-13854. [PMID: 35519604 PMCID: PMC9064016 DOI: 10.1039/c9ra00699k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Recent advances in synthesis, characterization and applications of acrylamide based polymer microgels and their hybrids are discussed for further development in this area.
Collapse
Affiliation(s)
- Robina Begum
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
- Centre for Undergraduate Studies
| | | | - Ejaz Ahmed
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
| | - Ahsan Sharif
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Ahmad Irfan
- Research Center for Advance Materials Science
- King Khalid University
- Abha 61413
- Saudi Arabia
- Department of Chemistry
| |
Collapse
|
26
|
Sanz B, Ballard N, Marcos-Fernández Á, Asua JM, Mijangos C. Confinement effects in the step-growth polymerization within AAO templates and modeling. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Giussi JM, von Bilderling C, Alarcón E, Pietrasanta LI, Hernandez R, P Del Real R, Vázquez M, Mijangos C, Cortez ML, Azzaroni O. Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles. NANOSCALE 2018; 10:1189-1195. [PMID: 29271438 DOI: 10.1039/c7nr06209e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The possibility of combining more than one stimulus-responsive property into a single material holds interesting potential for the creation of adaptive devices to be used in diverse fields such as drug delivery, nanomedicine and tissue engineering. This paper describes a novel material based on thermo-responsive PNIPAm nanopillars with amplified surface properties through the incorporation of Fe3O4 nanoparticles. The incorporation of magnetic nanoparticles into the nanopillars, prepared via surface-initiated atom-transfer radical polymerization in anodized aluminum oxide templates, sharply increased their stiffness and hydrophobicity when increasing the temperature above the volume phase transition temperature. Furthermore, their magnetic response turned out to be proportional to the amount of the incorporated nanoparticles. The possibility of sharply increasing the stiffness with a temperature variation close to the human body temperature paves the way to the application of these substrates as "smart" scaffolds for cell culture. Additionally, the presence of superparamagnetic nanoparticles in the nanopillars offers the possibility of using these nanostructured systems for magnetic hyperthermia.
Collapse
Affiliation(s)
- Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) - Departamento de Química - Facultad de Ciencias Exactas - Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maksym P, Tarnacka M, Wolnica K, Dzienia A, Erfurt K, Chrobok A, Zięba A, Bielas R, Kaminski K, Paluch M. Studies on the hard confinement effect on the RAFT polymerization of a monomeric ionic liquid. Unexpected triggering of RAFT polymerization at 30 °C. Polym Chem 2018. [DOI: 10.1039/c7py01726j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For the first time, the RAFT polymerization of a monomeric ionic liquid under hard confinement was successfully carried out.
Collapse
|
30
|
Reactive Oxygen Species Responsive Naturally Occurring Phenolic-Based Polymeric Prodrug. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:291-301. [PMID: 30357629 DOI: 10.1007/978-981-13-0950-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactive Oxygen Species (ROS) play a vital role in the biological system. Exaggerated, ROS have devastating effects on the human body leading to the pathophysiological condition including the transformation of a normal cell into a cancer phenotype. Nature has blessed us with various biomolecules that we use along with our dietary supplements. Using such therapeutic small molecules covalently incorporated into biodegradable polyoxalate polymer backbone with a responsive group forms an efficient drug delivery vehicle. This chapter "Reactive oxygen species responsive naturally occurring phenolic-based polymeric prodrug" will be focusing on redox-responsive polymers incorporated with naturally occurring phenolics and clinical application.
Collapse
|
31
|
Lanzalaco S, Armelin E. Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels 2017; 3:E36. [PMID: 30920531 PMCID: PMC6318659 DOI: 10.3390/gels3040036] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
The innate ability of poly(N-isopropylacrylamide) (PNIPAAm) thermo-responsive hydrogel to copolymerize and to graft synthetic polymers and biomolecules, in conjunction with the highly controlled methods of radical polymerization which are now available, have expedited the widespread number of papers published in the last decade-especially in the biomedical field. Therefore, PNIPAAm-based hydrogels are extensively investigated for applications on the controlled delivery of active molecules, in self-healing materials, tissue engineering, regenerative medicine, or in the smart encapsulation of cells. The most promising polymers for biodegradability enhancement of PNIPAAm hydrogels are probably poly(ethylene glycol) (PEG) and/or poly(ε-caprolactone) (PCL), whereas the biocompatibility is mostly achieved with biopolymers. Ultimately, advances in three-dimensional bioprinting technology would contribute to the design of new devices and medical tools with thermal stimuli response needs, fabricated with PNIPAAm hydrogels.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- Industrial and Digital Innovation Department (DIID), Chemical Engineering, University of Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy.
| | - Elaine Armelin
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/d'Eduard Maristany, 10-14, Building I, E-08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE), C/d'Eduard Maristany 10-14, Edifici IS, 08019 Barcelona, Spain.
| |
Collapse
|
32
|
Narang P, Venkatesu P. New endeavours involving the cooperative behaviour of TMAO and urea towards the globular state of poly(N-isopropylacrylamide). RSC Adv 2017. [DOI: 10.1039/c7ra05120d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies have provided evidence for the destruction of the hydrogen bonds of poly(N-isopropylacrylamide) (PNIPAM) in the presence of osmolytes such as trimethylamine N-oxide (TMAO) and urea.
Collapse
Affiliation(s)
- Payal Narang
- Department of Chemistry
- University of Delhi
- Delhi – 110007
- India
| | | |
Collapse
|