1
|
Yang J, Shang J, Yang L, Wei D, Wang X, Deng Q, Zhong Z, Ye Y, Zhou M. Nanotechnology-Based Drug Delivery Systems for Honokiol: Enhancing Therapeutic Potential and Overcoming Limitations. Int J Nanomedicine 2023; 18:6639-6665. [PMID: 38026538 PMCID: PMC10656744 DOI: 10.2147/ijn.s431409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Honokiol (HNK) is a small-molecule polyphenol that has garnered considerable attention due to its diverse pharmacological properties, including antitumor, anti-inflammatory, anti-bacterial, and anti-obesity effects. However, its clinical application is restricted by challenges such as low solubility, poor bioavailability, and rapid metabolism. To overcome these limitations, researchers have developed a variety of nano-formulations for HNK delivery. These nano-formulations offer advantages such as enhanced solubility, improved bioavailability, extended circulation time, and targeted drug delivery. However, existing reviews of HNK primarily focus on its clinical and pharmacological features, leaving a gap in the comprehensive evaluation of HNK delivery systems based on nanotechnology. This paper aims to bridge this gap by comprehensively reviewing different types of nanomaterials used for HNK delivery over the past 15 years. These materials encompass vesicle delivery systems, nanoparticles, polymer micelles, nanogels, and various other nanocarriers. The paper details various HNK nano-delivery strategies and summarizes their latest applications, development prospects, and future challenges. To compile this review, we conducted an extensive search using keywords such as "honokiol", "nanotechnology", and "drug delivery system" on reputable databases, including PubMed, Scopus, and Web of Science, covering the period from 2008 to 2023. Through this search, we identified and selected approximately 90 articles that met our specific criteria.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jinlu Shang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xia Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Qinmin Deng
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
Recent applications of phase-change materials in tumor therapy and theranostics. BIOMATERIALS ADVANCES 2023; 147:213309. [PMID: 36739784 DOI: 10.1016/j.bioadv.2023.213309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Phase-change materials (PCMs) are a type of special material which can store and release a large amount of thermal energy without any significant temperature change. They are emerging in recent years as a promising functional material in tumor therapy and theranostics due to their accurate responses to the temperature variations, biocompatibility and low toxicity. In this review, we will introduce the main types of PCMs and their desirable physiochemical properties for biomedical applications, and highlight the recent progress of PCM's applications in the modulated release of antitumor drugs, with special attentions paid to various ways to initiate temperature-dependent phase change, the concomitant thermal therapy and its combination with or activation of other therapies, particularly unconventional therapies. We will also summarize PCM's recent applications in tumor theranostics, where both drugs and imaging probes are delivered by PCMs for controlled drug release and imaging-guided therapy. Finally, the future perspectives and potential limitations of harnessing PCMs in tumor therapy will be discussed.
Collapse
|
3
|
Huang J, Wang H, Huang L, Zhou Y. Phospholipid-mimicking block, graft, and block-graft copolymers for phase-transition microbubbles as ultrasound contrast agents. Front Pharmacol 2022; 13:968835. [PMCID: PMC9606805 DOI: 10.3389/fphar.2022.968835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lipid and polymer microbubbles (MBs) are widely used as ultrasound contrast agents in clinical diagnosis, and possess great potential in ultrasound-mediated therapy due to their drug loading function. However, overcoming the limitations of stability and echo enhancement of MBs are still a considerable challenge.Methods: A series novel block, graft and block-graft copolymers was proposed and prepared in this work, and these copolymers were used as shells to encapsulate perfluoropentane as ultrasound contrast agents. First, block, graft and block-graft copolymers with different topological structures were prepared. Then, these copolymers were prepared into block copolymer phase-transition MBs, graft copolymer phase-transition MBs, and block-graft copolymer phase-transition MBs, respectively. Finally, the dexamethasone was used for drug-loaded phase-transition microbubbles model to explore the potential of theranostic microbubbles.Results: Finally, these three resulting copolymer MBs with average size of 4–5 μm exhibited well enhancement of ultrasound imaging under the influence of different frequencies and mechanical index, and they exhibited a longer contrast-enhanced ultrasound imaging time and higher resistance to mechanical index compared with SonoVue in vitro and in vivo. In vitro drug release results also showed that these copolymer MBs could encapsulate dexamethasone drugs, and the drug release could be enhanced by ultrasonic triggering. These copolymer MBs were therapeutic MBs for targeted triggering drug release.Conclusion: Therefore, the feasibility of block, graft, and block-graft copolymers as ultrasonic contrast agents was verified, and their ultrasonic enhancement performance in vitro and in vivo was compared. The ultrasound contrast agents developed in this work have excellent development potential in comprehensive diagnosis and treatment.
Collapse
Affiliation(s)
- Jianbo Huang
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wang
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hong Wang,
| | - Lei Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yuqing Zhou
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Alleviation of cardiac fibrosis using acellular peritoneal matrix-loaded pirfenidone nanodroplets after myocardial infarction in rats. Eur J Pharmacol 2022; 933:175238. [PMID: 36116519 DOI: 10.1016/j.ejphar.2022.175238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Myocardial fibrosis (MF) in the remote myocardium is a feature at the micoscopic level of pathological remodeling after myocardial infarction (MI). Although pirfenidone (PFD), an antifibrotic agent, is commonly used to inhibit fibrosis in multiple organs, its clinical use is limited because of the high doses required for favorable therapeutic outcomes and various side effects. Nanodrug technology has allowed for delayed quantitative drug release and reduced the amount of medication required, improving the treatment strategy for MF. In this study, we investigated the possible therapeutic effect of peritoneal matrix-loaded pirfenidone nanodroplets (NDs) on MI fibrosis. The results showed that the Perfluoropentane-Pirfenidone@Nanodroplets-Polyethylene glycol 2000 (PFP-PFD@NDs-PEG) described in this study was successfully synthesized and demonstrated a high potential for the targeted treatment of MI. The total duration of pirfenidone release from PFP-PFD@NDs-PEG was increased by loading it into an acellular peritoneal matrix (APM). Additionally, pirfenidone inhibited the transformation of cardiac fibroblasts into cardiac myofibroblasts in vitro and reduced the synthesis and secretion of collagen I and collagen III by cardiac myofibroblasts. The combination of the APM with pirfenidone nanodroplets achieved a slow drug release and showed excellent therapeutic effects on fibrosis in MI rats. Our study confirmed the feasibility and synergistic effectiveness of the APM combined with pirfenidone nanodroplets in the treatment of fibrosis in MI rats. Moreover, our technique offers a great potential for applying nanomedicine in other biomedical fields.
Collapse
|
5
|
Qiao L, Han M, Gao S, Shao X, Wang X, Sun L, Fu X, Wei Q. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines. J Mater Chem B 2021; 8:6333-6351. [PMID: 32633311 DOI: 10.1039/d0tb01260b] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is growing acceptance of traditional Chinese medicines (TCMs) as potential sources of clinical agents based on the demonstrated efficacies of numerous bioactive compounds first identified in TCM extracts, such as paclitaxel, camptothecin, and artemisinin. However, there are several challenges to achieving the full clinical potential of many TCMs, particularly the generally high hydrophobicity and low bioavailability. Recently, however, numerous studies have attempted to circumvent the limited in vivo activity and systemic toxicity of TCM ingredients by incorporation into nanoparticle-based delivery systems. Many of these formulations demonstrate improved bioavailability, enhanced tissue targeting, and greater in vivo stability compared to the native compound. This review summarizes nanoformulations of the most promising and extensively studied TCM compounds to provide a reference for further research. Combining these natural compounds with nanotechnology-based delivery systems may further improve the clinical utility of these agents, in turn leading to more intensive research on traditional medicinal compounds.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Maosen Han
- College of Phamaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xinxin Shao
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xianjun Fu
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Qingcong Wei
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China.
| |
Collapse
|
6
|
Chen D, Kang Z, Li W. Thin Ag films adhesive onto flexible substrates with excellent properties for multi‐application. J Appl Polym Sci 2020. [DOI: 10.1002/app.49806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dexin Chen
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University Guangzhou China
- Shaoguan Institute of Jinan University Shaoguan China
| | - Zhixin Kang
- Guangdong Key Laboratory for Advanced Metallic Materials Processing School of Mechanical & Automotive Engineering, South China University of Technology Guangzhou China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University Guangzhou China
- Shaoguan Institute of Jinan University Shaoguan China
| |
Collapse
|
7
|
Tiboni M, Benedetti S, Skouras A, Curzi G, Perinelli DR, Palmieri GF, Casettari L. 3D-printed microfluidic chip for the preparation of glycyrrhetinic acid-loaded ethanolic liposomes. Int J Pharm 2020; 584:119436. [PMID: 32445905 DOI: 10.1016/j.ijpharm.2020.119436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
18-α-Glycyrrhetinic acid (GA) is a bioactive compound extracted from licorice that exhibits many biological and pharmacological effects such as anti-inflammatory and antioxidant activities on the skin. However, its lipophilic nature results in poor bioavailability that limits clinical applications. Liposomes, presenting the ability to carry both hydrophobic and hydrophilic payloads and a good cytocompatibility, are effective to overcome this barrier. Furthermore, the addition of permeation enhancers such as ethanol into liposomal formulations helps the diffusion of these systems through the skin barrier. Here, we aimed to formulate GA-loaded ethanolic liposomes, using a natural soybean lecithin via a microfluidic approach. Using a fused deposition modeling (FDM) 3D printer we customized a microfluidic chip, and manufactured vesicles that presented spherical shape with a size of 202 ± 5.2 nm, a narrow size distribution and a good stability over a period of 30 days. After reaching a drug encapsulation efficiency of 63.15 ± 2.2%, liposomes were evaluated for their cytocompatibility and skin permeation potentiality after hydrogelation using xanthan gum. The in vitro release and permeation studies were performed using Franz diffusion cells comparing two different media and three synthetic membranes including a polymeric skin-mimicking membrane. The selected formulation presented no cytotoxicity and an increased permeation compared to GA saturated hydrogel. It could perform therapeutically better effects than conventional formulations containing free GA, as prolonged and controlled release topical dosage forms, which may lead to improved efficiency and better patient compliance.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Athanasios Skouras
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy; Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Giulia Curzi
- Prosopika srl, Via del Trabocchetto, 1, 61034 Fossombrone, PU, Italy
| | | | | | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| |
Collapse
|
8
|
Liu W, Xi G, Yang X, Hao X, Wang M, Feng Y, Chen H, Shi C. Poly(lactide-co-glycolide) grafted hyaluronic acid-based electrospun fibrous hemostatic fragments as a sustainable anti-infection and immunoregulation material. J Mater Chem B 2019; 7:4997-5010. [PMID: 31411610 DOI: 10.1039/c9tb00659a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) copolymers are promising synthetic materials in the biomedical field. However, in wound management, their hydrophobic properties limit their further application because of their poor adhesion to the surface of moist wounds. Furthermore, the lack of hemostatic materials with sustainable anti-infection and immunoregulation functions remains a highly significant clinical problem, as commercially available hemostatic products, such as Arista™, Celox™ and QuikClot™, do not have sufficient infection prevention and immunoregulation properties. Herein, we employ electrospinning, ammonia dissociation and surface grafting techniques to develop a series of PLGA-based hemostatic materials, including a PLGA electrospun fibrous membrane, PLGA-NH2 fibrous particles and PLGA-hyaluronic acid fibrous fragments (PLGA-HA FFs). Notably, we load azithromycin on the PLGA-HA FFs to endow them with anti-infection and immunoregulation properties. The hemostatic mechanism analysis demonstrates that the PLGA-HA FFs show superior hemostasis performance compared to traditional gauzes. The results show that the PLGA-HA FFs can act as a versatile platform with high encapsulation of azithromycin (83.03% ± 2.81%) and rapid hemostasis (28 ± 2 s) as well as prominent cytocompatibility towards L929 cells, RAW 264.7 cells and red blood cells. We believe that the current research proposes a possible strategy to synthesize materials that achieve not only safe and effective hemostasis, but also have anti-infection and immunoregulation properties for the development of further hemostatic products.
Collapse
Affiliation(s)
- Wen Liu
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang 325011, China.
| | - Guanghui Xi
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang 325011, China.
| | - Xiao Yang
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang 325011, China. and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Xiao Hao
- Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Mingshan Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yakai Feng
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang 325011, China. and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang 325011, China.
| | - Changcan Shi
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang 325011, China.
| |
Collapse
|
9
|
Zhou Q, Zeng Y, Xiong Q, Zhong S, Li P, Ran H, Yin Y, Reutelingsperger C, Prinze FW, Ling Z. Construction of CNA35 Collagen-Targeted Phase-Changeable Nanoagents for Low-Intensity Focused Ultrasound-Triggered Ultrasound Molecular Imaging of Myocardial Fibrosis in Rabbits. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23006-23017. [PMID: 31136144 DOI: 10.1021/acsami.9b05999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Myocardial fibrosis plays an important role in the development of heart failure and malignant arrhythmia, which potentially increases the incidence of sudden cardiac death. Therefore, early detection of myocardial fibrosis is of great significance for evaluating the prognosis of patients and formulating appropriate treatment strategies. Late gadolinium-enhanced magnetic resonance imaging is considered as the currently effective strategy for noninvasive detection of myocardial fibrosis, but it still suffers from some critical issues. In this work, multifunctional CNA35-labeled perfluoropentane nanoparticles (CNA35-PFP NPs) have been elaborately designed and constructed for molecular imaging of fibrotic myocardium based on ultrasound imaging. These as-constructed CNA35-PFP NPs are intravenously infused into rabbit circulation with an animal model of myocardial infarction. Especially, these targeted CNA35-PFP NPs with nanoscale size could efficiently pass through the endothelial cell gap and adhere to the surface of fibroblasts in the fibrotic myocardium. Importantly, followed by low-intensity focused ultrasound irradiation on the myocardium, these intriguing CNA35-PFP NPs could transform from liquid into gaseous microbubbles, which further significantly enhanced the ultrasound contrast in the fibrotic area, facilitating the detection by diagnostic ultrasound imaging. Therefore, this work provides a desirable noninvasive, economical, and real-time imaging technique for the assessment of cardiac fibrosis with diagnostic ultrasound based on the rational design of liquid-to-gas phase-changeable nanoplatforms.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Cardiology , Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yalin Zeng
- Department of Cardiology , Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Qingsong Xiong
- Department of Cardiology , Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Shigen Zhong
- Institute of Ultrasound Imaging, Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Pan Li
- Institute of Ultrasound Imaging, Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Haitao Ran
- Institute of Ultrasound Imaging, Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yuehui Yin
- Department of Cardiology , Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Chris Reutelingsperger
- Department of Physiology, Cardiovascular Research Institute Maastricht , Maastricht University , P.O. Box 616 , 6200 MD , Maastricht , The Netherlands
| | - Frits W Prinze
- Department of Biochemistry, Cardiovascular Research Institute Maastricht , University of Maastricht , P.O. Box 616 , 6200 MD , Maastricht , The Netherlands
| | - Zhiyu Ling
- Department of Cardiology , Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
- Institute of Ultrasound Imaging, Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| |
Collapse
|
10
|
Zhu B, Wang L, Huang J, Xiang X, Tang Y, Cheng C, Yan F, Ma L, Qiu L. Ultrasound-triggered perfluorocarbon-derived nanobombs for targeted therapies of rheumatoid arthritis. J Mater Chem B 2019. [DOI: 10.1039/c9tb00978g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The targeted US-triggered PFC-based “nanobombs” with US used to treat the RA in this work would offer a new treatment strategy and have a great potential for the application in the areas of theranostic agent and nanomedicine treatment.
Collapse
Affiliation(s)
- Bihui Zhu
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Liyun Wang
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Jianbo Huang
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Xi Xiang
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Yuanjiao Tang
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Feng Yan
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Lang Ma
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Li Qiu
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| |
Collapse
|
11
|
Li J, Cha R, Zhang Y, Guo H, Long K, Gao P, Wang X, Zhou F, Jiang X. Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. J Mater Chem B 2018; 6:6413-6423. [PMID: 32254649 DOI: 10.1039/c8tb01657g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Even though iron oxide (Fe3O4) nanoparticles are promising materials for magnetic resonance imaging (MRI) contrast agents, their biocompatibility and targeting efficacy still need to be improved. Herein, we modified glycyrrhetinic acid (GA) groups on Fe3O4 nanoparticles (Fe3O4@cGlu-GA) for liver tumor-targeted imaging. To evaluate the biocompatibility of these nanoparticles, we studied their cytotoxicity, hemolysis, and hepatotoxicity. We measured the uptake of Fe3O4@cGlu-GA nanoparticles in normal and liver tumor cells, then we investigated the specificity of Fe3O4@cGlu-GA nanoparticles in mouse models bearing subcutaneous and orthotopic liver tumors. With good biocompatibility and targeting efficacy both in vitro and in vivo, the Fe3O4@cGlu-GA nanoparticles are promising MRI contrast agents with ultralow hepatotoxicity and show great improvement on existing Fe3O4-based nanoparticles.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|