1
|
Kengmana E, Ornelas-Gatdula E, Chen KL, Schulman R. Spatial Control over Reactions via Localized Transcription within Membraneless DNA Nanostar Droplets. J Am Chem Soc 2024. [PMID: 39565729 DOI: 10.1021/jacs.4c07274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Biomolecular condensates control where and how fast many chemical reactions occur in cells by partitioning reactants and catalysts, enabling simultaneous reactions in different spatial locations of a cell. Even without a membrane or physical barrier, the partitioning of the reactants can affect the rates of downstream reaction cascades in ways that depend on reaction location. Such effects can enable systems of biomolecular condensates to spatiotemporally orchestrate chemical reaction networks in cells to facilitate complex behaviors such as ribosome assembly. Here, we develop a system for developing such control in synthetic systems. We localize different transcription templates within different phase-separated, membraneless DNA nanostar (NS) droplets─programmable, in vitro liquid-liquid phase separation systems for partitioning of substrates and localization of reactions to membraneless droplets. When RNA produced within such droplets is also degraded in the bulk, droplet-localized transcription creates RNA concentration gradients. Consistent with the formation of these gradients, toehold-mediated strand displacement reactions involving transcripts are 2-fold slower far from the site of transcription than when nearby. We then demonstrate how multiple such gradients can form and be maintained independently by simultaneous transcription reactions occurring in tandem, each localized to different NS droplet types. Our results provide a means for constructing reaction systems in which different reactions are spatially localized and controlled without the need for physical membranes. This system also provides a means for generally studying how localized reactions and the exchange of reaction products might occur between protocells.
Collapse
Affiliation(s)
- Eli Kengmana
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elysse Ornelas-Gatdula
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuan-Lin Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Dizani M, Sorrentino D, Agarwal S, Stewart JM, Franco E. Protein Recruitment to Dynamic DNA-RNA Host Condensates. J Am Chem Soc 2024; 146:29344-29354. [PMID: 39418394 DOI: 10.1021/jacs.4c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We describe the design and characterization of artificial nucleic acid condensates that are engineered to recruit and locally concentrate proteins of interest in vitro. These condensates emerge from the programmed interactions of nanostructured motifs assembling from three DNA strands and one RNA strand that can include an aptamer domain for the recruitment of a target protein. Because condensates are designed to form regardless of the presence of target protein, they function as "host" compartments. As a model protein, we consider Streptavidin (SA) due to its widespread use in binding assays. In addition to demonstrating protein recruitment, we describe two approaches to control the onset of condensation and protein recruitment. The first approach uses UV irradiation, a physical stimulus that bypasses the need for exchanging molecular inputs and is particularly convenient to control condensation in emulsion droplets. The second approach uses RNA transcription, a ubiquitous biochemical reaction that is central to the development of the next generation of living materials. We then show that the combination of RNA transcription and degradation leads to an autonomous dissipative system in which host condensates and protein recruitment occur transiently and that the host condensate size as well as the time scale of the transition can be controlled by the level of RNA-degrading enzyme. We conclude by demonstrating that biotinylated beads can be recruited to SA-host condensates, which may therefore find immediate use for the physical separation of a variety of biotin-tagged components.
Collapse
Affiliation(s)
- Mahdi Dizani
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Daniela Sorrentino
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Siddharth Agarwal
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Jaimie Marie Stewart
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Elisa Franco
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Maruyama T, Gong J, Takinoue M. Temporally controlled multistep division of DNA droplets for dynamic artificial cells. Nat Commun 2024; 15:7397. [PMID: 39191726 DOI: 10.1038/s41467-024-51299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Synthetic droplets mimicking bio-soft matter droplets formed via liquid-liquid phase separation (LLPS) in living cells have recently been employed in nanobiotechnology for artificial cells, molecular robotics, molecular computing, etc. Temporally controlling the dynamics of synthetic droplets is essential for developing such bio-inspired systems because living systems maintain their functions based on the temporally controlled dynamics of biomolecular reactions and assemblies. This paper reports the temporal control of DNA-based LLPS droplets (DNA droplets). We demonstrate the timing-controlled division of DNA droplets via time-delayed division triggers regulated by chemical reactions. Controlling the release order of multiple division triggers results in order control of the multistep droplet division, i.e., pathway-controlled division in a reaction landscape. Finally, we apply the timing-controlled division into a molecular computing element to compare microRNA concentrations. We believe that temporal control of DNA droplets will promote the design of dynamic artificial cells/molecular robots and sophisticated biomedical applications.
Collapse
Affiliation(s)
- Tomoya Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Masahiro Takinoue
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
4
|
Daly ML, Nishi K, Klawa SJ, Hinton KY, Gao Y, Freeman R. Designer peptide-DNA cytoskeletons regulate the function of synthetic cells. Nat Chem 2024; 16:1229-1239. [PMID: 38654104 PMCID: PMC11322001 DOI: 10.1038/s41557-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The bottom-up engineering of artificial cells requires a reconfigurable cytoskeleton that can organize at distinct locations and dynamically modulate its structural and mechanical properties. Here, inspired by the vast array of actin-binding proteins and their ability to reversibly crosslink or bundle filaments, we have designed a library of peptide-DNA crosslinkers varying in length, valency and geometry. Peptide filaments conjoint through DNA hybridization give rise to tactoid-shaped bundles with tunable aspect ratios and mechanics. When confined in cell-sized water-in-oil droplets, the DNA crosslinker design guides the localization of cytoskeletal structures at the cortex or within the lumen of the synthetic cells. The tunable spatial arrangement regulates the passive diffusion of payloads within the droplets and complementary DNA handles allow for the reversible recruitment and release of payloads on and off the cytoskeleton. Heat-induced reconfiguration of peptide-DNA architectures triggers shape deformations of droplets, regulated by DNA melting temperatures. Altogether, the modular design of peptide-DNA architectures is a powerful strategy towards the bottom-up assembly of synthetic cells.
Collapse
Affiliation(s)
- Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kengo Nishi
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kameryn Y Hinton
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Stewart JM, Li S, Tang AA, Klocke MA, Gobry MV, Fabrini G, Di Michele L, Rothemund PWK, Franco E. Modular RNA motifs for orthogonal phase separated compartments. Nat Commun 2024; 15:6244. [PMID: 39080253 PMCID: PMC11289419 DOI: 10.1038/s41467-024-50003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions.
Collapse
Affiliation(s)
- Jaimie Marie Stewart
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Shiyi Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Melissa Ann Klocke
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Martin Vincent Gobry
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Giacomo Fabrini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Department of Bioengineering, California Institute of Technology, Pasadena, USA.
- Department of Computation & Neural Systems, California Institute of Technology, Pasadena, USA.
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Udono H, Fan M, Saito Y, Ohno H, Nomura SIM, Shimizu Y, Saito H, Takinoue M. Programmable Computational RNA Droplets Assembled via Kissing-Loop Interaction. ACS NANO 2024; 18:15477-15486. [PMID: 38831645 PMCID: PMC11191694 DOI: 10.1021/acsnano.3c12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
DNA droplets, artificial liquid-like condensates of well-engineered DNA sequences, allow the critical aspects of phase-separated biological condensates to be harnessed programmably, such as molecular sensing and phase-state regulation. In contrast, their RNA-based counterparts remain less explored despite more diverse molecular structures and functions ranging from DNA-like to protein-like features. Here, we design and demonstrate computational RNA droplets capable of two-input AND logic operations. We use a multibranched RNA nanostructure as a building block comprising multiple single-stranded RNAs. Its branches engaged in RNA-specific kissing-loop (KL) interaction enables the self-assembly into a network-like microstructure. Upon two inputs of target miRNAs, the nanostructure is programmed to break up into lower-valency structures that are interconnected in a chain-like manner. We optimize KL sequences adapted from viral sequences by numerically and experimentally studying the base-wise adjustability of the interaction strength. Only upon receiving cognate microRNAs, RNA droplets selectively show a drastic phase-state change from liquid to dispersed states due to dismantling of the network-like microstructure. This demonstration strongly suggests that the multistranded motif design offers a flexible means to bottom-up programming of condensate phase behavior. Unlike submicroscopic RNA-based logic operators, the macroscopic phase change provides a naked-eye-distinguishable readout of molecular sensing. Our computational RNA droplets can be applied to in situ programmable assembly of computational biomolecular devices and artificial cells from transcriptionally derived RNA within biological/artificial cells.
Collapse
Affiliation(s)
- Hirotake Udono
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minzhi Fan
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoko Saito
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hirohisa Ohno
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-ichiro M. Nomura
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yoshihiro Shimizu
- Laboratory
for Cell-Free Protein Synthesis, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Hirohide Saito
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative
Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
7
|
Abraham GR, Chaderjian AS, N Nguyen AB, Wilken S, Saleh OA. Nucleic acid liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066601. [PMID: 38697088 DOI: 10.1088/1361-6633/ad4662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
The confluence of recent discoveries of the roles of biomolecular liquids in living systems and modern abilities to precisely synthesize and modify nucleic acids (NAs) has led to a surge of interest in liquid phases of NAs. These phases can be formed primarily from NAs, as driven by base-pairing interactions, or from the electrostatic combination (coacervation) of negatively charged NAs and positively charged molecules. Generally, the use of sequence-engineered NAs provides the means to tune microsopic particle properties, and thus imbue specific, customizable behaviors into the resulting liquids. In this way, researchers have used NA liquids to tackle fundamental problems in the physics of finite valence soft materials, and to create liquids with novel structured and/or multi-functional properties. Here, we review this growing field, discussing the theoretical background of NA liquid phase separation, quantitative understanding of liquid material properties, and the broad and growing array of functional demonstrations in these materials. We close with a few comments discussing remaining open questions and challenges in the field.
Collapse
Affiliation(s)
- Gabrielle R Abraham
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Aria S Chaderjian
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Anna B N Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
| | - Sam Wilken
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| | - Omar A Saleh
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| |
Collapse
|
8
|
Gao D, Wilken S, Nguyen ABN, Abraham GR, Liedl T, Saleh OA. Controlling the size and adhesion of DNA droplets using surface- enriched DNA molecules. SOFT MATTER 2024; 20:1275-1281. [PMID: 38236226 DOI: 10.1039/d3sm01264f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Liquid droplets of biomolecules serve as organizers of the cellular interior and are of interest in biosensing and biomaterials applications. Here, we investigate means to tune the interfacial properties of a model biomolecular liquid consisting of multi-armed DNA 'nanostar' particles. We find that long DNA molecules that have binding affinity for the nanostars are preferentially enriched on the interface of nanostar droplets, thus acting as surfactants. Fluorescent measurements indicate that, in certain conditions, the interfacial density of the surfactant is around 20 per square micron, indicative of a sparse brush-like structure of the long, polymeric DNA. Increasing surfactant concentration leads to decreased droplet size, down to the sub-micron scale, consistent with droplet coalesence being impeded by the disjoining pressure created by the brush-like surfactant layer. Added DNA surfactant also keeps droplets from adhering to both hydrophobic and hydrophilic solid surfaces, apparently due to this same disjoining effect of the surfactant layer. We thus demonstrate control of the size and adhesive properties of droplets of a biomolecular liquid, with implications for basic biophysical understanding of such droplets, as well as for their applied use.
Collapse
Affiliation(s)
- Daqian Gao
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Sam Wilken
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Materials Department, University of California, Santa Barbara, California 93106, USA.
| | - Anna B N Nguyen
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Gabrielle R Abraham
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Tim Liedl
- Department für Physik, Ludwig-Maximilians-Universität, München 80539, Germany
| | - Omar A Saleh
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, USA
- Materials Department, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
9
|
Sato Y, Takinoue M. Pioneering artificial cell-like structures with DNA nanotechnology-based liquid-liquid phase separation. Biophys Physicobiol 2024; 21:e210010. [PMID: 38803334 PMCID: PMC11128300 DOI: 10.2142/biophysico.bppb-v21.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 05/29/2024] Open
Abstract
Recent studies have revealed that liquid-liquid phase separation (LLPS) plays crucial roles in various cellular functions. Droplets formed via LLPS within cells, often referred to as membraneless organelles, serve to concentrate specific molecules, thus enhancing biochemical reactions. Artificial LLPS systems have been utilized to construct synthetic cell models, employing a range of synthetic molecules. LLPS systems based on DNA nanotechnology are particularly notable for their designable characteristics in droplet formation, dynamics, properties, and functionalities. This review surveys recent advancements in DNA-based LLPS systems, underscoring the programmability afforded by DNA's base-pair specific interactions. We discuss the fundamentals of DNA droplet formation, including temperature-dependence and physical properties, along with the precise control achievable through sequence design. Attention is given to the phase separation of DNA nanostructures on two-dimensional closed interfaces, which results in spatial pattern formation at the interface. Furthermore, we spotlight the potential of DNA droplet computing for cancer diagnostics through specific microRNA pattern recognition. We envision that DNA-based LLPS presents a versatile platform for the exploration of cellular mimicry and opens innovative ways for the development of functional synthetic cells.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
10
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
11
|
Bartolucci G, Calaça Serrão A, Schwintek P, Kühnlein A, Rana Y, Janto P, Hofer D, Mast CB, Braun D, Weber CA. Sequence self-selection by cyclic phase separation. Proc Natl Acad Sci U S A 2023; 120:e2218876120. [PMID: 37847736 PMCID: PMC10614837 DOI: 10.1073/pnas.2218876120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
The emergence of functional oligonucleotides on early Earth required a molecular selection mechanism to screen for specific sequences with prebiotic functions. Cyclic processes such as daily temperature oscillations were ubiquitous in this environment and could trigger oligonucleotide phase separation. Here, we propose sequence selection based on phase separation cycles realized through sedimentation in a system subjected to the feeding of oligonucleotides. Using theory and experiments with DNA, we show sequence-specific enrichment in the sedimented dense phase, in particular of short 22-mer DNA sequences. The underlying mechanism selects for complementarity, as it enriches sequences that tightly interact in the dense phase through base-pairing. Our mechanism also enables initially weakly biased pools to enhance their sequence bias or to replace the previously most abundant sequences as the cycles progress. Our findings provide an example of a selection mechanism that may have eased screening for auto-catalytic self-replicating oligonucleotides.
Collapse
Affiliation(s)
- Giacomo Bartolucci
- Division Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Adriana Calaça Serrão
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Philipp Schwintek
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Alexandra Kühnlein
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Yash Rana
- Division Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Philipp Janto
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Dorothea Hofer
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Christof B. Mast
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Dieter Braun
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Christoph A. Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Augsburg86159, Germany
| |
Collapse
|
12
|
Takinoue M. DNA droplets for intelligent and dynamical artificial cells: from the viewpoint of computation and non-equilibrium systems. Interface Focus 2023; 13:20230021. [PMID: 37577000 PMCID: PMC10415743 DOI: 10.1098/rsfs.2023.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Living systems are molecular assemblies whose dynamics are maintained by non-equilibrium chemical reactions. To date, artificial cells have been studied from such physical and chemical viewpoints. This review briefly gives a perspective on using DNA droplets in constructing artificial cells. A DNA droplet is a coacervate composed of DNA nanostructures, a novel category of synthetic DNA self-assembled systems. The DNA droplets have programmability in physical properties based on DNA base sequence design. The aspect of DNA as an information molecule allows physical and chemical control of nanostructure formation, molecular assembly and molecular reactions through the design of DNA base pairing. As a result, the construction of artificial cells equipped with non-equilibrium behaviours such as dynamical motions, phase separations, molecular sensing and computation using chemical energy is becoming possible. This review mainly focuses on such dynamical DNA droplets for artificial cell research in terms of computation and non-equilibrium chemical reactions.
Collapse
Affiliation(s)
- Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
13
|
Saleh OA, Wilken S, Squires TM, Liedl T. Vacuole dynamics and popping-based motility in liquid droplets of DNA. Nat Commun 2023; 14:3574. [PMID: 37328453 PMCID: PMC10275875 DOI: 10.1038/s41467-023-39175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
Liquid droplets of biomolecules play key roles in organizing cellular behavior, and are also technologically relevant, yet physical studies of dynamic processes of such droplets have generally been lacking. Here, we investigate and quantify the dynamics of formation of dilute internal inclusions, i.e., vacuoles, within a model system consisting of liquid droplets of DNA 'nanostar' particles. When acted upon by DNA-cleaving restriction enzymes, these DNA droplets exhibit cycles of appearance, growth, and bursting of internal vacuoles. Analysis of vacuole growth shows their radius increases linearly in time. Further, vacuoles pop upon reaching the droplet interface, leading to droplet motion driven by the osmotic pressure of restriction fragments captured in the vacuole. We develop a model that accounts for the linear nature of vacuole growth, and the pressures associated with motility, by describing the dynamics of diffusing restriction fragments. The results illustrate the complex non-equilibrium dynamics possible in biomolecular condensates.
Collapse
Affiliation(s)
- Omar A Saleh
- Materials Department and Physics Department, University of California, Santa Barbara, CA, 93106, USA.
| | - Sam Wilken
- Materials Department and Physics Department, University of California, Santa Barbara, CA, 93106, USA
| | - Todd M Squires
- Chemical Engineering Department, University of California, Santa Barbara, CA, 93106, USA
| | - Tim Liedl
- Physics Department, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
14
|
Sato Y, Takinoue M. Sequence-dependent fusion dynamics and physical properties of DNA droplets. NANOSCALE ADVANCES 2023; 5:1919-1925. [PMID: 36998664 PMCID: PMC10044877 DOI: 10.1039/d3na00073g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 06/19/2023]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymer molecules generates liquid-like droplets. Physical properties such as viscosity and surface tension play important roles in the functions of these droplets. DNA-nanostructure-based LLPS systems provide useful model tools to investigate the influence of molecular design on the physical properties of the droplets, which has so far remained unclear. Herein, we report changes in the physical properties of DNA droplets by sticky end (SE) design in DNA nanostructures. We used a Y-shaped DNA nanostructure (Y-motif) with three SEs as a model structure. Seven different SE designs were used. The experiments were performed at the phase transition temperature where the Y-motifs self-assembled into droplets. We found that the DNA droplets assembled from the Y-motifs with longer SEs exhibited a longer coalescence period. In addition, the Y-motifs with the same length but different sequence SEs showed slight variations in the coalescence period. Our results suggest that the SE length greatly affected the surface tension at the phase transition temperature. We believe that these findings will accelerate our understanding of the relationship between molecular design and the physical properties of droplets formed via LLPS.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokoham Kanagawa 226-8502 Japan
- Department of Intelligent and Control Systems, Kyushu Institute of Technology 680-4 Kawazu, IIzuka Fukuoka 820-8502 Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokoham Kanagawa 226-8502 Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan
| |
Collapse
|
15
|
Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Adv Biol (Weinh) 2023; 7:e2200180. [PMID: 36470673 DOI: 10.1002/adbi.202200180] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
16
|
Tekin E, Salditt A, Schwintek P, Wunnava S, Langlais J, Saenz J, Tang D, Schwille P, Mast C, Braun D. Prebiotic Foam Environments to Oligomerize and Accumulate RNA. Chembiochem 2022; 23:e202200423. [PMID: 36354762 PMCID: PMC10100173 DOI: 10.1002/cbic.202200423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Indexed: 11/12/2022]
Abstract
When water interacts with porous rocks, its wetting and surface tension properties create air bubbles in large number. To probe their relevance as a setting for the emergence of life, we microfluidically created foams that were stabilized with lipids. A persistent non-equilibrium setting was provided by a thermal gradient. The foam's large surface area triggers capillary flows and wet-dry reactions that accumulate, aggregate and oligomerize RNA, offering a compelling habitat for RNA-based early life as it offers both wet and dry conditions in direct neighborhood. Lipids were screened to stabilize the foams. The prebiotically more probable myristic acid stabilized foams over many hours. The capillary flow created by the evaporation at the water-air interface provided an attractive force for molecule localization and selection for molecule size. For example, self-binding oligonucleotide sequences accumulated and formed micrometer-sized aggregates which were shuttled between gas bubbles. The wet-dry cycles at the foam bubble interfaces triggered a non-enzymatic RNA oligomerization from 2',3'-cyclic CMP and GMP which despite the small dry reaction volume was superior to the corresponding dry reaction. The found characteristics make heated foams an interesting, localized setting for early molecular evolution.
Collapse
Affiliation(s)
- Emre Tekin
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Annalena Salditt
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Philipp Schwintek
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Sreekar Wunnava
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Juliette Langlais
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - James Saenz
- Center for Molecular BioengineeringTechnische Universität DresdenHelmholtzstrasse 1001069DresdenGermany
| | - Dora Tang
- Dynamic Protocellular SystemsMax-Planck Institute for Molecular Cell Biology and GeneticsPfotenhauerstrasse 10801307DresdenGermany
| | - Petra Schwille
- Cellular and Molecular BiophysicsMax-Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Christof Mast
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Dieter Braun
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| |
Collapse
|
17
|
Agarwal S, Osmanovic D, Klocke MA, Franco E. The Growth Rate of DNA Condensate Droplets Increases with the Size of Participating Subunits. ACS NANO 2022; 16:11842-11851. [PMID: 35867936 DOI: 10.1021/acsnano.2c00084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid-liquid phase separation (LLPS) is a common phenomenon underlying the formation of dynamic membraneless organelles in biological cells, which are emerging as major players in controlling cellular functions and health. The bottom-up synthesis of biomolecular liquid systems with simple constituents, like nucleic acids and peptides, is useful to understand LLPS in nature as well as to develop programmable means to build new amorphous materials with properties matching or surpassing those observed in natural condensates. In particular, understanding which parameters determine condensate growth kinetics is essential for the synthesis of condensates with the capacity for active, dynamic behaviors. Here we use DNA nanotechnology to study artificial liquid condensates through programmable star-shaped subunits, focusing on the effects of changing subunit size. First, we show that LLPS is achieved in a 6-fold range of subunit size. Second, we demonstrate that the rate of growth of condensate droplets scales with subunit size. Our investigation is supported by a general model that describes how coarsening and coalescence are expected to scale with subunit size under ideal assumptions. Beyond suggesting a route toward achieving control of LLPS kinetics via design of subunit size in synthetic liquids, our work suggests that particle size may be a key parameter in biological condensation processes.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Dino Osmanovic
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Melissa A Klocke
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
- Bioengineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| |
Collapse
|
18
|
Lee C, Do S, Lee JY, Kim M, Kim SM, Shin Y, Kim DN. Formation of non-base-pairing DNA microgels using directed phase transition of amphiphilic monomers. Nucleic Acids Res 2022; 50:4187-4196. [PMID: 35390157 PMCID: PMC9023257 DOI: 10.1093/nar/gkac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/22/2022] Open
Abstract
Programmability of DNA sequences enables the formation of synthetic DNA nanostructures and their macromolecular assemblies such as DNA hydrogels. The base pair-level interaction of DNA is a foundational and powerful mechanism to build DNA structures at the nanoscale; however, its temperature sensitivity and weak interaction force remain a barrier for the facile and scalable assembly of DNA structures toward higher-order structures. We conducted this study to provide an alternative, non-base-pairing approach to connect nanoscale DNA units to yield micrometer-sized gels based on the sequential phase transition of amphiphilic unit structures. Strong electrostatic interactions between DNA nanostructures and polyelectrolyte spermines led to the formation of giant phase-separated aggregates of monomer units. Gelation could be initiated by the addition of NaCl, which weakened the electrostatic DNA-spermine interaction while attractive interactions between cholesterols created stable networks by crosslinking DNA monomers. In contrast to the conventional DNA gelation techniques, our system used solid aggregates as a precursor for DNA microgels. Therefore, in situ gelation could be achieved by depositing aggregates on the desired substrate and subsequently initiating a phase transition. Our approach can expand the utility and functionality of DNA hydrogels by using more complex nucleic acid assemblies as unit structures and combining the technique with top-down microfabrication methods.
Collapse
Affiliation(s)
- Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Sungho Do
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Minju Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea
| | - Yongdae Shin
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea.,Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea.,Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.,Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Lattuada E, Caprara D, Piazza R, Sciortino F. Spatially uniform dynamics in equilibrium colloidal gels. SCIENCE ADVANCES 2021; 7:eabk2360. [PMID: 34860553 PMCID: PMC8641940 DOI: 10.1126/sciadv.abk2360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gels of DNA nanostars, besides providing a compatible scaffold for biomedical applications, are ideal model systems for testing the physics of equilibrium colloidal gels. Here, using dynamic light scattering and photon correlation imaging (a recent technique that, by blending light scattering and imaging, provides space-resolved quantification of the dynamics), we follow the process of gel formation over 10 orders of magnitude in time in a model system of tetravalent DNA nanostars in solution, a realization of limited-valence colloids. Such a system, depending on the nanostar concentration, can form either equilibrium or phase separation gels. In stark contrast to the heterogeneity of concentration and dynamics displayed by the phase separation gel, the equilibrium gel shows absence of aging and a remarkable spatially uniform dynamics.
Collapse
Affiliation(s)
- Enrico Lattuada
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Debora Caprara
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Corresponding author.
| |
Collapse
|
20
|
Rubio-Sánchez R, Fabrini G, Cicuta P, Di Michele L. Amphiphilic DNA nanostructures for bottom-up synthetic biology. Chem Commun (Camb) 2021; 57:12725-12740. [PMID: 34750602 PMCID: PMC8631003 DOI: 10.1039/d1cc04311k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
DNA nanotechnology enables the construction of sophisticated biomimetic nanomachines that are increasingly central to the growing efforts of creating complex cell-like entities from the bottom-up. DNA nanostructures have been proposed as both structural and functional elements of these artificial cells, and in many instances are decorated with hydrophobic moieties to enable interfacing with synthetic lipid bilayers or regulating bulk self-organisation. In this feature article we review recent efforts to design biomimetic membrane-anchored DNA nanostructures capable of imparting complex functionalities to cell-like objects, such as regulated adhesion, tissue formation, communication and transport. We then discuss the ability of hydrophobic modifications to enable the self-assembly of DNA-based nanostructured frameworks with prescribed morphology and functionality, and explore the relevance of these novel materials for artificial cell science and beyond. Finally, we comment on the yet mostly unexpressed potential of amphiphilic DNA-nanotechnology as a complete toolbox for bottom-up synthetic biology - a figurative and literal scaffold upon which the next generation of synthetic cells could be built.
Collapse
Affiliation(s)
- Roger Rubio-Sánchez
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Giacomo Fabrini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Lorenzo Di Michele
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
21
|
Bartolucci G, Adame-Arana O, Zhao X, Weber CA. Controlling composition of coexisting phases via molecular transitions. Biophys J 2021; 120:4682-4697. [PMID: 34600899 DOI: 10.1016/j.bpj.2021.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Phase separation and transitions among different molecular states are ubiquitous in living cells. Such transitions can be governed by local equilibrium thermodynamics or by active processes controlled by biological fuel. It remains largely unexplored how the behavior of phase-separating systems with molecular transitions differs between thermodynamic equilibrium and cases in which the detailed balance of the molecular transition rates is broken because of the presence of fuel. Here, we present a model of a phase-separating ternary mixture in which two components can convert into each other. At thermodynamic equilibrium, we find that molecular transitions can give rise to a lower dissolution temperature and thus reentrant phase behavior. Moreover, we find a discontinuous thermodynamic phase transition in the composition of the droplet phase if both converting molecules attract themselves with similar interaction strength. Breaking the detailed balance of the molecular transition leads to quasi-discontinuous changes in droplet composition by varying the fuel amount for a larger range of intermolecular interactions. Our findings showcase that phase separation with molecular transitions provides a versatile mechanism to control properties of intracellular and synthetic condensates via discontinuous switches in droplet composition.
Collapse
Affiliation(s)
- Giacomo Bartolucci
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Omar Adame-Arana
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Xueping Zhao
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
22
|
Lee T, Do S, Lee JG, Kim DN, Shin Y. The flexibility-based modulation of DNA nanostar phase separation. NANOSCALE 2021; 13:17638-17647. [PMID: 34664044 DOI: 10.1039/d1nr03495b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phase separation of biomolecules plays key roles in physiological compartmentalization as well as pathological aggregation. A deeper understanding of biomolecular phase separation requires dissection of a relation between intermolecular interactions and resulting phase behaviors. DNA nanostars, multivalent DNA assemblies of which sticky ends define attractive interactions, represent an ideal system to probe this fundamental relation governing phase separation processes. Here, we use DNA nanostars to systematically study how structural flexibility exhibited by interacting species impacts their phase behaviors. We design multiple nanostars with a varying degree of flexibility using single-stranded gaps of different lengths in the arm of each nanostar unit. We find that structural flexibility drastically alters the phase diagram of DNA nanostars in such a way that the phase separation of more flexible structures is strongly inhibited. This result is not due to self-inhibition from the loss of valency but rather ascribed to a generic flexibility-driven change in the thermodynamics of the system. Our work provides not only potential regulatory mechanisms cells may exploit to dynamically control intracellular phase separation but also a route to build synthetic systems of which assembly can be controlled in a signal dependent manner.
Collapse
Affiliation(s)
- Taehyun Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungho Do
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jae Gyung Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Masukawa MK, Okuda Y, Takinoue M. Aqueous Triple-Phase System in Microwell Array for Generating Uniform-Sized DNA Hydrogel Particles. Front Genet 2021; 12:705022. [PMID: 34367260 PMCID: PMC8343185 DOI: 10.3389/fgene.2021.705022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
DNA hydrogels are notable for their biocompatibility and ability to incorporate DNA information and computing properties into self-assembled micrometric structures. These hydrogels are assembled by the thermal gelation of DNA motifs, a process which requires a high salt concentration and yields polydisperse hydrogel particles, thereby limiting their application and physicochemical characterization. In this study, we demonstrate that single, uniform DNA hydrogel particles can form inside aqueous/aqueous two-phase systems (ATPSs) assembled in a microwell array. In this process, uniform dextran droplets are formed in a microwell array inside a microfluidic device. The dextran droplets, which contain DNA motifs, are isolated from each other by an immiscible PEG solution containing magnesium ions and spermine, which enables the DNA hydrogel to undergo gelation. Upon thermal annealing of the device, we observed the formation of an aqueous triple-phase system in which uniform DNA hydrogel particles (the innermost aqueous phase) resided at the interface of the aqueous two-phase system of dextran and PEG. We expect ATPS microdroplet arrays to be used to manufacture other hydrogel microparticles and DNA/dextran/PEG aqueous triple-phase systems to serve as a highly parallel model for artificial cells and membraneless organelles.
Collapse
Affiliation(s)
| | | | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
24
|
Floris E, Piras A, Dall’Asta L, Gamba A, Hirsch E, Campa CC. Physics of compartmentalization: How phase separation and signaling shape membrane and organelle identity. Comput Struct Biotechnol J 2021; 19:3225-3233. [PMID: 34141141 PMCID: PMC8190439 DOI: 10.1016/j.csbj.2021.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Compartmentalization of cellular functions is at the core of the physiology of eukaryotic cells. Recent evidences indicate that a universal organizing process - phase separation - supports the partitioning of biomolecules in distinct phases from a single homogeneous mixture, a landmark event in both the biogenesis and the maintenance of membrane and non-membrane-bound organelles. In the cell, 'passive' (non energy-consuming) mechanisms are flanked by 'active' mechanisms of separation into phases of distinct density and stoichiometry, that allow for increased partitioning flexibility and programmability. A convergence of physical and biological approaches is leading to new insights into the inner functioning of this driver of intracellular order, holding promises for future advances in both biological research and biotechnological applications.
Collapse
Affiliation(s)
- Elisa Floris
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Andrea Piras
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| | - Luca Dall’Asta
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Collegio Carlo Alberto, Piazza Arbarello 8, 10122 Torino, Italy
| | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Torino, Via Giuria 1, 10125 Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| |
Collapse
|
25
|
Kühnlein A, Lanzmich SA, Braun D. tRNA sequences can assemble into a replicator. eLife 2021; 10:e63431. [PMID: 33648631 PMCID: PMC7924937 DOI: 10.7554/elife.63431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Can replication and translation emerge in a single mechanism via self-assembly? The key molecule, transfer RNA (tRNA), is one of the most ancient molecules and contains the genetic code. Our experiments show how a pool of oligonucleotides, adapted with minor mutations from tRNA, spontaneously formed molecular assemblies and replicated information autonomously using only reversible hybridization under thermal oscillations. The pool of cross-complementary hairpins self-selected by agglomeration and sedimentation. The metastable DNA hairpins bound to a template and then interconnected by hybridization. Thermal oscillations separated replicates from their templates and drove an exponential, cross-catalytic replication. The molecular assembly could encode and replicate binary sequences with a replication fidelity corresponding to 85-90 % per nucleotide. The replication by a self-assembly of tRNA-like sequences suggests that early forms of tRNA could have been involved in molecular replication. This would link the evolution of translation to a mechanism of molecular replication.
Collapse
Affiliation(s)
- Alexandra Kühnlein
- Systems Biophysics, Physics Department, Center for NanoScience, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Simon A Lanzmich
- Systems Biophysics, Physics Department, Center for NanoScience, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Dieter Braun
- Systems Biophysics, Physics Department, Center for NanoScience, Ludwig-Maximilians-Universität MünchenMunichGermany
| |
Collapse
|
26
|
Lattuada E, Caprara D, Lamberti V, Sciortino F. Hyperbranched DNA clusters. NANOSCALE 2020; 12:23003-23012. [PMID: 33180079 DOI: 10.1039/d0nr04840b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Taking advantage of the base-pairing specificity and tunability of DNA interactions, we investigate the spontaneous formation of hyperbranched clusters starting from purposely designed DNA tetravalent nanostar monomers, encoding in their four sticky ends the desired binding rules. Specifically, we combine molecular dynamics simulations and Dynamic Light Scattering experiments to follow the aggregation process of DNA nanostars at different concentrations and temperatures. At odds with the Flory-Stockmayer predictions, we find that, even when all possible bonds are formed, the system does not reach percolation due to the presence of intracluster bonds. We present an extension of the Flory-Stockmayer theory that properly describes the numerical and experimental results.
Collapse
Affiliation(s)
- Enrico Lattuada
- Physics Department, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
| | | | | | | |
Collapse
|
27
|
Mao S, Chakraverti-Wuerthwein MS, Gaudio H, Košmrlj A. Designing the Morphology of Separated Phases in Multicomponent Liquid Mixtures. PHYSICAL REVIEW LETTERS 2020; 125:218003. [PMID: 33275007 DOI: 10.1103/physrevlett.125.218003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Phase separation of multicomponent liquid mixtures plays an integral part in many processes ranging from industry to cellular biology. In many cases the morphology of coexisting phases is crucially linked to the function of the separated mixture, yet it is unclear what determines the morphology when multiple phases are present. We developed a graph theory approach to predict the topology of coexisting phases from a given set of surface energies, enumerate all topologically distinct morphologies, and reverse engineer conditions for surface energies that produce the target morphology.
Collapse
Affiliation(s)
- Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, People's Republic of China
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Hunter Gaudio
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
28
|
Jeon BJ, Nguyen DT, Saleh OA. Sequence-Controlled Adhesion and Microemulsification in a Two-Phase System of DNA Liquid Droplets. J Phys Chem B 2020; 124:8888-8895. [PMID: 32960601 DOI: 10.1021/acs.jpcb.0c06911] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane-less organelles, the liquid droplets formed via liquid-liquid phase separation (LLPS) of biomolecules in cells, act to organize intracellular components into multiple compartments. As a model for this process, and as a potential vehicle for in vitro exploitation of its properties, we explore here a synthetic multiphase LLPS system consisting of a mixture of self-assembled DNA particles. The particles, termed "DNA nanostars" (NSs), consist of four double-stranded DNA arms that each terminate in a single-stranded overhang. NSs condense into droplets due to overhang hybridization. Using two types of NSs with orthogonal overhangs enables the creation of two types of immiscible DNA droplets. Adhesion between the droplets can be tuned by the addition of "cross-linker NSs" that have two overhang sequences of each type. We find that increasing the amount of the cross-linker NSs decreases the droplet/droplet surface tension until a microemulsion transition occurs. Controlled droplet adhesion can also be achieved, without cross-linkers, using overhangs that can weakly hybridize. Finally, we show that solutes can be specifically targeted to the DNA phases by labeling them with appropriate sticky-ends. Overall, our findings demonstrate the ability to create a multiphase LLPS system, and to control its mesoscale configuration, via sequence design of the component molecules.
Collapse
Affiliation(s)
- Byoung-Jin Jeon
- Materials Department, University of California, Santa Barbara, California 93110, United States
| | - Dan T Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93110, United States
| | - Omar A Saleh
- Materials Department, University of California, Santa Barbara, California 93110, United States.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93110, United States
| |
Collapse
|
29
|
Spinozzi F, Ortore MG, Nava G, Bomboi F, Carducci F, Amenitsch H, Bellini T, Sciortino F, Mariani P. Gelling without Structuring: A SAXS Study of the Interactions among DNA Nanostars. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10387-10396. [PMID: 32787014 PMCID: PMC8010795 DOI: 10.1021/acs.langmuir.0c01520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Indexed: 06/11/2023]
Abstract
We evaluate, by means of synchrotron small-angle X-ray scattering, the shape and mutual interactions of DNA tetravalent nanostars as a function of temperature in both the gas-like state and across the gel transition. To this end, we calculate the form factor from coarse-grained molecular dynamics simulations with a novel method that includes hydration effects; we approximate the radial interaction of DNA nanostars as a hard-sphere potential complemented by a repulsive and an attractive Yukawa term; and we predict the structure factors by exploiting the perturbative random phase approximation of the Percus-Yevick equation. Our approach enables us to fit all the data by selecting the particle radius and the width and amplitude of the attractive potential as free parameters. We determine the evolution of the structure factor across gelation and detect subtle changes of the effective interparticle interactions, that we associate to the temperature and concentration dependence of the particle size. Despite the approximations, the approach here adopted offers new detailed insights into the structure and interparticle interactions of this fascinating system.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Maria Grazia Ortore
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Giovanni Nava
- Department
of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Francesca Bomboi
- Department
of Physics, Sapienza, Università
di Roma, 00185 Rome, Italy
| | - Federica Carducci
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Heinz Amenitsch
- Institute
for Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Tommaso Bellini
- Department
of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Paolo Mariani
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| |
Collapse
|
30
|
Lattuada E, Leo M, Caprara D, Salvatori L, Stoppacciaro A, Sciortino F, Filetici P. DNA-GEL, Novel Nanomaterial for Biomedical Applications and Delivery of Bioactive Molecules. Front Pharmacol 2020; 11:01345. [PMID: 33013376 PMCID: PMC7500453 DOI: 10.3389/fphar.2020.01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/11/2020] [Indexed: 01/19/2023] Open
Abstract
Novel DNA materials promise unpredictable perspectives for applications in cell biology. The realization of DNA-hydrogels built by a controlled association of DNA nanostars, whose binding can be tuned with minor changes in the nucleotide sequences, has been recently described. DNA hydrogels, with specific gelation properties that can be reassambled in desired culture media supplemented with drugs, RNA, DNA molecules and other bioactive compounds offer the opportunity to develop a novel nanomaterial for the delivery of single or multiple drugs in tumor tissues as an innovative and promising strategy. We provide here a comprehensive description of different, recently realized DNA-gels with the perspective of stimulating their biomedical application. Finally, we discuss the possibility to design sophisticated 3D tissue-like DNA-gels incorporating cell spheroids or single cells for the assembly of a novel kind of cellular matrix as a preclinical investigation for the implementation of tools for in vivo delivery of bioactive molecules.
Collapse
Affiliation(s)
- Enrico Lattuada
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Manuela Leo
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Debora Caprara
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Luisa Salvatori
- Institute of Molecular Biology and Pathology - CNR, Sapienza University of Rome, Rome, Italy
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Patrizia Filetici
- Institute of Molecular Biology and Pathology - CNR, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
32
|
Enzymatic degradation of liquid droplets of DNA is modulated near the phase boundary. Proc Natl Acad Sci U S A 2020; 117:16160-16166. [PMID: 32601183 DOI: 10.1073/pnas.2001654117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biomolecules can undergo liquid-liquid phase separation (LLPS), forming dense droplets that are increasingly understood to be important for cellular function. Analogous systems are studied as early-life compartmentalization mechanisms, for applications as protocells, or as drug-delivery vehicles. In many of these situations, interactions between the droplet and enzymatic solutes are important to achieve certain functions. To explore this, we carried out experiments in which a model LLPS system, formed from DNA "nanostar" particles, interacted with a DNA-cleaving restriction enzyme, SmaI, whose activity degraded the droplets, causing them to shrink with time. By controlling adhesion of the DNA droplet to a glass surface, we were able to carry out time-resolved imaging of this "active dissolution" process. We found that the scaling properties of droplet shrinking were sensitive to the proximity to the dissolution ("boiling") temperature of the dense liquid: For systems far from the boiling point, enzymes acted only on the droplet surface, while systems poised near the boiling point permitted enzyme penetration. This was corroborated by the observation of enzyme-induced vacuole-formation ("bubbling") events, which can only occur through enzyme internalization, and which occurred only in systems poised near the boiling point. Overall, our results demonstrate a mechanism through which the phase stability of a liquid affects its enzymatic degradation through modulation of enzyme transport properties.
Collapse
|
33
|
Sato Y, Sakamoto T, Takinoue M. Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. SCIENCE ADVANCES 2020; 6:eaba3471. [PMID: 32537507 PMCID: PMC7269647 DOI: 10.1126/sciadv.aba3471] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/01/2020] [Indexed: 05/02/2023]
Abstract
DNA has the potential to achieve a controllable macromolecular structure, such as hydrogels or droplets formed through liquid-liquid phase separation (LLPS), as the design of its base sequence can result in programmable interactions. Here, we constructed "DNA droplets" via LLPS of sequence-designed DNA nanostructures and controlled their dynamic functions by designing their sequences. Specifically, we were able to adjust the temperature required for the formation of DNA droplets by designing the sequences. In addition, the fusion, fission, and formation of Janus-shaped droplets were controlled by sequence design and enzymatic reactions. Furthermore, modifications of proteins with sequence-designed DNAs allowed for their capture into specific droplets. Overall, our results provide a platform for designing and controlling macromolecular droplets via the information encoded in component molecules and pave the way for various applications of sequence-designed DNA such as cell mimics, synthetic membraneless organelles, and artificial molecular systems.
Collapse
Affiliation(s)
| | - Tetsuro Sakamoto
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| | | |
Collapse
|
34
|
Chen J, Zhu Y, Liu H, Wang L. Tailoring DNA Self-assembly to Build Hydrogels. Top Curr Chem (Cham) 2020; 378:32. [PMID: 32146604 DOI: 10.1007/s41061-020-0295-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/23/2020] [Indexed: 01/12/2023]
Abstract
DNA hydrogels are crosslinked polymeric networks in which DNA is used as the backbone or the crosslinker. These hydrogels are novel biofunctional materials that possess the biological character of DNA and the framed structure of hydrogels. Compared with other kinds of hydrogels, DNA hydrogels exhibit not only high mechanical strength and controllable morphologies but also good recognition ability, designable responsiveness, and programmability. The DNA used in this type of hydrogel acts as a building block for self-assembly or as a responsive element due to its sequence recognition ability and switchable structural transitions, respectively. In this review, we describe recent developments in the field of DNA hydrogels and discuss the role played by DNA in these hydrogels. Various synthetic strategies for and a range of applications of DNA hydrogels are detailed.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China. .,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
35
|
Nguyen DT, Jeon BJ, Abraham GR, Saleh OA. Length-Dependence and Spatial Structure of DNA Partitioning into a DNA Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14849-14854. [PMID: 31638820 DOI: 10.1021/acs.langmuir.9b02098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cells can spatially and temporally control biochemistry using liquid-liquid phase separation to form membrane-less organelles. Synthetic biomolecular liquids offer a means to study the mechanisms of this process, as well as offering a route to the creation of functional biomimetic materials. With these goals in mind, we here examine the partitioning of long double-stranded DNA linkers into a liquid composed of small DNA particles ("nanostars") whose phase separation is driven by base pairing. We find that linker partitioning is length-dependent because of a confinement penalty of inserting long strands within the liquid's characteristic mesh size. We quantify this entropic-confinement effect using a simple partitioning theory and show that its magnitude is consistent with classic Odijk pictures of confined worm-like chains. Linker partitioning can also lead to inhomogeneous structures: long linkers excluded from the liquid interior tend to preferentially accumulate on the surface of liquid droplets (i.e., acting as surfactants), while linkers forced at high concentrations into the liquid undergo a secondary phase separation, forming metastable droplet-in-droplet structures. Altogether, our work demonstrates the ability to rationally engineer the composition and structure of a model biomolecular liquid.
Collapse
|
36
|
Bomboi F, Caprara D, Fernandez-Castanon J, Sciortino F. Cold-swappable DNA gels. NANOSCALE 2019; 11:9691-9697. [PMID: 31066406 DOI: 10.1039/c9nr01156k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report an experimental investigation of an all-DNA gel composed by tetra-functional DNA nanoparticles acting as network nodes and bi-functional ones acting as links. The DNA binding sequence is designed to generate at room and lower temperatures a persistent long-lived network. Exploiting ideas from DNA-nanotechnology, we implement in the binding base sequences an appropriate exchange reaction which allows links to swap, constantly retaining the total number of network links. The DNA gel is thus able to rearrange its topology at low temperature while preserving its fully-bonded configuration.
Collapse
Affiliation(s)
- Francesca Bomboi
- Physics Department, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
| | | | | | | |
Collapse
|
37
|
Conrad N, Kennedy T, Fygenson DK, Saleh OA. Increasing valence pushes DNA nanostar networks to the isostatic point. Proc Natl Acad Sci U S A 2019; 116:7238-7243. [PMID: 30914457 PMCID: PMC6462066 DOI: 10.1073/pnas.1819683116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The classic picture of soft material mechanics is that of rubber elasticity, in which material modulus is related to the entropic elasticity of flexible polymeric linkers. The rubber model, however, largely ignores the role of valence (i.e., the number of network chains emanating from a junction). Recent work predicts that valence, and particularly the Maxwell isostatic point, plays a key role in determining the mechanics of semiflexible polymer networks. Here, we report a series of experiments confirming the prominent role of valence in determining the mechanics of a model system. The system is based on DNA nanostars (DNAns): multiarmed, self-assembled nanostructures that form thermoreversible equilibrium gels through base pair-controlled cross-linking. We measure the linear and nonlinear elastic properties of these gels as a function of DNAns arm number, f, and concentration [DNAns]. We find that, as f increases from three to six, the gel's high-frequency plateau modulus strongly increases, and its dependence on [DNAns] transitions from nonlinear to linear. Additionally, higher-valence gels exhibit less strain hardening, indicating that they have less configurational freedom. Minimal strain hardening and linear dependence of shear modulus on concentration at high f are consistent with predictions for isostatic systems. Evident strain hardening and nonlinear concentration dependence of shear modulus suggest that the low-f networks are subisostatic and have a transient, potentially fractal percolated structure. Overall, our observations indicate that network elasticity is sensitive both to entropic elasticity of network chains and to junction valence, with an apparent isostatic point [Formula: see text] in agreement with the Maxwell prediction.
Collapse
Affiliation(s)
- Nathaniel Conrad
- Department of Physics, University of California, Santa Barbara, CA 93106;
| | - Tynan Kennedy
- Department of Physics, University of California, Santa Barbara, CA 93106
| | - Deborah K Fygenson
- Department of Physics, University of California, Santa Barbara, CA 93106;
- Department of Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106
| | - Omar A Saleh
- Department of Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106;
- Materials Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
38
|
Gurmessa BJ, Bitten N, Nguyen DT, Saleh OA, Ross JL, Das M, Robertson-Anderson RM. Triggered disassembly and reassembly of actin networks induces rigidity phase transitions. SOFT MATTER 2019; 15:1335-1344. [PMID: 30543255 PMCID: PMC6486790 DOI: 10.1039/c8sm01912f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Non-equilibrium soft materials, such as networks of actin proteins, have been intensely investigated over the past decade due to their promise for designing smart materials and understanding cell mechanics. However, current methods are unable to measure the time-dependent mechanics of such systems or map mechanics to the corresponding dynamic macromolecular properties. Here, we present an experimental approach that combines time-resolved optical tweezers microrheology with diffusion-controlled microfluidics to measure the time-evolution of microscale mechanical properties of dynamic systems during triggered activity. We use these methods to measure the viscoelastic moduli of entangled and crosslinked actin networks during chemically-triggered depolymerization and repolymerization of actin filaments. During disassembly, we find that the moduli exhibit two distinct exponential decays, with experimental time constants of ∼169 min and ∼47 min. Conversely, during reassembly, measured moduli initially exhibit power-law increase with time, after which steady-state values are achieved. We develop toy mathematical models that couple the time-evolution of filament lengths with rigidity percolation theory to shed light onto the molecular mechanisms underlying the observed mechanical transitions. The models suggest that these two distinct behaviors both arise from phase transitions between a rigidly percolated network and a non-rigid regime. Our approach and collective results can inform the general principles underlying the mechanics of a large class of dynamic, non-equilibrium systems and materials of current interest.
Collapse
Affiliation(s)
- Bekele J Gurmessa
- Department of Physics and Biophysics, University of San Diego, San Diego, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Enhanced diffusion by binding to the crosslinks of a polymer gel. Nat Commun 2018; 9:4348. [PMID: 30341303 PMCID: PMC6195553 DOI: 10.1038/s41467-018-06851-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/27/2018] [Indexed: 01/20/2023] Open
Abstract
Creating a selective gel that filters particles based on their interactions is a major goal of nanotechnology, with far-reaching implications from drug delivery to controlling assembly pathways. However, this is particularly difficult when the particles are larger than the gel's characteristic mesh size because such particles cannot passively pass through the gel. Thus, filtering requires the interacting particles to transiently reorganize the gel's internal structure. While significant advances, e.g., in DNA engineering, have enabled the design of nano-materials with programmable interactions, it is not clear what physical principles such a designer gel could exploit to achieve selective permeability. We present an equilibrium mechanism where crosslink binding dynamics are affected by interacting particles such that particle diffusion is enhanced. In addition to revealing specific design rules for manufacturing selective gels, our results have the potential to explain the origin of selective permeability in certain biological materials, including the nuclear pore complex.
Collapse
|
40
|
Jeon BJ, Nguyen DT, Abraham GR, Conrad N, Fygenson DK, Saleh OA. Salt-dependent properties of a coacervate-like, self-assembled DNA liquid. SOFT MATTER 2018; 14:7009-7015. [PMID: 30109341 DOI: 10.1039/c8sm01085d] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Liquid-liquid phase separation of a polymer-rich phase from a polymer-dilute solution, known generally as coacervation, has been observed in a variety of biomolecular systems. Understanding of this process, and the properties of the resulting liquid, has been hampered in typical systems by the complexity of the components and of the intermolecular interactions. Here, we examine a single-component system comprised entirely of DNA, in which tetravalent DNA nanostar particles condense into liquids through attractive bonds formed from basepairing interactions. We measure the density, viscosity, particle self-diffusion, and surface tension of NS-liquid droplets. The sequence- and salt-dependent thermodynamics of basepairing accounts for most properties, particularly indicating that particle transport is an activated process whose barrier is the breaking of a single bond, and that very few bonds are broken at the surface. However, more complex effects are also seen. The relation of density to salt shows that electrostatic screening compacts the NS particles. Further, the interrelation of the transport properties indicates a breakdown of the Stokes-Einstein relation. This observation, in concert with the low surface tension and single-bond transport barrier, suggests this DNA liquid has a heterogeneous, clustered structure that is likely enabled by internal NS particle flexibility. We discuss these results in comparison to other coacervate systems.
Collapse
Affiliation(s)
- Byoung-Jin Jeon
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Fernandez-Castanon J, Bianchi S, Saglimbeni F, Di Leonardo R, Sciortino F. Microrheology of DNA hydrogel gelling and melting on cooling. SOFT MATTER 2018; 14:6431-6438. [PMID: 29952388 PMCID: PMC6295875 DOI: 10.1039/c8sm00751a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/16/2018] [Indexed: 05/18/2023]
Abstract
We present systematic characterisation by means of dynamic light scattering and particle tracking techniques of the viscosity and of the linear viscoelastic moduli, G'(ω) and G''(ω), for two different DNA hydrogels. These thermoreversible systems are composed of tetravalent DNA-made nanostars whose sticky sequence is designed to provide controlled interparticle bonding. While the first system forms a gel on cooling, the second one has been programmed to behave as a re-entrant gel, turning again to a fluid solution at low temperature. The frequency-dependent viscous and storage moduli and the viscosity reveal the different viscoelastic behavior of the two DNA hydrogels. Our results show how little variations in the design of the DNA sequences allow tuning of the mechanical response of these biocompatible all-DNA materials.
Collapse
Affiliation(s)
| | - Silvio Bianchi
- CNR-NANOTEC, Soft and Living Matter Laboratory, Rome, I-00185, Italy
| | | | - Roberto Di Leonardo
- Dipartimento di Fisica, "Sapienza" Università di Roma, Rome, I-00185, Italy. and CNR-NANOTEC, Soft and Living Matter Laboratory, Rome, I-00185, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, "Sapienza" Università di Roma, Rome, I-00185, Italy. and CNR-ISC, UOS "Sapienza" Università di Roma, Rome, I-00186, Italy
| |
Collapse
|
42
|
Robertson-Anderson RM. Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications. ACS Macro Lett 2018; 7:968-975. [PMID: 35650960 DOI: 10.1021/acsmacrolett.8b00498] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.
Collapse
Affiliation(s)
- Rae M. Robertson-Anderson
- University of San Diego, Physics and Biophysics Department, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
43
|
Cohen N, Saleh OA, McMeeking RM. Engineering the Mechanical Behavior of Polymer Networks with Flexible Self-Assembled V-Shaped Monomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Robert M. McMeeking
- School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, Scotland
| |
Collapse
|