1
|
Badha VS, Niepa THR, Gharbi MA. Biosensing of Bacterial Secretions via Topological Defects at Smectic Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22754-22761. [PMID: 39431287 DOI: 10.1021/acs.langmuir.4c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Characterizing the anchoring properties of smectic liquid crystals (LCs) in contact with bacterial solutions is crucial for developing biosensing platforms. In this study, we investigate the anchoring properties of a smectic LC when exposed to Bacillus subtilis and Escherichia coli bacterial suspensions using interfaces with known anchoring properties. By monitoring the optical response of the smectic film, we successfully distinguish different types of bacteria, leveraging the distinct changes in the LC's response. Through a comprehensive analysis of the interactions between bacterial proteins and the smectic interface, we elucidate the potential underlying mechanisms responsible for these optical changes. Additionally, we introduce the utilization of topological defects, the focal conic domains (FCDs), at the smectic interface as an indicative measure of the bacterial concentration. Our findings contribute to the understanding of bacteria-LC interactions and demonstrate the significant potential of smectic LCs and their defects for biosensing applications, paving the way for advancements in pathogen detection and protein-based sensing.
Collapse
Affiliation(s)
- Vajra S Badha
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Tagbo H R Niepa
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mohamed Amine Gharbi
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| |
Collapse
|
2
|
Balamut B, Hughes RP, Aprahamian I. Tuning the Properties of Hydrazone/Isosorbide-Based Switchable Chiral Dopants. J Am Chem Soc 2024; 146:24561-24569. [PMID: 39163573 DOI: 10.1021/jacs.4c07848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The long-range supramolecular interactions in liquid crystals (LCs) can be used to amplify and subsequently propagate microscopic structural changes into macroscopic events. Here, we report on a systematic structure-property analysis using 16 chiral photoswitchable dopants composed of bistable hydrazones and chiral isosorbide moieties. Our findings showcase the relationship between the dopant's structure and its helical twisting power (β), and hence, the photophysical properties of the host LC. We show that an increase in the hydrazone CNNH dihedral angle results in an increase in the β value, while alkoxy chains do not lead to such an increase. These results contradict established rules of thumb, stating that structural rigidity and long alky chains are needed for high β values. We also found that the position of the substitution, whether at the 2' or 5' positions of the isosorbide unit, or the attachment of the chiral unit to the rotor or stator phenyl units can have negative or positive additive effects that can either increase or decrease the β values. These results made us hypothesize that unsymmetrically functionalized dopants should result in large Δβ values, which we corroborated experimentally. Moreover, a fluorine-functionalized dopant resulted in higher overall β values, most likely because of π-π interactions. Finally, the dopants were used in modulating and locking in the reflective properties of LC films, yielding multicolor LC canvases that can reflect light from the ultraviolet to the infrared range (i.e., a manipulation of up to ca. 1500 nm of reflected light).
Collapse
Affiliation(s)
- Brandon Balamut
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
3
|
Mostajabodavati S, Mousavizadegan M, Hosseini M, Mohammadimasoudi M, Mohammadi J. Machine learning-assisted liquid crystal-based aptasensor for the specific detection of whole-cell Escherichia coli in water and food. Food Chem 2024; 448:139113. [PMID: 38552467 DOI: 10.1016/j.foodchem.2024.139113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/24/2024]
Abstract
We have developed a rapid, facile liquid crystal (LC)-based aptasensor for E. coli detection in water and juice samples. A textile grid-anchored LC platform was used with specific aptamers adsorbed via a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the LC surface. The presence of E. coli dissociates the aptamers from CTAB and restores the dark signal induced by the surfactant. Using polarized microscopy, the images of the LCs in the presence of various concentrations of E. coli were captured and analyzed using image analysis and machine learning (ML). The artificial neural networks (ANN) and extreme gradient boosting (XGBoost) rendered the best results for water samples (R2 = 0.986 and RMSE = 0.209) and juice samples (R2 = 0.976 and RMSE = 0.262), respectively. The platform was able to detect E. coli with a detection limit (LOD) of 6 CFU mL-1.
Collapse
Affiliation(s)
- Saba Mostajabodavati
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Maryam Mousavizadegan
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439817435, Iran; Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mohammadimasoudi
- Nano-bio-photonics Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439817435, Iran
| |
Collapse
|
4
|
Honaker LW, Eijffius A, Plankensteiner L, Nikiforidis CV, Deshpande S. Biosensing with Oleosin-Stabilized Liquid Crystal Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309053. [PMID: 38602194 DOI: 10.1002/smll.202309053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Indexed: 04/12/2024]
Abstract
Liquid crystals (LCs) are emerging as novel platforms for chemical, physical, and biological sensing. They can be used to detect biological amphiphiles such as lipids, fatty acids, digestive surfactants, and bacterial endotoxins. However, designing LC-based sensors in a manner that preserves their sensitivity and responsiveness to these stimuli, and possibly improves biocompatibility, remains challenging. In this work, the stabilization of LC droplets by oleosins, plant-sourced and highly surface active proteins due to their extended amphipathic helix, is investigated. Purified oleosins, at sub-micromolar concentrations, are shown to readily stabilize nematic LC droplets without switching their alignment, allowing them to detect surfactants at micromolar concentrations. Direct evidence of localization of oleosins at the LC-water interface is provided with fluorescent labeling, and the stabilized droplets remain stable over months. Interestingly, chiral LC droplets readily switch in the presence of nanomolar oleosin concentrations, an unexpected behavior that is explained by accounting for the energy barriers required for switching the alignment between the two cases. This leads thus to a twofold conclusion: oleosin-stabilized nematic LC droplets present a biocompatible alternative for bioanalyte detection, while chiral LCs can be further investigated for use as highly sensitive sensors for detecting amphipathic helices in biological systems.
Collapse
Affiliation(s)
- Lawrence W Honaker
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | - Axel Eijffius
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | - Lorenz Plankensteiner
- Laboratory of Biobased Chemistry and Technology, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
5
|
Bao P, Phillips K, Raval R. Membrane Proteins in Action Monitored by pH-Responsive Liquid Crystal Biosensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31843-31850. [PMID: 38841859 PMCID: PMC11194810 DOI: 10.1021/acsami.4c06614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Liquid crystal (LC) biosensors have received significant attention for their potential applications for point-of-care devices due to their sensitivity, low cost, and easy read-out. They have been employed to detect a wide range of important biological molecules. However, detecting the function of membrane proteins has been extremely challenging due to the difficulty of integrating membrane proteins, lipid membranes, and LCs into one system. In this study, we addressed this challenge by monitoring the proton-pumping function of bacteriorhodopsin (bR) using a pH-sensitive LC thin film biosensor. To achieve this, we deposited purple membranes (PMs) containing a 2D crystal form of bRs onto an LC-aqueous interface. Under light, the PM patches changed the local pH at the LC-aqueous interface, causing a color change in the LC thin film that is observable through a polarizing microscope with crossed polarizers. These findings open up new opportunities to study the biofunctions of membrane proteins and their induced local environmental changes in a solution using LC biosensors.
Collapse
Affiliation(s)
- Peng Bao
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Kyle Phillips
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Rasmita Raval
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
6
|
Zhan X, Yang KL, Luo D. Liquid crystal based sensor for antimony ions detection using poly-adenine oligonucleotides. Talanta 2024; 267:125148. [PMID: 37678004 DOI: 10.1016/j.talanta.2023.125148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/12/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Antimony is highly toxic and a key water pollutant, which needs to be monitored closely. To date, however, most analytical methods for antimony detection are quite limited because they are complicated, expensive, and not suitable for real-time monitoring of antimony. In this study, a label-free and rapid method for antimony ions (Sb3+) detection is developed based on liquid crystals and a 10-mer poly-adenine oligonucleotide as a specific recognition probe for the first time. The working principle is based on the binding of the oligonucleotide to Sb3+, which weakens the interaction between the oligonucleotide and cationic surfactants. As a result, the event induces a planar-to-homeotropic orientational change of liquid crystals and a bright-to-dark optical change under crossed polars. This liquid crystal-based optical sensor exhibits a rapid response to Sb3+ in 10 s, a detection range between 20 nM and 5 μM, and a detection limit at 6.7 nM calculated from 10-mins assay time. It also shows good selectivity against other metal ions including Ag+, Cd2+, Cu2+, Fe3+, K+, Mg2+, Mn2+, Na+, Pb2+, and Zn2+. Moreover, this system can be used to detect Sb3+ in aqueous solutions with different pH or ionic strengths. This simple, fast, and low-cost liquid crystal-based sensing approach with high sensitivity and selectivity has a high potential for detecting Sb3+ in natural environments and industrial wastewater.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, 518055, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Naveenkumar PM, Maheshwari H, Gundabala V, Mann S, Sharma KP. Patterning of Protein-Sequestered Liquid-Crystal Droplets Using Acoustic Wave Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:871-881. [PMID: 38131278 DOI: 10.1021/acs.langmuir.3c03031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Development of spatially organized structures and understanding their role in controlling kinetics of multistep chemical reactions are essential for the successful design of efficient systems and devices. While studies that showcase different types of methodologies for the spatial organization of various colloidal systems are known, design and development of well-defined hierarchical assemblies of liquid-crystal (LC) droplets and subsequent demonstration of biological reactions using such assemblies still remain elusive. Here, we show reversible and reconfigurable one-dimensional (1D) assemblies of protein-bioconjugate-sequestered monodisperse LC droplets by combining microfluidics with noninvasive acoustic wave trapping technology. Tunable spatial geometries and lattice dimensions can be achieved in an aqueous medium comprising ≈19 or 62 μm LC droplets. Different assemblies of a mixed population of larger and smaller droplets sequestered with glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively, exhibit spatially localized enzyme kinetics with higher initial rates of reaction compared with GOx/HRP cascades implemented in the absence of an acoustic field. This can be attributed to the direct substrate transfer/channeling between the two complementary enzymes in close proximity. Therefore, our study provides an initial step toward the fabrication of LC-based devices for biosensing applications.
Collapse
Affiliation(s)
| | - Harsha Maheshwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Venkat Gundabala
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Stephen Mann
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, U.K
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Goudarzi A, Mohammadimasoudi M, Khoshkhati F. Design and fabrication of a simple and cost-effective optical flow meter using liquid crystals and textile grid. OPTICS EXPRESS 2023; 31:43067-43074. [PMID: 38178409 DOI: 10.1364/oe.507123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/12/2023] [Indexed: 01/06/2024]
Abstract
The measurement of airflow velocity is crucial in various fields, and several sensing approaches have been developed for detecting airflow, including optical fiber-based flowmeters. However, these sensors often require complex fabrication processes and precise optical alignment. In this paper, a simpler and more cost-effective approach has been used to measure air flow rate by utilizing the birefringence property of liquid crystals (LCs). LCs possess distinct optical characteristics, and their reorientation due to airflow can be detected by observing the intensity of the output light between crossed polarizers. The novelty of this study is the utilization of a textile grid to hold the LC layer, which simplifies the fabrication process. This LC-based gas flowmeter offers a simple, low-cost setup and provides rapid performance. This research presents what we believe to be a new approach to calculate airflow by exploiting the optical properties of LCs, which is a new frontier in gas flow measurement. The proposed airflow meter is capable of detecting airflow rates ranging from 0 l/min to 7.5 l/min with an accuracy of 0.5 l/min. It exhibits a stable response time in 75 seconds, and the sensor maintains acceptable stability over time.
Collapse
|
9
|
Shadkami R, Chan PK. Computational Analysis on the Performance of Elongated Liquid Crystal Biosensors. MICROMACHINES 2023; 14:1831. [PMID: 37893268 PMCID: PMC10609392 DOI: 10.3390/mi14101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
Elongated ellipsoidal liquid crystal microdroplet reorientation dynamics are discussed in this paper for biosensor applications. To investigate the effect of elongated droplets on nematic liquid crystal droplet biosensors, we simulated a model of a liquid crystal droplet using ellipse geometry. Director reorientation is examined in relation to the elongated droplet shape. In addition, we examined aspect ratio as a factor affecting biosensor response time in relation to surface viscosity and anchoring energy. Finally, the findings suggest that the aspect ratio should be taken into account when designing biosensors. These results can be used to develop more effective biosensors for a variety of applications. This model then predicts the director reorientation angle, which is dependent on the anchoring energy and surface viscosity. This model further suggests that both surface viscosity and homeotropic anchoring energy play an important role when it comes to the director reorientation angle. We developed and applied a nonlinear unsteady-state mathematical model utilizing torque balance and Frank free energy according to the Leslie-Ericksen continuum theory for simulating elongated nematic liquid crystal biosensor droplets with aqueous interfaces. Using the Euler-Lagrange equation, a transient liquid crystal-aqueous interface realignment is modeled by changing the easy axis when surfactant molecules are added to the interface. The realignment at the surface of the droplet is assumed to be driven by the effect of the surfactant, which causes an anchoring transition. According to the results, the response time of the biosensor depends on the aspect ratio. Therefore, the elongation has the potential to control biosensing response time. The result of our study provides a better understanding of director reorientation in elongated liquid crystal droplets in biosensing applications through the numerical results which are presented in this paper.
Collapse
Affiliation(s)
| | - Philip K. Chan
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada;
| |
Collapse
|
10
|
Zhao H, Cheng X. Fluorene Thiophene α-Cyanostilbene Hexacatenar-Generating LCs with Hexagonal Columnar Phases and Gels with Helical Morphologies as Well as a Light-Emitting LC Display. Int J Mol Sci 2023; 24:9337. [PMID: 37298292 PMCID: PMC10253829 DOI: 10.3390/ijms24119337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Two series of novel synthesized hexacatenars, O/n and M/n, containing two thiophene-cyanostilbene units interconnected by central fluorene units (fluorenone or dicyanovinyl fluorene) using a donor-acceptor-acceptor-donor (A-D-A-D-A) rigid core, with three alkoxy chains at each end, can self-assemble into hexagonal columnar mesophases with wide liquid crystal (LC) ranges and aggregate into organogels with flowerlike and helical cylinder morphologies, as revealed via POM, DSC, XRD and SEM investigation. Furthermore, these compounds were observed to emit yellow luminescence in both solution and solid states which can be adopted to manufacture a light-emitting liquid crystal display (LE-LCD) by doping with commercially available nematic LC.
Collapse
Affiliation(s)
- Hongmei Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China;
- School of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaohong Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China;
| |
Collapse
|
11
|
Leu JSL, Teoh JJX, Ling ALQ, Chong J, Loo YS, Mat Azmi ID, Zahid NI, Bose RJC, Madheswaran T. Recent Advances in the Development of Liquid Crystalline Nanoparticles as Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051421. [PMID: 37242663 DOI: 10.3390/pharmaceutics15051421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.
Collapse
Affiliation(s)
- Jassica S L Leu
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Jasy J X Teoh
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Angel L Q Ling
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Joey Chong
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| | - Rajendran J C Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| |
Collapse
|
12
|
Maiti S, Roh S, Cohen I, Abbott NL. Non-equilibrium ordering of liquid crystalline (LC) films driven by external gradients in surfactant concentration. J Colloid Interface Sci 2023; 637:134-146. [PMID: 36696789 DOI: 10.1016/j.jcis.2022.12.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
HYPOTHESIS Gradients in the concentration of amphiphiles play an important role in many non-equilibrium processes involving complex fluids. Here we explore if non-equilibrium interfacial behaviors of thermotropic (oily) liquid crystals (LCs) can amplify microscopic gradients in surfactant concentration into macroscopic optical signals. EXPERIMENTS We use a milli-fluidic system to generate gradients in aqueous sodium dodecyl sulfate (SDS) concentration and optically quantify the dynamic ordering of micrometer-thick nematic LC films that contact the gradients. FINDINGS We find that the reordering of the LCs is dominated by interfacial shearing by Marangoni flows, thus providing simple methods for rapid mapping of interfacial velocities from a single optical image and investigating the effects of confinement of surfactant-driven interfacial flows. Additionally, we establish that surface advection and surfactant desorption are the two key processes that regulate the interfacial flows, revealing that the dynamic response of the LC can provide rapid and potentially high throughput approaches to measurement of non-equilibrium interfacial properties of amphiphiles. We also observe flow-induced assemblies of microparticles to form at the LC interface, hinting at new non-equilibrium approaches to microparticle assembly. We conclude that dynamic states adopted by LCs in the presence of surfactant concentration gradients provide new opportunities for engineering complex fluids beyond equilibrium.
Collapse
Affiliation(s)
- Soumita Maiti
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Itai Cohen
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Honaker LW, Schaap J, Kenbeek D, Miltenburg E, Deshpande S. Heads or tails: investigating the effects of amphiphile features on the distortion of chiral nematic liquid crystal droplets. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:4867-4875. [PMID: 37033204 PMCID: PMC10077502 DOI: 10.1039/d2tc05390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Liquid crystal-based sensing has fast become a growing field, harnessing the sensitivity of liquid crystals to their surroundings to provide information about the analytes present, including surface-active amphiphiles such as biological lipids. Amphiphiles can impart ordering to a liquid crystal and, in the case of chiral nematic liquid crystals (CLCs), distort the helical texture. The cause and degree to which this distortion occurs is not fully clear. In this work, the effects of different amphiphiles on the final colour textures as well as the pitch of chiral nematic liquid crystals are investigated. We find that the tails of amphiphiles and their orientation play a more important role in determining the final distortions of the liquid crystal by the direct interactions they have with the host, whereas the headgroups do not play a significant role in affecting these distortions. Our findings may find implications in designing CLC-based biosensors, where the tails will likely have more impact on the CLC response, while the headgroups will remain available for further functionalization without having significant effects on the signal readout.
Collapse
Affiliation(s)
- Lawrence W Honaker
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research 6708 WE Wageningen The Netherlands +31 (0)317 480 419
| | - Jorik Schaap
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research 6708 WE Wageningen The Netherlands +31 (0)317 480 419
| | - Dennis Kenbeek
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research 6708 WE Wageningen The Netherlands +31 (0)317 480 419
| | - Ernst Miltenburg
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research 6708 WE Wageningen The Netherlands +31 (0)317 480 419
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research 6708 WE Wageningen The Netherlands +31 (0)317 480 419
| |
Collapse
|
14
|
Label-free optical and electrical immunoassays based on lyotropic chromonic liquid crystals: Implications of real-time detection and kinetic analysis. Biosens Bioelectron 2023; 223:115011. [PMID: 36549110 DOI: 10.1016/j.bios.2022.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Conventional liquid crystal (LC)-based biosensors utilize predominantly thermotropic LCs as the signal-transducing media, which are less environmentally sustainable compared with lyotropic counterparts. In this study, the nematic phase of the anionic azo dye sunset yellow (SSY), a type of lyotropic chromonic liquid crystals (LCLCs), was employed in the optical and electrical biosensing of bovine serum albumin (BSA) and the cancer biomarker CA125. The optical response observed under a polarizing optical microscope was quantified by image analysis, taking advantage of the specific absorption of SSY. The electrical response derived from the dielectric spectra of SSY provided a new alternative for quantitative bioassay based on nematic LCLCs. The limit of detection (LOD) of the optical and electrical protein assay was ∼10-11- and ∼10-10-g/ml BSA, respectively, whereas that of the optical and electrical immunoassay was 5.97 × 10-11 and 6.02 × 10-12 g/ml for CA125, respectively. Moreover, real-time monitoring and kinetic analysis, which are hardly achievable for the hydrophobic thermotropic LCs, were demonstrated by dispersing CA125 in nematic SSY and subsequently recording the optical response over time during the specific binding between CA125 and the immobilized anti-CA125 antibody. Results from this study further the potential of nematic LCLCs in biosensing, especially in dielectric and real-time detection.
Collapse
|
15
|
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023; 313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engineering and molecular imaging) and route of administration is examined. Further discussion of the main limitations and perspectives of lipidic LLCs in biomedical applications are also provided. STATEMENT OF SIGNIFICANCE: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
Collapse
Affiliation(s)
- Guillermo Blanco-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Ramou E, Palma SICJ, Roque ACA. A room temperature 9CB‐based chemical sensor. NANO SELECT 2023. [DOI: 10.1002/nano.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Efthymia Ramou
- UCIBIO – Applied Molecular Biosciences Unit Department of Chemistry School of Science and Technology NOVA University Lisbon Caparica Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy School of Science and Technology NOVA University Lisbon Caparica Portugal
| | - Susana I. C. J. Palma
- UCIBIO – Applied Molecular Biosciences Unit Department of Chemistry School of Science and Technology NOVA University Lisbon Caparica Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy School of Science and Technology NOVA University Lisbon Caparica Portugal
| | - Ana Cecília A. Roque
- UCIBIO – Applied Molecular Biosciences Unit Department of Chemistry School of Science and Technology NOVA University Lisbon Caparica Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy School of Science and Technology NOVA University Lisbon Caparica Portugal
| |
Collapse
|
17
|
Lee WN, Salleh NM, Velayutham T, Cheng SF. SYNTHESIS, PHASE TRANSITION BEHAVIOUR AND DIELECTRIC PROPERTIES OF SMECTOGENIC PALM-BASED LIQUID CRYSTALS CONTAINING SCHIFF BASE ESTER AND PHENYL RING. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
18
|
Chen S, Ma T, Du X, Mo M, Wang Z, Cheng X. D-A-D hexacatenar LCs containing bulky N-trialkoxylbenzyl carbazole caps with RGB emissions for full color palette and white LED applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. BIOSENSORS 2022; 13:40. [PMID: 36671875 PMCID: PMC9856107 DOI: 10.3390/bios13010040] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Ravichandran Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Chinnaiyan Deepa
- Department of Artificial Intelligence & Data Science, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
20
|
Esmailpour M, Mohammadimasoudi M, Shemirani MG, Goudarzi A, Heidari Beni MH, Shahsavarani H, Aghajan H, Mehrbod P, Salehi-Vaziri M, Fotouhi F. Rapid, label-free and low-cost diagnostic kit for COVID-19 based on liquid crystals and machine learning. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100233. [PMID: 36097520 PMCID: PMC9452410 DOI: 10.1016/j.biosx.2022.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
We report a label-free method for detection of the SARS-CoV-2 virus in nasopharyngeal swab samples without purification steps and multiplication of the target which simplifies and expedites the analysis process. The kit consists of a textile grid on which liquid crystals (LC) are deposited and the grid is placed in a crossed polarized microscopy. The swab samples are subsequently placed on the LCs. In the presence of a particular biomolecule, the direction of LCs changes locally based on the properties of the biomolecule and forms a particular pattern. As the swab samples are not perfectly purified, image processing and machine learning techniques are employed to detect the presence of specific molecules or quantify their concentrations in the medium. The method can differentiate negative and positive COVID-19 samples with an accuracy of 96% and also differentiate COVID-19 from influenza types A and B with an accuracy of 93%. The kit is portable, simple to manufacture, convenient to operate, cost effective, rapid and sensitive. The simplicity of the specimen processing, the speed of image acquisition, and fast diagnostic operations enable the deployment of the proposed technique for performing extensive on-spot screening of COVID-19 in public places.
Collapse
Affiliation(s)
- Mahboube Esmailpour
- Nano-bio-photonics Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Mohammadimasoudi
- Nano-bio-photonics Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadreza G Shemirani
- Nano-bio-photonics Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ali Goudarzi
- Nano-bio-photonics Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Dissipative Particle Dynamics Simulation of the Sensitive Anchoring Behavior of Smectic Liquid Crystals at Aqueous Phase. Molecules 2022; 27:molecules27217433. [DOI: 10.3390/molecules27217433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Rational design of thermotropic liquid crystal (LC)-based sensors utilizing different mesophases holds great promise to open up novel detection modalities for various chemical and biological applications. In this context, we present a dissipative particle dynamics study to explore the unique anchoring behavior of nematic and smectic LCs at amphiphile-laden aqueous-LC interface. By increasing the surface coverage of amphiphiles, two distinct anchoring sequences, a continuous planar-tilted-homeotropic transition and a discontinuous planar-to-homeotropic transition, can be observed for the nematic and smectic LCs, respectively. More importantly, the latter occurs at a much lower surface coverage of amphiphiles, demonstrating an outstanding sensitivity for the smectic-based sensors. The dynamics of reorientation further reveals that the formation of homeotropic smectic anchoring is mainly governed by the synchronous growth of smectic layers through the LCs, which is significantly different from the mechanism of interface-to-bulk ordering propagation in nematic anchoring. Furthermore, the smectic LCs have also been proven to possess a potential selectivity in response to a subtle change in the chain rigidity of amphiphiles. These simulation findings are promising and would be valuable for the development of novel smectic-based sensors.
Collapse
|
22
|
Shemirani M, Habibimoghaddam F, Mohammadimasoudi M, Esmailpour M, Goudarzi A. Rapid and Label-Free Methanol Identification in Alcoholic Beverages Utilizing a Textile Grid Impregnated with Chiral Nematic Liquid Crystals. ACS OMEGA 2022; 7:37546-37554. [PMID: 36312434 PMCID: PMC9609077 DOI: 10.1021/acsomega.2c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Methanol contamination of alcoholic drinks can lead to severe health problems for human beings including poisoning, headache, blindness, and even death. Therefore, having access to a simple and inexpensive way for monitoring beverages is vital. Herein, a portable, low cost, and easy to use sensor is fabricated based on the exploitation of chiral nematic liquid crystals (CLCs) and a textile grid for detection of methanol in two distinct alcoholic beverages: red wine and vodka. The working principle of the sensor relies on the reorientation of the liquid crystal molecules upon exposure to the contaminated alcoholic beverages with different concentrations of methanol (0, 2, 4, and 6 wt %) and the changes in the observed colorful textures of the CLCs as well as the intensity of the output light. The proposed sensor is label free and rapid.
Collapse
Affiliation(s)
- Mohammadreza
G. Shemirani
- Nano-bio-photonics Lab, Faculty
of New Sciences and Technologies, University
of Tehran, Tehran 1439957131, Iran
| | - Fatemeh Habibimoghaddam
- Nano-bio-photonics Lab, Faculty
of New Sciences and Technologies, University
of Tehran, Tehran 1439957131, Iran
| | - Mohammad Mohammadimasoudi
- Nano-bio-photonics Lab, Faculty
of New Sciences and Technologies, University
of Tehran, Tehran 1439957131, Iran
| | - Mahboube Esmailpour
- Nano-bio-photonics Lab, Faculty
of New Sciences and Technologies, University
of Tehran, Tehran 1439957131, Iran
| | - Ali Goudarzi
- Nano-bio-photonics Lab, Faculty
of New Sciences and Technologies, University
of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
23
|
Norouzi S, Tavera-Vazquez A, Ramirez-de Arellano J, Kim DS, Lopez-Leon T, de Pablo JJ, Martinez-Gonzalez JA, Sadati M. Elastic Instability of Cubic Blue Phase Nano Crystals in Curved Shells. ACS NANO 2022; 16:15894-15906. [PMID: 36166665 DOI: 10.1021/acsnano.2c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Many crystallization processes, including biomineralization and ice-freezing, occur in small and curved volumes, where surface curvature can strain the crystal, leading to unusual configurations and defect formation. The role of curvature on crystallization, however, remains poorly understood. Here, we study the crystallization of blue phase (BP) liquid crystals under curved confinement, which provides insights into the mechanism by which BPs reconfigure their three-dimensional lattice structure to adapt to curvature. BPs are a three-dimensional assembly of high-chirality liquid crystal molecules arranged into body-centered (BPI) or simple cubic (BPII) symmetries. BPs with submicrometer cubic-crystalline lattices exhibit tunable Bragg reflection and submillisecond response time to external stimuli such as an electric field, making them attractive for advanced photonic materials. In this work, we have systematically studied BPs confined in spherical shells with well-defined curvature and boundary conditions. The optical behavior of shells has also been examined at room temperature, where the cholesteric structure forms. In the cholesteric phase, perpendicular anchoring generates focal conic domains on the shell's surface, which transition into stripe patterns as the degree of curvature increases. Our results demonstrate that both higher degrees of curvature and strong spatial confinement destabilize BPI and reconfigure that phase to adopt the structure and optical features of BPII. We also show that the coupling of curvature and confinement nucleates skyrmions at greater thicknesses than those observed for a flat geometry. These findings are particularly important for integrating BPs into miniaturized and curved/flexible devices, including flexible displays, wearable sensors, and smart fabrics.
Collapse
Affiliation(s)
- Sepideh Norouzi
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Antonio Tavera-Vazquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Johanan Ramirez-de Arellano
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Parque Chapultepec 1570, San Luis Potosí 78210, San Luis Potosi México
| | - Dae Seok Kim
- Department of Polymer Engineering, Pukyong National University, Busan 48513, South Korea
| | - Teresa Lopez-Leon
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Jose A Martinez-Gonzalez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Parque Chapultepec 1570, San Luis Potosí 78210, San Luis Potosi México
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
24
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
25
|
He Z, Yu P, Guo Z, Zhang Y, Feng X, Zhang H, Zhao Y, Miao Z. Effects of thiol‐ene click reaction on morphology and electro‐optical properties of polyhedral oligomeric silsesquioxane nanostructure‐based polymer dispersed liquid crystal film. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zemin He
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion Device. School of Electronic Information Xijing University Xi'an China
| | - Ping Yu
- State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao China
| | - Zhun Guo
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion Device. School of Electronic Information Xijing University Xi'an China
| | - Yongming Zhang
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion Device. School of Electronic Information Xijing University Xi'an China
| | - Xueyan Feng
- Shaanxi Yide Fengda Testing Technology Service Limited Baoji China
| | - Huimin Zhang
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion Device. School of Electronic Information Xijing University Xi'an China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion Device. School of Electronic Information Xijing University Xi'an China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (Iopen) Northwestern Polytechnical University Xi'an China
| |
Collapse
|
26
|
Honaker L, Chen C, Dautzenberg FM, Brugman S, Deshpande S. Designing Biological Microsensors with Chiral Nematic Liquid Crystal Droplets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37316-37329. [PMID: 35969154 PMCID: PMC9412956 DOI: 10.1021/acsami.2c06923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 05/16/2023]
Abstract
Biosensing using liquid crystals has a tremendous potential by coupling the high degree of sensitivity of their alignment to their surroundings with clear optical feedback. Many existing set-ups use birefringence of nematic liquid crystals, which severely limits straightforward and frugal implementation into a sensing platform due to the sophisticated optical set-ups required. In this work, we instead utilize chiral nematic liquid crystal microdroplets, which show strongly reflected structural color, as sensing platforms for surface active agents. We systematically quantify the optical response of closely related biological amphiphiles and find unique optical signatures for each species. We detect signatures across a wide range of concentrations (from micromolar to millimolar), with fast response times (from seconds to minutes). The striking optical response is a function of the adsorption of surfactants in a nonhomogeneous manner and the topology of the chiral nematic liquid crystal orientation at the interface requiring a scattering, multidomain structure. We show that the surface interactions, in particular, the surface packing density, to be a function of both headgroup and tail and thus unique to each surfactant species. We show lab-on-a-chip capability of our method by drying droplets in high-density two-dimensional arrays and simply hydrating the chip to detect dissolved analytes. Finally, we show proof-of-principle in vivo biosensing in the healthy as well as inflamed intestinal tracts of live zebrafish larvae, demonstrating CLC droplets show a clear optical response specifically when exposed to the gut environment rich in amphiphiles. Our unique approach shows clear potential in developing on-site detection platforms and detecting biological amphiphiles in living organisms.
Collapse
Affiliation(s)
- Lawrence
W. Honaker
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Chang Chen
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Floris M.H. Dautzenberg
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Sylvia Brugman
- Host-Microbe
Interactomics, Wageningen University &
Research, Wageningen 6708 WD, The Netherlands
| | - Siddharth Deshpande
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
27
|
Wang H, Xu T, Fu Y, Wang Z, Leeson MS, Jiang J, Liu T. Liquid Crystal Biosensors: Principles, Structure and Applications. BIOSENSORS 2022; 12:639. [PMID: 36005035 PMCID: PMC9406233 DOI: 10.3390/bios12080639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022]
Abstract
Liquid crystals (LCs) have been widely used as sensitive elements to construct LC biosensors based on the principle that specific bonding events between biomolecules can affect the orientation of LC molecules. On the basis of the sensing interface of LC molecules, LC biosensors can be classified into three types: LC-solid interface sensing platforms, LC-aqueous interface sensing platforms, and LC-droplet interface sensing platforms. In addition, as a signal amplification method, the combination of LCs and whispering gallery mode (WGM) optical microcavities can provide higher detection sensitivity due to the extremely high quality factor and the small mode volume of the WGM optical microcavity, which enhances the interaction between the light field and biotargets. In this review, we present an overview of the basic principles, the structure, and the applications of LC biosensors. We discuss the important properties of LC and the principle of LC biosensors. The different geometries of LCs in the biosensing systems as well as their applications in the biological detection are then described. The fabrication and the application of the LC-based WGM microcavity optofluidic sensor in the biological detection are also introduced. Finally, challenges and potential research opportunities in the development of LC-based biosensors are discussed.
Collapse
Affiliation(s)
- Haonan Wang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Yaoxin Fu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Ziyihui Wang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mark S. Leeson
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Junfeng Jiang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
28
|
Yeng MSM, Ayop SK, Sasaki K. Optical Manipulation of a Liquid Crystal (LC) Microdroplet by Optical Force. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muhamad Safuan Mat Yeng
- Department of Physics, Faculty of Science and Mathematics Sultan Idris Education University Tanjong Malim Perak 35900 Malaysia
| | - Shahrul Kadri Ayop
- Department of Physics, Faculty of Science and Mathematics Sultan Idris Education University Tanjong Malim Perak 35900 Malaysia
| | - Keiji Sasaki
- Research Institute for Electronic Science Hokkaido University Sapporo 0010020 Japan
| |
Collapse
|
29
|
Zhan X, Liu Y, Yang KL, Luo D. State-of-the-Art Development in Liquid Crystal Biochemical Sensors. BIOSENSORS 2022; 12:577. [PMID: 36004973 PMCID: PMC9406035 DOI: 10.3390/bios12080577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
As an emerging stimuli-responsive material, liquid crystal (LC) has attracted great attentions beyond display applications, especially in the area of biochemical sensors. Its high sensitivity and fast response to various biological or chemical analytes make it possible to fabricate a simple, real-time, label-free, and cost-effective LC-based detection platform. Advancements have been achieved in the development of LC-based sensors, both in fundamental research and practical applications. This paper briefly reviews the state-of-the-art research on LC sensors in the biochemical field, from basic properties of LC material to the detection mechanisms of LC sensors that are categorized into LC-solid, LC-aqueous, and LC droplet platforms. In addition, various analytes detected by LCs are presented as a proof of the application value, including metal ions, nucleic acids, proteins, glucose, and some toxic chemical substances. Furthermore, a machine-learning-assisted LC sensing platform is realized to provide a foundation for device intelligence and automatization. It is believed that a portable, convenient, and user-friendly LC-based biochemical sensing device will be achieved in the future.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
| |
Collapse
|
30
|
Uchida J, Soberats B, Gupta M, Kato T. Advanced Functional Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109063. [PMID: 35034382 DOI: 10.1002/adma.202109063] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Liquid crystals have been intensively studied as functional materials. Recently, integration of various disciplines has led to new directions in the design of functional liquid-crystalline materials in the fields of energy, water, photonics, actuation, sensing, and biotechnology. Here, recent advances in functional liquid crystals based on polymers, supramolecular complexes, gels, colloids, and inorganic-based hybrids are reviewed, from design strategies to functionalization of these materials and interfaces. New insights into liquid crystals provided by significant progress in advanced measurements and computational simulations, which enhance new design and functionalization of liquid-crystalline materials, are also discussed.
Collapse
Affiliation(s)
- Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bartolome Soberats
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
31
|
Norouzi S, Martinez Gonzalez JA, Sadati M. Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles. BIOSENSORS 2022; 12:313. [PMID: 35624614 PMCID: PMC9139120 DOI: 10.3390/bios12050313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022]
Abstract
Designing simple, sensitive, fast, and inexpensive readout devices to detect biological molecules and biomarkers is crucial for early diagnosis and treatments. Here, we have studied the interaction of the chiral liquid crystal (CLC) and biomolecules at the liquid crystal (LC)-droplet interface. CLC droplets with high and low chirality were prepared using a microfluidic device. We explored the reconfiguration of the CLC molecules confined in droplets in the presence of 1,2-diauroyl-sn-glycero3-phosphatidylcholine (DLPC) phospholipid. Cross-polarized optical microscopy and spectrometry techniques were employed to monitor the effect of droplet size and DLPC concentration on the structural reorganization of the CLC molecules. Our results showed that in the presence of DLPC, the chiral LC droplets transition from planar to homeotropic ordering through a multistage molecular reorientation. However, this reconfiguration process in the low-chirality droplets happened three times faster than in high-chirality ones. Applying spectrometry and image analysis, we found that the change in the chiral droplets' Bragg reflection can be correlated with the CLC-DLPC interactions.
Collapse
Affiliation(s)
- Sepideh Norouzi
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA;
| | - Jose A. Martinez Gonzalez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210 SLP, Mexico;
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
32
|
Salgado-Blanco D, Llanas-García AH, Díaz-Herrera E, Martínez-González JA, Mendoza CI. Structural properties and ring defect formation in discotic liquid crystal nanodroplets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:254001. [PMID: 35358952 DOI: 10.1088/1361-648x/ac630b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
In this work, we performedNpTMonte Carlo simulations of a Gay-Berne discotic liquid crystal confined in a spherical droplet under face-on anchoring and fixed pressure. We find that, in contrast to the unbounded system, a plot of the order parameter as function of temperature does not show a clear evidence of a first-order isotropic-nematic transition. We also find that the impossibility of simultaneously satisfy the uniform director field requirement of a nematic phase with the radial boundary conditions, results in the appearance of a ring disclination line as a stress release mechanism in the interior of the droplet. Under further cooling, a columnar phase appears at the center of the droplet.
Collapse
Affiliation(s)
- Daniel Salgado-Blanco
- Cátedras CONACyT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216, San Luis Potosí, México
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, S. L. P., 78216, México
| | - Andrea H Llanas-García
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, S. L. P., 78216, México
| | - Enrique Díaz-Herrera
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Col. Vicentina, 09340 México, Ciudad de México, Mexico
| | - José A Martínez-González
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210 SLP, Mexico
| | - Carlos I Mendoza
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, 04510 México, Ciudad de México, Mexico
| |
Collapse
|
33
|
Quantitative Biosensing Based on a Liquid Crystal Marginally Aligned by the PVA/DMOAP Composite for Optical Signal Amplification. BIOSENSORS 2022; 12:bios12040218. [PMID: 35448279 PMCID: PMC9026489 DOI: 10.3390/bios12040218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022]
Abstract
The working principle for a liquid crystal (LC)-based biosensor relies on the disturbance in the orderly aligned LC molecules induced by analytes at the LC-aqueous or LC-solid interface to produce optical signals that can be typically observed under a polarizing optical microscope (POM). Our previous studies demonstrate that such optical response can be enhanced by imposing a weak electric field on LCs so that they are readily tilted from the homeotropic alignment in response to lower concentrations of analytes at the LC-glass interface. In this study, an alternative approach toward signal amplification is proposed by taking advantage of the marginally tilted alignment configuration without applying an electric field. The surface of glass substrates was modified with a binary aligning agent of poly(vinyl alcohol) (PVA) and dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP), in which the amount of PVA was fine-tuned so that the interfacing LC molecules were slightly tilted but remained virtually homeotropically aligned to yield no light leakage under the POM in the absence of an analyte. Two nematic LCs, E7 and 5CB, were each sandwiched between two parallel glass substrates coated with the PVA/DMOAP composite for the detection of bovine serum albumin (BSA), a model protein, and cortisol, a small-molecule steroid hormone. Through image analysis of the optical appearance of E7 observed under the POM, a limit of detection (LOD) of 2.5 × 10−8 μg/mL for BSA and that of 3 × 10−6 μg/mL for cortisol were deduced. Both values are significantly lower than that obtained with only DMOAP as the alignment layers, which correspond to signal amplification of more than six orders of magnitude. The new approach for signal amplification reported in this work enables analytes of a wide range of molecular weights to be detected with high sensitivity.
Collapse
|
34
|
Rather AM, Xu Y, Chang Y, Dupont RL, Borbora A, Kara UI, Fang JC, Mamtani R, Zhang M, Yao Y, Adera S, Bao X, Manna U, Wang X. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110085. [PMID: 35089623 DOI: 10.1002/adma.202110085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Biomimetic artificial surfaces that enable the manipulation of gas bubble mobility have been explored in a wide range of applications in nanomaterial synthesis, surface defouling, biomedical diagnostics, and therapeutics. Although many superhydrophobic surfaces and isotropic-lubricant-infused porous surfaces have been developed to manipulate gas bubbles, the simultaneous control over the adhesion and transport of gas bubbles underwater remains a challenge. Thermotropic liquid crystals (LCs), a class of structured fluids, provide an opportunity to tune the behavior of gas bubbles through LC mesophase transitions using a variety of external stimuli. Using this central idea, the design and synthesis of LC-infused porous surfaces (LCIPS) is reported and the effects of the LC mesophase on the transport and adhesion of gas bubbles on LCIPS immersed in water elucidated. LCIPS are demonstrated to be a promising class of surfaces with an unprecedented level of responsiveness and functionality, which enables the design of cyanobacteria-inspired object movement, smart catalysts, and bubble gating devices to sense and sort volatile organic compounds and control oxygen levels in biomimetic cell cultures.
Collapse
Affiliation(s)
- Adil Majeed Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Lewis Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Ufuoma Israel Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Rajdeep Mamtani
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
35
|
Qu R, Li G. Overview of Liquid Crystal Biosensors: From Basic Theory to Advanced Applications. BIOSENSORS 2022; 12:205. [PMID: 35448265 PMCID: PMC9032088 DOI: 10.3390/bios12040205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 05/06/2023]
Abstract
Liquid crystals (LCs), as the remarkable optical materials possessing stimuli-responsive property and optical modulation property simultaneously, have been utilized to fabricate a wide variety of optical devices. Integrating the LCs and receptors together, LC biosensors aimed at detecting various biomolecules have been extensively explored. Compared with the traditional biosensing technologies, the LC biosensors are simple, visualized, and efficient. Owning to the irreplaceable superiorities, the research enthusiasm for the LC biosensors is rapidly rising. As a result, it is necessary to overview the development of the LC biosensors to guide future work. This article reviews the basic theory and advanced applications of LC biosensors. We first discuss different mesophases and geometries employed to fabricate LC biosensors, after which we introduce various detecting mechanisms involved in biomolecular detection. We then focus on diverse detection targets such as proteins, enzymes, nucleic acids, glucose, cholesterol, bile acids, and lipopolysaccharides. For each of these targets, the development history and state-of-the-art work are exhibited in detail. Finally, the current challenges and potential development directions of the LC biosensors are introduced briefly.
Collapse
Affiliation(s)
- Ruixiang Qu
- Intelligent Optical Imaging and Sensing Group, Zhejiang Laboratory, Hangzhou 311121, China
| | - Guoqiang Li
- Intelligent Optical Imaging and Sensing Group, Zhejiang Laboratory, Hangzhou 311121, China
| |
Collapse
|
36
|
Rajesh R, Gangwar LK, Mishra SK, Choudhary A, Biradar AM, Sumana G. Technological Advancements in Bio‐recognition using Liquid Crystals: Techniques, Applications, and Performance. LUMINESCENCE 2022. [PMID: 35347826 DOI: 10.1002/bio.4242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/10/2022]
Abstract
The application of liquid crystal (LC) materials has undergone a modern-day renaissance from its classical use in electronics industry as display devices to new-fangled techniques for optically detecting biological and chemical analytes. This review article deals with the emergence of LC materials as invaluable material for their use as label-free sensing elements in the development of optical, electro-optical and electrochemical biosensors. The property of LC molecules to change their orientation on perturbation by any external stimuli or on interaction with bioanalytes or chemical species has been utilized by many researches for the fabrication of high sensitive LC-biosensors. In this review article we categorized LC-biosensor based on biomolecular reaction mechanism viz. enzymatic, nucleotides and immunoreaction in conjunction with operating principle at different LC interface namely LC-solid, LC-aqueous and LC-droplets. Based on bimolecular reaction mechanism, the application of LC has been delineated with recent progress made in designing of LC-interface for the detection of bio and chemical analytes of proteins, virus, bacteria, clinically relevant compounds, heavy metal ions and environmental pollutants. The review briefly describes the experimental set-ups, sensitivity, specificity, limit of detection and linear range of various viable and conspicuous LC-based biosensor platforms with associated advantages and disadvantages therein.
Collapse
Affiliation(s)
- Rajesh Rajesh
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | - Lokesh K. Gangwar
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | | | - Amit Choudhary
- Physics Department Deshbandhu College (University of Delhi) Kalkaji New Delhi India
| | - Ashok M. Biradar
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | - Gajjala Sumana
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| |
Collapse
|
37
|
Moon J, Kang C, Kang H. Vertical Alignment of Liquid Crystals on Phenylphenoxymethyl-Substituted Polystyrene-PS Derivatives Structurally Similar to LC Molecules. Polymers (Basel) 2022; 14:934. [PMID: 35267756 PMCID: PMC8912853 DOI: 10.3390/polym14050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
A series of polystyrene derivatives containing precursors of liquid crystal (LC) molecules, phenylphenoxymethyl-substituted polystyrene (PPHE#; # = 5, 15, 25, 50, 75, and 100)-where # is the molar content of 4-phenylphenol using polymer modification reactions-were prepared in order to examine the effect of the polymer film, which possess similar LC molecular structure on the LC alignment properties. It was found that the Tg values of the PPHE# were higher than 100 °C due to their aromatic structure in the biphenyl-based PHE moiety. The LC cells fabricated with PPHE5 and PPHE15 films exhibited planar LC alignment. Conversely, LC molecules showed a vertical alignment in LC cells made using the polymer films with phenylphenoxymethyl side groups in the range of 25-100 mol %. The polar surface energies on the PPHE# films can be associated with the vertical LC alignment on the PPHE# films. For example, vertical LC alignment was exhibited when the polar surface energy of the polymer films was less than approximately 4.2 mJ/m2. Aligning stability was observed at 200 °C and UV irradiation of 20 J/cm2 for LC cells made using the PPHE100 film. Therefore, it was found that biphenyl, one of the LC precursors, modified polystyrene derivatives and can produce a next-generation vertical LC alignment system.
Collapse
Affiliation(s)
| | | | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, 37 Nakdong-Daero, 550 Beon-gil, Saha–gu, Busan 49315, Korea; (J.M.); (C.K.)
| |
Collapse
|
38
|
Development and Application of Liquid Crystals as Stimuli-Responsive Sensors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041453. [PMID: 35209239 PMCID: PMC8877457 DOI: 10.3390/molecules27041453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
Abstract
This focused review presents various approaches or formats in which liquid crystals (LCs) have been used as stimuli-responsive sensors. In these sensors, the LC molecules adopt some well-defined arrangement based on the sensor composition and the chemistry of the system. The sensor usually consists of a molecule or functionality in the system that engages in some form of specific interaction with the analyte of interest. The presence of analyte brings about the specific interaction, which then triggers an orientational transition of the LC molecules, which is optically discernible via a polarized optical image that shows up as dark or bright, depending on the orientation of the LC molecules in the system (usually a homeotropic or planar arrangement). The various applications of LCs as biosensors for glucose, protein and peptide detection, biomarkers, drug molecules and metabolites are extensively reviewed. The review also presents applications of LC-based sensors in the detection of heavy metals, anionic species, gases, volatile organic compounds (VOCs), toxic substances and in pH monitoring. Additionally discussed are the various ways in which LCs have been used in the field of material science. Specific attention has been given to the sensing mechanism of each sensor and it is important to note that in all cases, LC-based sensing involves some form of orientational transition of the LC molecules in the presence of a given analyte. Finally, the review concludes by giving future perspectives on LC-based sensors.
Collapse
|
39
|
Ramou E, Palma SICJ, Roque ACA. Nanoscale Events on Cyanobiphenyl-Based Self-Assembled Droplets Triggered by Gas Analytes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6261-6273. [PMID: 35044147 PMCID: PMC9241000 DOI: 10.1021/acsami.1c24721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 05/28/2023]
Abstract
Liquid crystals (LCs) are prime examples of dynamic supramolecular soft materials. Their autonomous self-assembly at the nanoscale level and the further nanoscale events that give rise to unique stimuli-responsive properties have been exploited for sensing purposes. One of the key features to employ LCs as sensing materials derives from the fine-tuning between stability and dynamics. This challenging task was addressed in this work by studying the effect of the alkyl chain length of cyanobiphenyl LCs on the molecular self-assembled compartments organized in the presence of ionic liquid molecules and gelatin. The resulting multicompartment nematic and smectic gels were further used as volatile organic compound chemical sensors. The LC structures undergo a dynamic sequence of phase transitions, depending on the nature of the LC component, yielding a variety of optical signals, which serve as optical fingerprints. In particular, the materials incorporating smectic compartments resulted in unexpected and rich optical textures that have not been reported previously. Their sensing capability was tested in an in-house-assembled electronic nose and further assessed via signal collection and machine-learning algorithms based on support vector machines, which classified 12 different gas analytes with high accuracy scores. Our work expands the knowledge on controlling LC self-assembly to yield fast and autonomous accurate chemical-sensing systems based on the combination of complex nanoscale sensing events with artificial intelligence tools.
Collapse
Affiliation(s)
- Efthymia Ramou
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, School
of Science and Technology, NOVA University
Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Susana I. C. J. Palma
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, School
of Science and Technology, NOVA University
Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Cecília A. Roque
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, School
of Science and Technology, NOVA University
Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
40
|
Piñeres-Quiñones OH, Lynn DM, Acevedo-Vélez C. Environmentally Responsive Emulsions of Thermotropic Liquid Crystals with Exceptional Long-Term Stability and Enhanced Sensitivity to Aqueous Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:957-967. [PMID: 35001623 DOI: 10.1021/acs.langmuir.1c02278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report colloidally stable emulsions of thermotropic liquid crystals (LCs) that can detect the presence of amphiphilic analytes in aqueous environments. Our approach makes use of a Pickering stabilization strategy consisting of surfactant-nanoparticle complexes (SiO2/CnTAB, n = 8, 12, 16) that adsorb to aqueous/LC droplet interfaces. This strategy can stabilize LC emulsions against coalescence for at least 3 months. These stabilized LC emulsions also retain the ability to respond to the presence of model anionic, cationic, and nonionic amphiphiles (e.g., SDS, C12TAB, C12E4) in aqueous solutions by undergoing "bipolar-to-radial" changes in LC droplet configurations that can be readily observed and quantified using polarized light microscopy. Our results reveal these ordering transitions to depend upon the length of the hydrocarbon tail of the CnTAB surfactant used to form the stabilizing complexes. In general, increasing CnTAB surfactant tail length leads to droplets that respond at lower analyte concentrations, demonstrating that this Pickering stabilization strategy can be used to tune the sensitivities of the stabilized LC droplets. Finally, we demonstrate that these colloidally stable LC droplets can report the presence of rhamnolipid, a biosurfactant produced by the bacterial pathogen Pseudomonas aeruginosa. Overall, our results demonstrate that this Pickering stabilization strategy provides a useful tool for the design of LC droplet-based sensors with substantially improved colloidal stability and new strategies to tune their sensitivities. These advances could increase the potential practical utility of these responsive soft materials as platforms for the detection and reporting of chemical and biological analytes.
Collapse
Affiliation(s)
- Oscar H Piñeres-Quiñones
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Claribel Acevedo-Vélez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| |
Collapse
|
41
|
Kalita P, Singh RK, Bhattacharjee A. Thermotropic liquid crystals in the detection of albumins through a microscopic, spectroscopic and computational approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120374. [PMID: 34536891 DOI: 10.1016/j.saa.2021.120374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Liquid crystals (LCs) are a promising system of molecules for biosensing as a transducing agent for detecting protein human serum albumin (HSA). Herein, we investigate the detection of HSA by a liquid crystal 4'-octyl-4-biphenylcarbonitrile (8CB) intending to develop an LC-based biosensor. The change in the alignment of liquid crystal molecules in the presence of protein results in the transfigurations of the director through interactions. The limit of 8CB to detect HSA is found to be at a reliable concentration in the development of biosensors. The transition in the director configurations from radial to bipolar during the crystalline to the isotropic phase of the liquid crystals are studied under polarizing optical microscopy. These transitions confirm the detection of HSA by 8CB. The docking analysis depicts the interactions by which 8CB liquid crystal molecules bind with protein HSA. The binding energy, binding active residues and their distances between the docked residues of HSA and molecules of ligand 8CB are calculated by molecular docking. Temperature-dependent Raman spectroscopy is used to analyse the spectral behaviour of the interactions. The residues validated by molecular docking studies correlate well with the findings of Raman spectra for the interaction between 8CB and HSA.
Collapse
Affiliation(s)
- Priyanki Kalita
- Department of Physics, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Ranjan K Singh
- Department of Physics, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ayon Bhattacharjee
- Department of Physics, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
42
|
Tsuei M, Sun H, Kim YK, Wang X, Gianneschi NC, Abbott NL. Interfacial Polyelectrolyte-Surfactant Complexes Regulate Escape of Microdroplets Elastically Trapped in Thermotropic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:332-342. [PMID: 34967209 DOI: 10.1021/acs.langmuir.1c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolytes adsorbed at soft interfaces are used in contexts such as materials synthesis, stabilization of emulsions, and control of rheology. Here, we explore how polyelectrolyte adsorption to aqueous interfaces of thermotropic liquid crystals (LCs) influences surfactant-stabilized aqueous microdroplets that are elastically trapped within the LCs. We find that adsorption of poly(diallyldimethylammonium chloride) (PDDA) to the interface of a nematic phase of 4-cyano-4'-pentylbiphenyl (5CB) triggers the ejection of microdroplets decorated with sodium dodecylsulfate (SDS), consistent with an attractive electrical double layer interaction between the microdroplets and LC interface. The concentration of PDDA that triggers release of the microdroplets (millimolar), however, is three orders of magnitude higher than that which saturates the LC interfacial charge (micromolar). Observation of a transient reorientation of the LC during escape of microdroplets leads us to conclude that complexes of PDDA and SDS form at the LC interface and thereby regulate interfacial charge and microdroplet escape. Poly(sodium 4-styrenesulfonate) (PSS) also triggers escape of dodecyltrimethylammonium bromide (DTAB)-decorated aqueous microdroplets from 5CB with dynamics consistent with the formation of interfacial polyelectrolyte-surfactant complexes. In contrast to PDDA-SDS, however, we do not observe a transient reorientation of the LC when using PSS-DTAB, reflecting weak association of DTAB and PSS and slow kinetics of formation of PSS-DTAB complexes. Our results reveal the central role of polyelectrolyte-surfactant dynamics in regulating the escape of the microdroplets and, more broadly, that LCs offer the basis of a novel probe of the structure and properties of polyelectrolyte-surfactant complexes at interfaces. We demonstrate the utility of these new insights by triggering the ejection of microdroplets from LCs using peptide-polymer amphiphiles that switch their net charge upon being processed by enzymes. Overall, our results provide fresh insight into the formation of polyelectrolyte-surfactant complexes at aqueous-LC interfaces and new principles for the design of responsive soft matter.
Collapse
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hao Sun
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyengbuk 37673, Korea
| | - Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
43
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
44
|
Thakur S, Dasmahapatra AK, Bandyopadhyay D. Self-Organized Liquid Crystal Droplets as Phototunable Softmasks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60697-60712. [PMID: 34874157 DOI: 10.1021/acsami.1c21811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A single-step self-organized pathway is harnessed to generate large-area and high-density liquid-crystal (LC) microdroplets via rapid spreading of an LC-laden volatile liquid film on an aqueous surfactant bath. The surfactant loading on the water bath and LC loading in the solvent fluid help in tuning the size, periodicity, and ordering of LC microdroplets. Remarkably, the experiments reveal a transition from a spinodal to heterogeneous nucleation pathway of dewetting when the surfactant loading is modulated from below to beyond the critical micellar concentration in the aqueous phase. In the process, a host of unprecedented drop formation modes, such as dewetting and contact-line instability, random ejection, and "fire cracker" toroid splitting, have been uncovered. Subsequently, the LC microdroplets on the air-water interface are employed as photomasks suitable for soft-photolithography applications. Such masks help in the decoration of a host of mesoscale three-dimensional features on the films of photoresists when photons are guided through the LC droplets. In such a scenario, phase transition of LC droplets under solvent vapor annealing is employed to control the movement of photons through drops and subsequently modulate the light exposure on the photoresist surface. Such a simple soft-photolithography setup leads to an array of flattened droplets on a positive resist, while donut features are observed on the negative tone. Remarkably, the orientation of nematogens within 4-cyano-4'-pentylbiphenyl droplets and at the three-phase contact-line provides additional handles in controlling the transmission of photons, which facilitates such a unique pattern formation. A number of low-cost and simple strategies are also discussed to order such soft-photolithography patterns. Importantly, with a minor modification to the same experimental setup, we could also measure the variation in the order parameter of the LC droplet during its phase transitions from the nematic to isotropic state.
Collapse
Affiliation(s)
- Siddharth Thakur
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
45
|
|
46
|
Devi M, Verma I, Pal SK. Distinct interfacial ordering of liquid crystals observed by protein-lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface. Analyst 2021; 146:7152-7159. [PMID: 34734590 DOI: 10.1039/d1an01444g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interfaces formed between a lipid decorated liquid crystal (LC) film and an aqueous phase can mimic the bimolecular membrane where interfacially occurring biological phenomena (e.g., lipid-protein interactions, protein adsorption) can be visually monitored by observing the surface-sensitive orientations of LCs. The ordering behavior of LCs at different phospholipid-based LC interfaces (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and lysophosphatidic acid (LPA)) were investigated to determine the sensing of an important cytoplasmic protein (juxtamembrane of epidermal growth factor receptor (JM-EGFR)). At both DLPC and LPA decorated interfaces, the LC adopts homeotropic ordering, causing a dark optical appearance under crossed polarizers. Interestingly, upon the introduction of JM-EGFR to these LC-aqueous interfaces, the homeotropic orientation of the LC changed to planar (bright optical appearance), suggesting the potential of the designed system for JM-EGFR sensing. The use of different lipid decorated LC-aqueous interfaces results in the emergence of distinct optical patterns. For example, at a DLPC laden interface, elongated bright domains are observed, whereas a uniform bright texture is observed on an LPA laden interface. The DLPC decorated LC-aqueous interface is found to be highly selective for the sensing of JM-EGFR with a detection limit in the nanomolar concentration region (∼ 50 nM). When compared to spectroscopic and other conventional techniques, the LC-based design is simpler, and it allows the simple and label-free optical sensing of JM-EGFR at fluidic interfaces.
Collapse
Affiliation(s)
- Manisha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Indu Verma
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| |
Collapse
|
47
|
Yang C, Chen L, Zhang R, Chen D, Arriaga LR, Weitz DA. Local high-density distributions of phospholipids induced by the nucleation and growth of smectic liquid crystals at the interface. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Khan M, Liu S, Qi L, Ma C, Munir S, Yu L, Hu Q. Liquid crystal-based sensors for the detection of biomarkers at the aqueous/LC interface. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Wu PC, Pai CP, Lee MJ, Lee W. A Single-Substrate Biosensor with Spin-Coated Liquid Crystal Film for Simple, Sensitive and Label-Free Protein Detection. BIOSENSORS 2021; 11:374. [PMID: 34677330 PMCID: PMC8533856 DOI: 10.3390/bios11100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/31/2022]
Abstract
A liquid crystal (LC)-based single-substrate biosensor was developed by spin-coating an LC thin film on a dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP)-decorated glass slide. Compared with the conventional sandwiched cell configuration, the simplified procedure for the preparation of an LC film allows the film thickness to be precisely controlled by adjusting the spin rate, thus eliminating personal errors involved in LC cell assembly. The limit of detection (LOD) for bovine serum albumin (BSA) was lowered from 10-5 g/mL with a 4.2-μm-thick sandwiched cell of the commercial LC E7 to 10-7 g/mL with a 4.2-μm-thick spin-coated E7 film and further to 10-8 g/mL by reducing the E7 film thickness to 3.4 μm. Moreover, by exploiting the LC film of the highly birefringent nematic LC HDN in the immunodetection of the cancer biomarker CA125, an LOD comparable to that determined with a sandwiched HDN cell was achieved at 10-8 g/mL CA125 using a capture antibody concentration an order of magnitude lower than that in the LC cell. Our results suggest that employing spin-coated LC film instead of conventional sandwiched LC cell provides a more reliable, reproducible, and cost-effective single-substrate platform, allowing simple fabrication of an LC-based biosensor for sensitive and label-free protein detection and immunoassay.
Collapse
Affiliation(s)
- Po-Chang Wu
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist., Tainan 711010, Taiwan; (P.-C.W.); (C.-P.P.)
| | - Chao-Ping Pai
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist., Tainan 711010, Taiwan; (P.-C.W.); (C.-P.P.)
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Guiren Dist., Tainan 711301, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, Guiren Dist., Tainan 711301, Taiwan
| | - Wei Lee
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist., Tainan 711010, Taiwan; (P.-C.W.); (C.-P.P.)
| |
Collapse
|
50
|
Tsuei M, Tran H, Roh S, Ober CK, Abbott NL. Using Liquid Crystals to Probe the Organization of Helical Polypeptide Brushes Induced by Solvent Pretreatment. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hai Tran
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Christopher K. Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nicholas L. Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|