1
|
Dallos Ortega M, Aveyard J, Ciupa A, Poole RJ, Whetnall D, Behnsen JG, D'Sa RA. 3D printable gelatin/nisin biomaterial inks for antimicrobial tissue engineering applications. MATERIALS ADVANCES 2024; 5:7729-7746. [PMID: 39267949 PMCID: PMC11385060 DOI: 10.1039/d4ma00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Modern regenerative medicine approaches can rely on the fabrication of personalised medical devices and implants; however, many of these can fail due to infections, requiring antibiotics and revision surgeries. Given the rise in multidrug resistant bacteria, developing implants with antimicrobial activity without the use of traditional antibiotics is crucial for successful implant integration and improving patient outcomes. 3D printed gelatin-based implants have a broad range of applications in regenerative medicine due to their biocompatibility, ease of modification and degradability. In this paper, we report on the development of gelatin biomaterial inks loaded with the antimicrobial peptide, nisin, for extrusion-based 3D printing to produce scaffolds with controlled porosity, high shape fidelity, and structural stability. Rheological properties were comprehensively studied to develop inks that had shear thinning behaviour and viscoelastic properties to ensure optimal printability and extrudability, and enable precise deposition and structural integrity during 3D printing. The 3D printed scaffolds fabricated from the gelatin/nisin inks demonstrated excellent antimicrobial efficacy (complete kill) against Gram positive bacteria methicillin-resistant Staphylococcus aureus (MRSA). Overall, this ink's high printability and antimicrobial efficacy with the model antimicrobial peptide, nisin, offers the potential to develop customisable regenerative medicine implants that can effectively combat infection without contributing to the development of multidrug resistant bacteria.
Collapse
Affiliation(s)
- Mateo Dallos Ortega
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill Liverpool L69 3GH UK
| | - Jenny Aveyard
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill Liverpool L69 3GH UK
| | - Alexander Ciupa
- Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Robert J Poole
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill Liverpool L69 3GH UK
| | - David Whetnall
- Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Julia G Behnsen
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill Liverpool L69 3GH UK
| | - Raechelle A D'Sa
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill Liverpool L69 3GH UK
| |
Collapse
|
2
|
Kumar SR, Hu CC, Vi TTT, Chen DW, Lue SJ. Antimicrobial Peptide Conjugated on Graphene Oxide-Containing Sulfonated Polyetheretherketone Substrate for Effective Antibacterial Activities against Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1407. [PMID: 37760704 PMCID: PMC10525520 DOI: 10.3390/antibiotics12091407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, the antimicrobial peptide nisin was successfully conjugated onto the surface of sulfonated polyetheretherketone (SPEEK), which was decorated with graphene oxide (GO) to investigate its biofilm resistance and antibacterial properties. The PEEK was activated with sulfuric acid, resulting in a porous structure. The GO deposition fully covered the porous SPEEK specimen. The nisin conjugation was accomplished using the crosslinker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) through a dip-coating method. The surface micrographs of the SPEEK-GO-nisin sample indicated that nisin formed discrete islets on the flat GO surface, allowing both the GO and nisin to perform a bactericidal effect. The developed materials were tested for bactericidal efficacy against Staphylococcus aureus (S. aureus). The SPEEK-GO-nisin sample had the highest antibacterial activity with an inhibition zone diameter of 27 mm, which was larger than those of the SPEEK-nisin (19 mm) and SPEEK-GO (10 mm) samples. Conversely, no inhibitory zone was observed for the PEEK and SPEEK samples. The surface micrographs of the bacteria-loaded SPEEK-GO-nisin sample demonstrated no bacterial adhesion and no biofilm formation. The SPEEK-nisin and SPEEK-GO samples showed some bacterial attachment, whereas the pure PEEK and SPEEK samples had abundant bacterial colonies and thick biofilm formation. These results confirmed the good biofilm resistance and antibacterial efficacy of the SPEEK-GO-nisin sample, which is promising for implantable orthopedic applications.
Collapse
Affiliation(s)
- Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Chih-Chien Hu
- Department of Orthopedics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan;
| | - Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City 333, Taiwan
| | - Dave W. Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 204, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 204, Taiwan
- Department of Safety, Health and Environment Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| |
Collapse
|
3
|
Jančič U, Gorgieva S. Bromelain and Nisin: The Natural Antimicrobials with High Potential in Biomedicine. Pharmaceutics 2021; 14:76. [PMID: 35056972 PMCID: PMC8778819 DOI: 10.3390/pharmaceutics14010076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases along with various cancer types are among the most significant public health problems and the leading cause of death worldwide. The situation has become even more complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently needed to curb the increasing spread of diseases in humans and livestock. Promising candidates are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from medicinal plants. This review highlights the structure and properties of plant origin bromelain and antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and recent applications in the field of biomedicine. Future perspectives towards the commercialization of new biomedical products, including these important bioactive compounds, have been highlighted.
Collapse
Affiliation(s)
- Urška Jančič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Selestina Gorgieva
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Hong D, Wu J, Xiao X, Li X, Xu D, Du C. Antimicrobial Peptides-Loaded Hydroxyapatite Microsphere With Different Hierarchical Structures for Enhanced Drug Loading, Sustained Release and Antibacterial Activity. Front Chem 2021; 9:747665. [PMID: 34722458 PMCID: PMC8551960 DOI: 10.3389/fchem.2021.747665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have great potential for clinical treatment of bacterial infection due to the broad-spectrum and highly effective antibacterial activity. However, the easy degradation and inactivation in vivo has been a major obstacle for their application and an effective delivery system is demanding. The surface physicochemical properties of the carrier, including surface potential, surface polarity, pore structure and morphology, have exerted great effects on the adsorption and release behavior of AMPs. This study investigated the influence of micro/nano carriers with different hierarchical structures on the loading, release and biological behavior of AMPs. Three types of AMPs-loaded hydroxyapatite microspheres (HA/AMPs MSs) with different hierarchical structures (needle-like, rod-like, and flake-like) were developed, which was investigated by the surface morphology, chemical composition and surface potential in detail. The different hierarchical structures of hydroxyapatite microspheres (HA MSs) had noticeable impact on the loading and release behavior of AMPs, and the flake-like HA MSs with hierarchical structure showed the highest loading efficiency and long-lasting release over 9 days. Meanwhile, the stability of AMPs released from HA MSs was effectively maintained. Moreover, the antibacterial test indicated that the flake-like HA/AMPs MSs showed more sustained antibacterial properties among three composites. In view of the excellent biocompatibility and osteogenic property, high loading efficiency and the long-term release properties of HA MSs with hierarchical structure, the HA/AMPs MSs have a great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Dandan Hong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jingjing Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xuemin Xiao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xueyang Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Dong Xu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
5
|
Mondal A, Singha P, Douglass M, Estes L, Garren M, Griffin L, Kumar A, Handa H. A Synergistic New Approach Toward Enhanced Antibacterial Efficacy via Antimicrobial Peptide Immobilization on a Nitric Oxide-Releasing Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43892-43903. [PMID: 34516076 DOI: 10.1021/acsami.1c08921] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite technological advancement, nosocomial infections are prevalent due to the rise of antibiotic resistance. A combinatorial approach with multimechanistic antibacterial activity is desired for an effective antibacterial medical device surface strategy. In this study, an antimicrobial peptide, nisin, is immobilized onto biomimetic nitric oxide (NO)-releasing medical-grade silicone rubber (SR) via mussel-inspired polydopamine (PDA) as a bonding agent to reduce the risk of infection. Immobilization of nisin on NO-releasing SR (SR-SNAP-Nisin) and the surface characteristics were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy and contact angle measurements. The NO release profile (7 days) and diffusion of SNAP from SR-SNAP-Nisin were quantified using chemiluminescence-based nitric oxide analyzers and UV-vis spectroscopy, respectively. Nisin quantification showed a greater affinity of nisin immobilization toward SNAP-doped SR. Matrix-assisted laser desorption/ionization mass spectrometry analysis on surface nisin leaching for 120 h under physiological conditions demonstrated the stability of nisin immobilization on PDA coatings. SR-SNAP-Nisin shows versatile in vitro anti-infection efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in the planktonic and adhered states. Furthermore, the combination of NO and nisin has a superior ability to impair biofilm formation on polymer surfaces. SR-SNAP-Nisin leachates did not elicit cytotoxicity toward mouse fibroblast cells and human umbilical vein endothelial cells, indicating the biocompatibility of the material in vitro. The preventative and therapeutic potential of SR-SNAP-Nisin dictated by two bioactive agents may offer a promising antibacterial surface strategy.
Collapse
Affiliation(s)
- Arnab Mondal
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Lori Estes
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Lauren Griffin
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Anil Kumar
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Kashyap T, Boruah PJ, Bailung H, Sanyal D, Choudhury B. Simultaneous layer exfoliation and defect activation in g-C 3N 4 nanosheets with air-water interfacial plasma: spectroscopic defect probing with tailored optical properties. NANOSCALE ADVANCES 2021; 3:3260-3271. [PMID: 36133658 PMCID: PMC9416856 DOI: 10.1039/d1na00098e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Defect-activated ultrathin graphitic carbon nitride nanosheets (g-C3N4) show an enhanced visible light absorption, better charge-separation, and facile charge transport properties. These are requisites for the designing of an active photocatalyst. Conventional methods used for layer exfoliation and defect activation require strong acids, reducing agents, or ultrasonic treatment for a sufficiently long duration. Furthermore, single-step approaches for layer exfoliation and defect incorporation have hardly been reported. Herein, we have shown atmospheric plasma enabled fabrication of g-C3N4 nanosheets. This approach is simple, low-cost, less time-consuming, and a green approach to exfoliate layers and activate multiple defects concurrently. The protocol involves plasma discharging at an air-water interface at 5 kV for 30-150 min. Atomic force microscopy (AFM) reveals a layer thickness of 96.27 nm in bulk g-C3N4. The thickness becomes 3.78 nm after 150 min of plasma treatment. The exfoliated layers emerge with nitrogen-vacancy sites and self-incorporated defects as probed by positron annihilation spectroscopy (PAS) and X-ray photoelectron spectroscopy (XPS). The defect activated layers show visible light absorption extended up to 600 nm. It is demonstrated that a non-uniform change in the band gap with the plasma treatment time results from quantum confinement in thin layers and Urbach tailing due to defects acting in opposition. Further, steady-state and time-resolved spectroscopy shows the contribution of multiple defect sites for a prolonged lifetime of photoinduced carriers. These defect-activated ultrathin nanosheets of CN serve as an active photocatalyst in the degradation of rhodamine B (RhB) under white LED illumination.
Collapse
Affiliation(s)
- Trishamoni Kashyap
- Materials and Energy Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Vigyan Path Guwahati-35 India
- Department of Physics, Cotton University Panbazar Guwahati-01 India
| | - Palash J Boruah
- Basic and Applied Plasma Physics, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Vigyan Path Guwahati-35 India
| | - Heremba Bailung
- Basic and Applied Plasma Physics, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Vigyan Path Guwahati-35 India
| | - Dirtha Sanyal
- Variable Energy Cyclotron Centre HBNI, 1/AF Bidhannagar Kolkata-700064 India
| | - Biswajit Choudhury
- Materials and Energy Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Vigyan Path Guwahati-35 India
| |
Collapse
|
7
|
Lin CN, Ding SJ, Chen CC. Synergistic Photoantimicrobial Chemotherapy of Methylene Blue-Encapsulated Chitosan on Biofilm-Contaminated Titanium. Pharmaceuticals (Basel) 2021; 14:346. [PMID: 33918682 PMCID: PMC8069275 DOI: 10.3390/ph14040346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Intensive efforts have been made to eliminate or substantial reduce bacterial adhesion and biofilm formation on titanium implants. However, in the management of peri-implantitis, the methylene blue (MB) photosensitizer commonly used in photoantimicrobial chemotherapy (PACT) is limited to a low retention on the implant surface. The purpose of this study was to assess enhancive effect of water-soluble quaternary ammonium chitosan (QTS) on MB retention on biofilm-infected SLA (sandblasted, large grid, and acid-etched) Ti alloy surfaces in vitro. The effectiveness of QTS + MB with different concentrations in eliminating Gram-negative A. actinomycetemcomitans or Gram-positive S. mutans bacteria was compared before and after PACT. Bacterial counting and lipopolysaccharide (LPS) detection were examined, and then the growth of human osteoblast-like MG63 cells was evaluated. The results indicated that the synergistic QTS + MB with retention ability significantly decreased the biofilm accumulation on the Ti alloy surface, which was better than the same concentration of 1 wt% methyl cellulose (MC). More importantly, the osteogenic activity of MG63 cells on the disinfected sample treated by QTS + MB-PACT modality was comparable to that of sterile Ti control, significantly higher than that by MC + MB-PACT modality. It is concluded that, in terms of improved retention efficacy, effective bacteria eradication, and enhanced cell growth, synergistically, PACT using the 100 μg/mL MB-encapsulated 1% QTS was a promising modality for the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Chiu-Nan Lin
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung City 402, Taiwan
| |
Collapse
|
8
|
Martin J, Desfoux A, Martinez J, Amblard M, Mehdi A, Vezenkov L, Subra G. Bottom-up strategies for the synthesis of peptide-based polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Webber JL, Namivandi-Zangeneh R, Drozdek S, Wilk KA, Boyer C, Wong EHH, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci Rep 2021; 11:1690. [PMID: 33462270 PMCID: PMC7814039 DOI: 10.1038/s41598-020-79702-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
An antimicrobial peptide, nisin Z, was embedded within polyelectrolyte multilayers (PEMs) composed of natural polysaccharides in order to explore the potential of forming a multilayer with antimicrobial properties. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR), the formation of carrageenan/chitosan multilayers and the inclusion of nisin Z in two different configurations was investigated. Approximately 0.89 µg cm-2 nisin Z was contained within a 4.5 bilayer film. The antimicrobial properties of these films were also investigated. The peptide containing films were able to kill over 90% and 99% of planktonic and biofilm cells, respectively, against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) strains compared to control films. Additionally, surface topography and wettability studies using atomic force microscopy (AFM) and the captive bubble technique revealed that surface roughness and hydrophobicity was similar for both nisin containing multilayers. This suggests that the antimicrobial efficacy of the peptide is unaffected by its location within the multilayer. Overall, these results demonstrate the potential to embed and protect natural antimicrobials within a multilayer to create functionalised coatings that may be desired by industry, such as in the food, biomaterials, and pharmaceutical industry sectors.
Collapse
Affiliation(s)
- Jessie L Webber
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sławomir Drozdek
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Marta Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - David A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
10
|
Huang Y, Wang Y, Li Y, Luo C, Yang C, Shi W, Li L. Covalent Immobilization of Polypeptides on Polylactic Acid Films and Their Application to Fresh Beef Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10532-10541. [PMID: 32822187 DOI: 10.1021/acs.jafc.0c03922] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To enhance the advantage of a long-term stability and low-toxicity active packaging system, two biodegradable covalent immobilized antibacterial packaging films were developed and applied to fresh beef preservation in this study. A polylactic acid (PLA) film was prepared by the extrusion-casting method. The surface of the PLA film was modified with plasma treatment to generate carboxylic acid groups, and then antibacterial agent nisin or ε-poly lysine (ε-PL) was covalently attached to the modified film surface. Physical, chemical, and antimicrobial properties of films were then characterized. Scanning electron microscopy and water contact angle images confirmed that nisin or ε-PL was successfully grafted onto the film surface. The values of protein loading on the nisin-g-PLA film and ε-PL-g-PLA film were 5.34 ± 0.26 and 3.04 ± 0.25 μg of protein/cm2 on the surface. Microbial analysis indicated that the grafted films effectively inhibit the growth of bacteria. Finally, the effects of the nisin-g-PLA film or ε-PL-g-PLA film on physicochemical changes and microbiological counts of fresh beef during cold storage at 4 °C were investigated. The total viable count of the control sample exceeded 7 logarithms of the number of colony forming units per gram (log CFU/g) after 11 days of cold storage (7.01 ± 0.14 log CFU/g) versus 15 days for the ε-PL-g-PLA film (7.37 ± 0.06 log CFU/g) and the nisin-g-PLA film (6.83 ± 0.10 log CFU/g). The results showed that covalent immobilized antibacterial packaging films had positive impacts on the shelf life and quality of fresh beef. Therefore, a covalent immobilized antibacterial packaging system could be a novel preservative method for foods.
Collapse
Affiliation(s)
- Yongfei Huang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Yifen Wang
- Biosystems Engineering Department, Auburn University, Auburn, Alabama 36849-5417, United States
| | - Yuqi Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Chenmin Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Chunxiang Yang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Wenzheng Shi
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, People's Republic of China
| |
Collapse
|
11
|
Antibacterial activity and long-term stable antibacterial performance of nisin grafted magnetic GO nanohybrids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110809. [DOI: 10.1016/j.msec.2020.110809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022]
|
12
|
Malvano F, Pilloton R, Albanese D. A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chem 2020; 325:126868. [PMID: 32387945 DOI: 10.1016/j.foodchem.2020.126868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 01/29/2023]
Abstract
Nisin is an antimicrobial peptide with bacterial, fungicidal, virucidal properties, attacking bacteria and destroying the cell membranes. Thanks to its stability to hard conditions, it is a candidate for the use as molecular recognition elements in biosensing platform. In this work, the use of nisin as a biological molecule for the development of a sensitive biosensor for bacteria detection is reported: nisin molecules were immobilised on gold electrodes and Electrochemical Impedance Spectroscopy was to investigate the electrochemical responses after the exposure of the biosensor to different bacteria. The biosensor was able to detect all bacterium tested with different impedimetric responses; the singular impedimetric behaviours recorded after the exposure to pathogenic and non - pathogenic Salmonella strains, highlighted the possibility of the proposed biosensor to detect selectively Salmonella cells with a low limit of detection of 1.5 * 101 CFU/mL. Finally, the developed biosensor was used to detect Salmonella in milk.
Collapse
Affiliation(s)
- Francesca Malvano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Roberto Pilloton
- Department of Chemistry and Material Technology, Institute of Crystallography of the National Council of Research (CNR), Monterotondo Scalo, Roma, Italy
| | - Donatella Albanese
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| |
Collapse
|
13
|
Kliewer S, Wicha SG, Bröker A, Naundorf T, Catmadim T, Oellingrath EK, Rohnke M, Streit WR, Vollstedt C, Kipphardt H, Maison W. Contact-active antibacterial polyethylene foils via atmospheric air plasma induced polymerisation of quaternary ammonium salts. Colloids Surf B Biointerfaces 2019; 186:110679. [PMID: 31810045 DOI: 10.1016/j.colsurfb.2019.110679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Polyethylene (PE) foils were modified with potent contact-active antibacterial quaternary ammonium salts (QAS) by an atmospheric air plasma activation step, followed by graft-polymerisation of vinylbenzyltrimethylammonium chloride (VBTAC) monomers. The presented approach uses a cost efficient air plasma activation and subsequent radical polymerisation in highly concentrated aqueous monomer solutions to generate efficient antibacterial materials. The obtained contact-active poly-VBTAC modified PE foils feature a homogeneous and 300 nm thick polymer layer with a high charge density of approximately 1016 N+/cm2. The antibacterial properties were evaluated against Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, S. epidermidis) bacteria. The materials showed strong antibacterial activity by eradicating all the inoculated bacteria with bacterial challenges of 104 to 105 CFU/cm2 and good reductions even at maximum challenge (108 CFU/cm2). We have confirmed contact-activity by an agar diffusion assay. The obtained materials are therefore highly attractive for applications, for example, in packaging and are a contribution to an ecomic and green antimicrobial management without release of biocides to the environment.
Collapse
Affiliation(s)
- Serge Kliewer
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Sebastian G Wicha
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Astrid Bröker
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Tim Naundorf
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Tugba Catmadim
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eva Katharina Oellingrath
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Marcus Rohnke
- Justus-Liebig-Universität Giessen, Center for Materials Science, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - Wolfgang R Streit
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Christel Vollstedt
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Helmut Kipphardt
- Metall-Chemie Technologies GmbH, Kaiser-Wilhelm-Strasse 93, 20355 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
14
|
Farasat M, Arjmand S, Ranaei Siadat SO, Sefidbakht Y, Ghomi H. The effect of non-thermal atmospheric plasma on the production and activity of recombinant phytase enzyme. Sci Rep 2018; 8:16647. [PMID: 30413721 PMCID: PMC6226467 DOI: 10.1038/s41598-018-34239-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Atmospheric pressure cold plasma (ACP) is introduced as a useful tool in a variety of biological applications. Proteins are the most abundant macromolecules in living systems with a central role in all biological processes. These organic molecules are modified by ACP exposure that is responsible for many of ACP's biological effects. This study evaluated the effect of ACP on the production of recombinant phytase in yeast Pichia pastoris (P. pastoris) as well as the structure and function of the phytase enzyme. The results indicated that yeast cells treated with ACP, directly or indirectly, produced higher amounts of recombinant phytase, which was associated with the time of ACP treatment. The exposure of commercial phytase solution with ACP caused a significant increase in the enzyme activity (125%) after 4 hours. Evaluation of the phytase solution by far- and near-UV circular dichroism (CD) and fluorescence analysis indicated that this protein maintained its secondary structure when exposed to ACP while the tertiary structure was slightly unfolded. The effects of heat and H2O2 on the phytase structure and function were compared with the effect of ACP treatment. The modification of Cys, Tyr and Trp amino acids upon reactive oxygen/nitrogen spices was simulated using a molecular dynamics approach. RMSF and RMSD analysis suggested that this structural alteration occurs owing to changes made by reactive species in accessible amino acids.
Collapse
Affiliation(s)
- Mahsa Farasat
- Laser and Plasma research Institute, Shahid Beheshti University, G. C., Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran.
| | | | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | - Hamid Ghomi
- Laser and Plasma research Institute, Shahid Beheshti University, G. C., Tehran, Iran
| |
Collapse
|
15
|
Hu S, Li P, Wei Z, Wang J, Wang H, Wang Z. Antimicrobial activity of nisin-coated polylactic acid film facilitated by cold plasma treatment. J Appl Polym Sci 2018. [DOI: 10.1002/app.46844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- S. Hu
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - P. Li
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Z. Wei
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - J. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - H. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Z. Wang
- Center for Biomedical Materials and Interfaces; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- CSIRO Agriculture and Food; 671 Sneydes Road, Werribee Australia
| |
Collapse
|
16
|
Application of Nanofibrillated Cellulose on BOPP/LDPE Film as Oxygen Barrier and Antimicrobial Coating Based on Cold Plasma Treatment. COATINGS 2018. [DOI: 10.3390/coatings8060207] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Isolation and Thermal Stabilization of Bacteriocin Nisin Derived from Whey for Antimicrobial Modifications of Polymers. INT J POLYM SCI 2017. [DOI: 10.1155/2017/3072582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work describes novel alternative for extraction of bacteriocin nisin from a whey fermentation media and its stabilization by using polyethylene glycol as matrix with high practical applicability. This product was compared with commercially available nisin product stabilized by sodium chloride and nisin extracted and stabilized by using ammonium sulfate and polysorbate 80. The stability of samples was tested by means of long-term storage at −18, 4, 25, and 55°C up to 165 days. The nisin content in the samples was determined by high-performance liquid chromatography and electrophoresis. In addition, effect of whey fortification with lactose on nisin production and antibacterial activity studied against Staphylococcus aureus was tested. Results show that stabilization by polyethylene glycol provides enhanced nisin activity at 55°C after 14 days and long-term stability at 25°C with keeping antibacterial activity.
Collapse
|